'물리학'에 해당되는 글 26건

  1. 2016.10.23 2016 노벨 물리학상을 이해하기 위해 필요한 것들(2) - 위상수학의 이해
  2. 2015.02.21 회전과 우주의 구조
  3. 2014.12.22 불확정성 원리와 상대성이론 (2)
  4. 2014.09.18 Independent Susceptibilities (1)
  5. 2014.08.15 Commutators in finite dimensions and identity matrix
  6. 2014.08.08 듣는 사람 - P. A. M. Dirac
  7. 2014.05.22 Constraints on Commutators (5)
  8. 2014.02.23 네 귀중한 교훈들 - 스티븐 와인버그 (6)
  9. 2014.02.17 2014 KIAS-SNU Physics Winter Camp
  10. 2013.12.14 공부합시다... (3)
  11. 2013.12.04 광양자 가설 없이 어디까지 갈 수 있을까?
  12. 2013.10.18 레이저로 가열할 수 있는 최대 온도에 대하여 (1)
  13. 2013.10.06 그 많던 종이비행기는 어떻게 다 날았을까 (8)
  14. 2012.05.08 디랙해를 항해하는 히치하이커를 위한 안내서 (2)
  15. 2011.10.03 자기 단극자의 vector potential
  16. 2010.07.14 Hamiltonian formulation(1) (4)
  17. 2010.01.19 양자역학의 유래 (4)
  18. 2009.09.30 가진 물리학/공학 교재들 (7)
  19. 2009.05.06 Lagrangian formulation(1) (2)
  20. 2009.04.18 Dirac Delta orthonormality (2)

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




위상수학에 대해 가장 널리 알려진 예시라고 한다면 도넛과 머그잔이겠지요. 거기에 질세라 노벨위원회에서 올해 수상자를 발표할 때 위상수학을 설명하면서 베이글과 프레츨을 예시로 들었습니다. 이 물체들이 어떻게 위상수학적으로 같고 다른지는 찰흙을 가지고 장난을 치다가 부모님께 혼나본 경험이 있으시다면 이해할 수 있으시겠지요. 아쉽게도 위상론적 물질에서 필요한 위상수학적인 양은 천 숫자(Chern number)라는 값으로, 앞선 예시들과는 달리 쉽게 머리 속으로 그릴 수 있는 것들은 아닙니다.


위상수학에서는 우리가 머리 속으로 그릴 수 있는 평범한 도형들을 다양체(manifold)라는 개념을 이용해 정의합니다. 구체적인 정의는 논의를 괜히 쓸데없이 복잡하게 만들테니 필요없겠지요. 천 숫자는 접속(connection)이란 특별한 종류의 수학적인 물체를 다양체 위에 올려놓았을 때 그 접속에 대한 위상론적인 정보를 담고 있는 값입니다. 그러면 우선 접속이 무엇인지에 대해 알아야 위상수학이 어떤 역할을 하는지 알 수 있겠지요.


그다지 좋은 예는 아니지만[각주:1] 접속을 이해하는데 쓸 수 있는 장난감으로 굴렁쇠가 있습니다. 비록 저 자신은 굴렁쇠를 실제로 굴려본 적이 없고 교과서 사진으로나 봤을 뿐이지만 동전은 자주 굴려봤으니 자신감을 가져도 좋겠지요. 다시 굴렁쇠로 돌아와서, 어떤 위치에서 굴리기 시작한 굴렁쇠를 적당한 경로를 따라 원래 위치로 돌아오는 것을 생각해 봅시다. 만약 굴렁쇠의 각 점에 눈금이 매겨져 있었다면 굴리기 전의 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금과 굴리고 같은 위치로 돌아왔을 때 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금은 다르겠지요. 홀로노미(holonomy)나 모노드로미(monodromy)는 이 눈금이 얼마나 달라지는가를 잡아내기 위해 정의된 수학적인 물체입니다. 하지만 오늘 논의에서는 다루려던 내용이 아니므로 두 용어에 대해서는 이 정도에서 설명을 마치도록 하지요.


접속이란 개념을 이해하기 위해서는 굴렁쇠를 굴린 경로 위의 각 점에 굴러가고 있는 굴렁쇠를 관찰하는 관찰자를 올려놓는 것이 좋습니다. 각 점에 앉아있는 관찰자는 굴렁쇠의 눈금 중 어떤 눈금이 바닥과 닿아있는지를 기록할 수 있겠지요. 그리고 한 점에 앉아있는 관찰자가 관찰한 눈금은 바로 옆에 앉은 관찰자가 관찰한 눈금과 일정한 관계를 맺고 있습니다. 굴렁쇠는 미끄러지지 않고 굴렀을테니, 두 관찰자 사이의 거리만큼 굴렁쇠와 바닥이 닿은 눈금이 변했을테니까요. 이처럼 한 점에서 관찰한 무언가의 값을 바로 옆의 점으로 끌고가면 일반적으로는 그 값이 변합니다. 수학에서는 이런 정보를 담은 것을 접속이라고 부릅니다. 한 점에서의 정보를 바로 옆의 점으로 연결시켜 준다는 점에서 더없이 적절한 용어(접속은 영어로 connection이라 부릅니다)라고 할 수 있겠지요. 한 점에서 바로 옆의 다른 점으로 움직이는 방법은 움직일 수 있는 방향만큼이나 다양하기 때문에 접속은 '어떤 방향으로 움직이는가'에 대한 정보도 함께 담고 있어야 합니다. 방향에 대한 정보를 가지고 있다는 점에서 접속은 벡터장과 매우 비슷합니다.


약간은 의외의 사실일 수 있겠지만, 어떤 다양체에는 벡터장을 임의로 올려놓지 못한다는 것이 알려져 있습니다. 가장 간단하고 머리 속으로 그려볼 수 있는 예시로는 털난 공 정리(hairy ball theorem)이 있습니다. '털난 공을 빗을 수 없다'란 표현으로 유명한 이 정리는 공의 표면(2차원 곡면이므로 $S^2$라 부릅니다) 위에 올려놓은 벡터장은 항상 0이 되는 지점이 있어야 한다고 주장합니다. 크기가 0이 아닌 벡터장을 공에 납작하게 붙은 털에 빗댄 것이지요. 실제로 그런지 의심이 드는 분이라면 바람이 부는 지구 표면을 생각해 보시면 좋습니다. 과연 지구 표면의 모든 점에서 동시에 바람이 불 수 있을까요? 털난 공 정리에 따르면 지구의 적어도 한 점에서는 바람이 불고 있지 않아야 합니다.


위의 정리는 위상수학적인 결과입니다. 털난 공이라고는 했지만 그것이 꼭 공일 필요는 없는 것이지요. 공이 조금 찌그러져 있다거나 허리같은 길쭉한 부분이 있다거나 해서 벡터장이 0인 지점이 하나는 있어야 한다는 사실이 변하지는 않는다는 말입니다. 천 숫자는 털난 공 정리와 비슷하게 다양체 위에 올려놓은 접속이 임의로 주어질 수는 없다는 것을 말해줍니다. 천 숫자를 계산하면 정수를 얻지만 이 정수가 정확히 무엇을 세는가에 대해서는 저도 좋은 설명이 없다는 점이 아쉽군요. 다만 한 가지 확실하게 말할 수 있는 것은 두 접속에 대해 계산한 천 숫자가 서로 차이가 난다면 하나의 접속에 작은 변화를 누적시켜서 다른 접속으로 바꾸는 것이 불가능하다는 것이고, 이런 의미에서 천 숫자가 위상론적인 불변량이라는 것입니다.




천 숫자에 대해 이해하려면 우선 접속에 대해 더 자세히 알아야 합니다. 그러므로 접속에 대해 좀 더 이야기해보도록 하죠.


잘 만들어진 굴렁쇠라면 모든 점이 서로 엇비슷하게 생겼을 겁니다. 굴렁쇠에 눈금을 새겼더라도 어떤 눈금을 1로 두고 그 눈금부터 번호를 매길 것인가에 대한 자유가 남아있는 것이지요. 때문에 각 점에 앉아있는 관찰자가 각자 굴렁쇠를 하나씩 들고 '나는 이 눈금을 1로 세겠다'고 주장하는 것을 생각해 볼 수 있습니다. 이 눈금을 1로 세는 점을 기준점이라고 부르도록 하죠. 각 점에 앉아있는 관찰자가 임의로 기준점을 재조정하더라도 실제로 굴렁쇠가 굴러가는 것에는 영향을 미치지 않아야 합니다. 이렇게 기준점을 재조정하는 것을 게이지 변환(gauge transform)이라 부르고, 기준점 재조정에 영향을 받지 않는 것을 게이지 대칭(gauge symmetry)이라 부릅니다. 입자물리에 관심이 있으신 분들이라면 게이지 보존(gauge boson)이란 단어를 들어보셨을텐데, 그 단어에서 말하는 게이지와 지금 여기에서 말하는 게이지는 같은 수학적인 물체입니다. 단지 그 수학적인 물체를 무엇을 나타내기 위해 쓰고 있느냐의 차이 정도만 있을 뿐이지요.


접속은 언제까지나 '한 점에서 읽어낸 값을 바로 옆의 점으로 옮기는 방법'을 결정해주기 때문에 값을 읽어낸 점에서 관찰자가 선택한 기준점과 값이 옮겨질 점에서 관찰자가 선택한 기준점에 영향을 받습니다. 그래서인지 기준점을 재조정하는 과정인 게이지 변환을 할 경우 각 점이 얼마나 다르게 기준점을 재조정했는지의 정보까지 들어가야 해서 보다 복잡하게 변화하지요. 다르게 말하자면 '각 점에서의 기준점 선택'에 영향을 받는다는 의미에서 진짜 물리적인 의미를 갖는 대상이라고 보기는 힘들다고 할 수 있습니다. 게이지 변환에 영향을 받지 않는 것들, 즉 게이지 불변(gauge invariant)인 것만이 실제 물리적인 의미를 갖는 대상이라고 생각해야 한다는 것이지요. 그렇다면 접속으로부터 충분히 물리적인 의미를 갖는 대상을 얻어낼 수 있는지가 문제가 됩니다.


한가지 방법은 아주 작은 폐곡선을 생각하고 그 폐곡선을 따라 굴렁쇠를 원래 위치로 굴린 것과 굴리기 전의 굴렁쇠의 차이를 확인하는 것입니다. 같은 점에서 굴렁쇠를 비교하는 것이기 때문에 기준점을 옮긴다고 해도 눈금의 차이는 변하지 않지요. 마치 12와 16의 차이가 112와 116의 차이와 같은 것처럼 말입니다. 이를 곡률(curvature)이라고 부릅니다.[각주:2] 곡률은 작은 폐곡선의 경우 그 폐곡선을 경계면으로 갖는 곡면의 넓이에 비례해서 눈금의 차이가 커진다는 관찰에 기반을 두고 있습니다. 작은 곡면은 평행사변형으로 근사할 수 있고 평행사변형은 두 방향(마주한 변은 같은 방향이므로 두 방향만 갖습니다)을 갖기 때문에 곡률은 방향에 대한 정보를 둘 가지고 있어야 합니다. 또한 이 두 방향이 겹치게 되면 넓이를 갖는 평행사변형이 만들어지지 않기 때문에 주어진 두 방향에 대해 반대칭적(antisymmetric)이어야 하죠.


곡률은 물리적인 정보를 담습니다. 게이지 이론으로 이해할 수 있는 전자기학을 예로 들자면, 전자기장에 해당하는 접속의 곡률은 우리가 실제로 측정할 수 있는 전기장과 자기장으로 인식됩니다. 또한 실제 천 숫자를 계산할 때는 접속을 이용하는 것이 아니라 접속의 곡률을 이용합니다. 이것을 이용해 여러가지 위상론적인 물체들을 만들 수 있습니다. 예를 들어 3차원 공간의 한 점을 감싸는 구의 표면 위에서 전자기장의 천 숫자를 계산하면 그 표면을 통과하는 총 자기장의 양을 얻는데, 천 숫자는 정수로 주어지므로 그 구 안에 들어있는 자기장의 원천 즉 자하의 총량은 정수로 주어진다는 것을 알 수 있습니다. 전하와 마찬가지로 자하 또한 양자화되어야 한다는 것을 의미하는 것이지요. 약간 원래 논의에서 벗어나기는 했지만, 고에너지 물리학에서는 이런 방식으로 위상수학을 이용해 위상론적인 물체들을 다루곤 합니다. 위상론적인 원인이 있고 입자의 성질을 갖기 때문에 이런 물체들을 위상론적 솔리톤(topological soliton)이라고 부르지요. 다른 위상론적인 물체로는 인스탄톤(instanton)들이 있는데 시간을 허수로 만드는 다소 설명하기 껄끄러운 일들을 해야 하므로 넘어가도록 하겠습니다.


천 숫자가 위상론적인 물질에서 물리적인 의미를 갖는 사례 중 하나는 정수 양자 홀 효과(integer quantum Hall effect)입니다. 금속에 아주 강한 자기장을 수직축으로 걸었을 때 전기장을 수평축으로 걸면 자기장과 전기장에 수직한 방향으로 전류가 흐르는데, 정수 양자 홀 효과는 이때 흐르는 전류와 전기장의 비를 측정한 것(홀 전도도라고 부릅니다)이 폰 클리칭 상수(von Klitzing constant)의 정수배로 나타나는 현상을 말합니다. 정수 양자 홀 효과에서는 이 홀 전도도가 천 숫자로부터 계산할 수 있다는 것이 알려져 있습니다.


정수 양자 홀 효과에서 계산하는 천 숫자는 조금 독특한 공간에서 계산합니다. 2차원 공간을 돌아다니는 전자들을 운동량으로 분류했을 때, 이 운동량이 만드는 공간에서의 적분이죠. 이 공간 위에서도 접속을 정의할 수 있습니다. 특정 운동량을 갖는 전자의 위상을 측정할 때 기준으로 삼는 위상을 운동량마다 다르게 설정해 줄 수 있기 때문이죠. 이를 베리 접속(Berry connection)이라고 부르고, 베리 접속으로부터 얻는 곡률을 베리 곡률(Berry curvature)라고 부릅니다. 양자 홀 효과와 관련된 천 숫자는 베리 곡률로부터 얻어지며, 이를 TKNN 불변량이라고 부릅니다.


정리해보자면, 실제로 위상론적 물질에서 쓰이는 위상수학은 접속과 관계된 천 숫자라는 불변량들이고 천 숫자가 실제로 힘을 발휘하는 경우의 예로 정수 양자 홀 효과를 들 수 있었습니다. 논의를 벗어나기는 했지만 고에너지 물리학에서는 위상수학을 어떻게 이용하는지를 다루면서 솔리톤에 대한 이야기도 꺼냈지요. 위상수학에 대한 이야기만 잔뜩 하고 정작 물리 이야기는 거의 하지 않았다는 점이 조금 마음에 걸리지만, 일단은 여기까지가 현재 할 수 있는 범위 내에서는 최선인 것 같네요.




천 숫자를 중심으로 살펴보긴 했지만 실제로는 더 많은 위상수학이 쓰입니다. 예를 들어 애니온(anyon)의 경우에는 매듭 군(braid group)과 관련이 있지만 잘 알지 못하는 관계로 넘어갔습니다. 글에서 언급된 자기단극자의 경우 한 차원 낮추게 되면 소용돌이(vortex)의 양자화를 얻는데, 이건 천 숫자로 표현하기에는 껄끄러운 점이 있어서 넘어갔죠.


마지막 글은 솔직히 쓰기는 할지 모르겠습니다. 요즘 일이 많아서... ㅠㅠ

  1. 수학적으로 정합적(consistent)인 묘사가 불가능하다는 점에서 좋은 예는 아닙니다. [본문으로]
  2. 참고로 일반상대론에서 말하는 '휜 공간'의 곡률과 이 곡률은 같습니다. 단지 곡률을 정의하기 위해 사용하는 접속이 다를 뿐이죠. [본문으로]

댓글을 달아 주세요

지구가 둥글다는 것을 알았던 옛 사람들은 태양이 지구를 도는 것에서 낮과 밤이 생기는 이유를 찾았습니다. 이를 천동설이라고 합니다. 갈릴레오 갈릴레이가 "그래도 지구는 돈다"라고 말했을 때는 '지구의 태양에 대한 회전'과 '태양의 지구에 대한 회전'이 서로 충돌하던 시절이었죠. '회전과 우주의 구조'라고 말했으니 이 대립을 생각하시는 분들도 많을 것입니다. 하지만 이 글에서는 조금 다른 이야기를 해 보려고 합니다.




회전을 정의하기


우선은 다루기 쉽게 회전을 수학적으로 정의해 보도록 하겠습니다. 중학생 수준을 넘는 수식은 쓰지 않을 예정이니 수학이라는 단어에 겁을 먹지 않으셔도 됩니다. 다만 얼마 전까지만 해도 고등학교 정규교육과정에 포함되어 있던 행렬 이야기는 할 예정이니 '행렬이 무엇인가' 정도는 알고 계셔야겠군요.


가장 먼저 필요한 것은 '공간을 수학으로[각주:1] 나타낼 방법'입니다. 이걸 '좌표'라고 부르죠. 어떤 물건의 위치를 문자(여기서는 숫자와 문자를 구분하지 않겠습니다)로 나타내는 규칙입니다. 토런트같은 P2P에서 파일의 위치를 나타내는 주소나 인터넷 페이지의 DNS 주소를 구할 때 "좌표 찍어줘"라고 말하는 것을 생각하시면 되겠습니다.


우리가 사는 공간에서는 세 숫자면 공간상의 모든 점을 표현할 수 있습니다. 예컨데 '내가 앉은 위치에서 동쪽으로 세 칸, 북쪽으로 두 칸, 위로 네 칸'으로 한 위치를 특정지을 수 있지요. 이를 두고 '우리는 3차원 공간에 산다'라고 말합니다. 한 물건의 크기를 적을 때 높이x너비x깊이 이 세 숫자로 크기를 적을 수 있는 것은 같은 이유에서입니다. (변위)벡터는 이 세 쌍의 숫자를 말합니다. 많은 경우 벡터를 시각화하기 좋도록 원점(내가 앉은 위치)에서 목표점(특정지을 위치)까지 이은 화살표로 생각하는데, 벡터의 크기는 이 화살표의 길이가 되지요.


이제 수학적으로 회전을 정의할 수 있겠네요. 회전이란 3차원 공간상의 벡터들을 1. 벡터의 크기를 보존하고 2. 벡터간 각도를 보존하는 3. 선형변환 입니다.[각주:2] 선형은 다른 의미가 아니고 $a$를 $f(a)$로 보내는 변환 $f$에 $a+b$를 집어넣으면 $f(a+b)=f(a)+f(b)$를 만족한다는 뜻입니다. 직선의 방정식처럼 결과가 단순하게 더해진다는 뜻이지요.


'선형'이라는 말이 나오는 순간부터(무한차원이 아닌 한) 우리는 행렬을 생각해야 합니다. 모든 선형변환은 행렬로 나타낼 수 있기 때문입니다. 여기서는 세 숫자를 세 숫자로 보내는 행렬이 되어야 하므로 우리가 생각해야 할 행렬은 3x3 행렬이며, 위에서 말한 세 조건들을 만족하는 회전을 나타내는 행렬들의 집합에는 O(3)라는 이름이 붙어 있습니다. 이 집합에는 거울상 변환에 해당하는 행렬도 들어있는데, 거울상 변환이란 거울에 비추었을 때 상이 뒤집어지는 것처럼 왼손을 오른손으로 보내는 변환들을 말합니다. 일반적으로는 이를 제거한 행렬들의 집합인 SO(3)를 주로 고려합니다. 어떻게 회전하든 오른손이 왼손과 포개어지지는 않으니까요.


SO(3) 집합이라는 표현할 대상을 찾았으면 표현할 방법을 구상해야겠지요. 이 집합의 한 원소(회전을 나타내는 어떤 행렬이 되겠죠)를 나타내는 한 가지 방법은 위도와 경도를 이용해 지구 위 위치를 나타내듯 두 각도를 이용해 회전의 중심으로 잡을 축을 찾고 그 축에 대한 회전각도를 적어주는 것입니다. 여기에는 숫자 셋이 필요하죠(위도, 경도, 회전각). 중요한 것은 숫자 셋이면 충분하다는 것입니다.


더 보기 쉽게 SO(3) 집합의 한 원소를 나타내는 방법은 오일러 각입니다. 오일러 각은 축 세 개를 지정하면 각 축에 대한 회전만으로 모든 회전을 구현할 수 있다는 것에서 출발합니다. 마찬가지로 숫자 셋(회전각 세 개)으로 모든 회전을 나타낼 수 있지요. 흔히 보는 자이로스코프에 회전축이 단 세 개만 존재하는 것과도 관련이 있습니다.


http://en.wikipedia.org/wiki/File:Gimbal_3_axes_rotation.gif


학부 2학년 역학 시간이나 동역학 시간에는 보통 zxz 오일러 각을 배웁니다. z축을 중심으로 전체를 한번 돌린 뒤 x축을 중심으로 한번 더 돌리고 다시 z축에 대해서 돌리는 것이죠. 보통은 팽이의 움직임이나 인공위성의 자세를 묘사하기 위해서 사용합니다. 반면 항공동역학 시간에는 xyz 오일러 각을 배웁니다. z축을 중심으로 돌린 뒤 y축으로 돌리고 다시 x축으로 돌리는 방법이죠. 다른 각을 쓰는 이유는 이 조합이 항공기의 세 횡운동(yaw, pitch, roll)을 나타내는데 더 편해서입니다.


오일러 각의 문제점은 특이점이 존재한다는 것입니다. 회전 전체의 집합 SO(3)에 대해서 우리는 '비슷한 회전'이란 것을 생각해 볼 수 있겠죠. 대부분의 회전에 대해서는 비슷한 회전으로 바뀔 때 오일러 각이 연속적으로 변합니다. 하지만 특정 회전에 대해서는 오일러 각이 불연속적으로 변합니다. 이를 두고 Gimbal lock이라 부릅니다. 이 문제가 생기면 제어 프로그램이 맛이 가기 때문에 이 문제를 피하는 것이 중요합니다.


문제가 있으면 해결하는 방법도 있어야겠죠. 이 문제를 해결하는 한 방법은 위에서 처음 제시한 (위도, 경도, 회전각) 조합을 이용하는 것입니다. 이 방법을 택할 경우 3x3 행렬들의 곱셈, 즉 아홉 숫자의 곱을 계산해야 합니다.


다른 방법은 사원수(quaternion)를 이용하는 것입니다. 이 방법은 단 네 숫자의 곱셈만을 이용합니다.




회전을 나타내는 다른 방법: 사원수


사원수는 간단하게 말하자면 복소수의 확장입니다.[각주:3] 복소수에 단위허수 두개를 더해서 숫자'처럼' 만든 물건이죠. 숫자'처럼'이라고 하는 이유는 행렬처럼 교환법칙( $ab=ba$)이 성립하지 않기 때문입니다.(다만 실수에 대해서는 교환법칙이 성립) 해밀턴 경이 아일랜드 왕립학회에 가다 떠올렸는데 마땅한 적을 곳이 없어서 지나가던 다리 위에다 사원수의 기본 아이디어를 새겼다는 일화가 전해지죠.


다리 위에 새긴 공식은 $i^2 = j^2 = k^2 = ijk = −1$ 으로, 단위허수 $i,j,k$ 간의 관계식입니다. 이 관계식으로부터 단위허수 사이의 관계식을 얻을 수 있는데, 가령 $ijk=-1$의 양 변 좌측에 $-i$를 곱하면

\[jk=(-ii)jk=(-i)(ijk)=(-1)(-i)=i\]


를 얻습니다.비슷한 과정을 반복하면 $ij=-ji=k, ki=-ik=j, jk=-kj=i$라는 관계식을 얻습니다.[각주:4]


사원수의 크기와 역수에 대해서


회전은 크기가 1인 사원수(단위 사원수라 부릅니다)를 이용해 나타낼 수 있습니다.[각주:5] 벡터 $(e,f,g)$를 사원수 $v=ei+fj+gk$로 나타내면 단위 사원수 $q$를 이용해 회전된 벡터 $(e',f',g')$를 $e'i+f'j+g'k=qvq^{-1}$로 나타낼 수 있습니다.[각주:6] 구체적인 방법은 http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation를 참조하시는 편이 낫겠네요.


여기에 재미있는 점이 하나 있는데, 크기가 1인 사원수의 집합은 4차원 공간에서 원점으로부터 거리가 1인 구면, 그러니까 3차원 구면이 됩니다( $a^2+b^2+c^2+d^2=1$. 3차원 구면은 $S^3$란 기호를 써서 나타냅니다.) 따라서 우리는 회전의 집합 SO(3)가 3차원 구면 $S^3$의 구조를 가지리라고 예상할 수 있습니다. 정말로 그럴까요?


애석하지만 조금 다른 구조를 갖습니다. 왜냐하면 $q$를 이용한 회전과 $-q$를 이용한 회전이 같거든요. '3차원 구면의 대척점 쌍'에 대해 하나의 회전이 정의된 것이죠. 이는 다음 식으로부터 알 수 있습니다.

\[(-q)v(-q)^{-1}=(-1)qv(-1)q^{-1}=(-1)^2 qvq^{-1}=qvq^{-1}\]


SO(3)란 집합은 '3차원 구면의 대척점 쌍'을 원소로 갖는 것이죠. 이런 공간을 사영공간(projective space) $RP^3$로 부릅니다. $RP^3$는 '4차원 공간의 원점에서 직선을 쏘는 방법'들의 공간이기도 합니다.


회전을 나타내는 사원소들의 집합과(3차원 구면 $S^3$의 구조) 실제 회전을 나타내는 행렬의 집합 SO(3)는(사영공간 $RP^3$의 구조) 구조상 미묘한 차이를 보이는 것이지요. 놀랍게도 이 차이는 우리가 보는 세상이 우리가 보는대로 구성되는 것과도 관련이 있습니다.




회전의 미묘한 차이와 우주의 구조


지금까지 회전을 나타내는 두 가지 방법(오일러 각/사원수)이 있으며, 이 중 사원수를 이용한 방법은 오일러 각을 이용한 방법보다 실제로는 더 많은 경우의 수를 가지고 있다는 것을 보여드렸습니다. 재미있게도 이 차이는 물리학에서 입자를 구분하는 방식, 그리고 우주의 모습이 지금 이 모습인 것과 관련이 있습니다.


우선은 회전의 집합을 제대로 규정해야겠지요. 먼저 말씀드렸다시피 3차원 공간에서 회전의 집합은 SO(3)가 됩니다. 하지만 실제 회전에 대응되는 사원수가 나타내는 집합은 SU(2)라고 부릅니다. SU(2)는 3차원 구면 $S^3$의 구조를 가지며, '일반적인 회전 집합' SO(3)에 대해 SU(2)의 두 원소가 SO(3)의 한 원소에 대응되겠죠(사원수 $q$와 $-q$가 같은 회전이므로). 어떤 면에서는 SU(2)라는 집합이 SO(3)라는 집합을 '두 번 덮는다'고 표현할 수 있습니다. 이런 경우를 두고 'SU(2)가 SO(3)의 덮개공간(covering space)이다'라 합니다.


SU(2) 집합은 무엇인가


이런 수학적인 장난(?)을 하는 이유는 보통은 느끼기 힘들지만 회전은 분명 흔적을 남기기 때문입니다. 이 흔적은 다음과 같은 실험으로 확인할 수 있습니다. (머플러나 리본처럼) 면을 가진 끈을 준비해 책에 한 끝을 붙이고 다른 끝을 공중 어딘가에 고정합니다. 책을 바닥에 평평하게 두고 한 바퀴 돌리게 되면 끈은 꼬이겠지요. 하지만 '같은' 방향으로 한번 더 돌리면 끈이 풀립니다. 이를 Balinese plate trick이라고 부릅니다. 다음 동영상에서 컵이 계속 위쪽으로 향하도록 한 뒤 회전시킬 때 한 번 회전하면 팔이 꼬이지만 두 번 회전하면 팔이 다시 풀리는 것으로 확인할 수 있죠.



SU(2)와 SO(3)의 2대 1 대응은 '이 차이를 보는가/보지 못하는가'를 나타낸다고 생각하시면 됩니다. 홀수 번 회전과 짝수 번 회전을 구분할 수 있으면 SU(2), 구분하지 못하면 SO(3)가 되는 것이지요.


전자나 양성자와 같은 페르미 입자(fermion)는 홀수 번 회전과 짝수 번 회전을 구분하는 입자들입니다. 이 입자들은 한 바퀴 회전할 때 마다 -1이란 부호를 획득합니다. 광자나 중력자(아직 관찰되지 않았습니다)와 같은 보즈 입자(boson)는 둘을 구분하지 못합니다. 이 차이는 상당히 중요한 결과를 가져옵니다. 두 입자의 자리바꿈과 두 입자의 회전이 동등하기 때문에 페르미 입자의 '회전을 구분하는 특징'은 파울리 배타원리로 나타나게 됩니다. 파울리 배타원리는 '구분할 수 없는 페르미 입자가 같은 상태에 존재하는 것'을 금지합니다. 구분할 수 없는 페르미 입자 두 개가 자리를 바꾸면서 얻는 -1이란 부호가 파동함수의 상쇄간섭을 일으키기 때문입니다.[각주:7] 반면 보즈 입자에 대해서는 파울리 배타원리가 적용되지 않기 때문에 '구분할 수 없는 보즈 입자가 같은 상태에 존재하는 것'이 얼마든지 가능합니다. 극단적인 경우에는 모든 구분이 불가능한 보즈 입자들이 한 상태에 밀집하며, 이를 보즈-아인슈타인 응축이라 부릅니다.


파울리 배타원리의 가장 중요한 결과는 주기율표입니다. 다른 종류의 원자가 서로 다른 화학적 성질을 갖는 이유는 전자가 페르미 입자라서 같은 상태에 두 입자가 존재할 수 없기 때문에 서로 다른 궤도를 갖고 원자핵을 돌기(물론 엄밀하게 말할 때 '도는 것'은 아닙니다만 다른 궤도를 갖고 있다는 것이 중요합니다) 때문입니다. 만약 전자가 보즈 입자였다면 전자는 모두 가장 낮은 에너지를 갖는 궤도에 안착할 것이고(파울리 배타원리가 이런 '붕괴'를 막습니다) 모두 같은 궤도에 있기 때문에 화학 반응이 일어나지 않겠지요.


또 다른 중요한 결과는 항성 핵과 중성자별의 존재입니다. 연소가 끝난 항성 핵은 가장 안정적인 철 원자로 구성되어 있고 철 원자의 전자들은 페르미 입자이기 때문에 '열운동에 의한 압력' 및 '파울리 배타원리의 효과'를 받아 중력으로 붕괴하지 않습니다. 중성자별은 연소가 끝난 별들의 원자핵이 페르미 입자인 중성자로 변해 마찬가지의 원리로 붕괴하지 않지요. 만약 파울리 배타원리의 효과를 받지 않는다면 이 천체들은 연속적으로 붕괴하여 블랙홀이 됩니다.


우리 모두는 별의 잔해에서 태어났습니다. 우리 몸을 구성하는 탄소나 산소와 같은 원소들은 별들의 핵에서 생성되었으니까요. 파울리 배타원리의 효과로 천체들이 불연속적으로 붕괴하는 것이 중요한 이유는 별들이 불연속적으로 붕괴하면서 핵에서 만들어진 원소들을 우주 공간으로 날려보내고, 이로부터 생명이 시작되기 때문입니다. 철 원자로 이루어진 항성의 핵을 지탱해주는 파울리 배타원리의 효과가 중력을 이겨내지 못하는 순간 항성의 핵의 철 원자 핵은 전자를 흡수하며 중성자가 되고, 이 과정에서 부피가 줄어들기 때문에 항성 핵은 붕괴하기 시작합니다. 하지만 중성자도 부피를 갖기 때문에 무한히 붕괴하지는 않지요. 원자 핵 밖에서 항성의 중심으로 낙하하던 물질들은 새롭게 만들어진 중성자 핵이라는 벽에 부딪치고 별 밖으로 튕겨나가게 됩니다. 이 과정을 초신성이라 부릅니다. 항성이 연속적으로 붕괴했다면 일어나지 않았을 일들이지요.


우리가 보는 세상이 우리가 보는 모습대로 있는 이유는, 그리고 우리가 존재할 수 있는 이유는 얼핏 보면 드러나지 않는 회전의 미묘한 차이를 구분할 수 있는 소립자들의 존재 때문인 셈입니다.





트위터에 날린 융단폭격을 조금 정리해봤습니다. 융단폭격의 우두머리(?)는 다음 세 트윗:


https://twitter.com/AstralDexter/status/568795182709125120

https://twitter.com/AstralDexter/status/568802072251887616

https://twitter.com/AstralDexter/status/568809524733222912


자이로스코프 이야기를 하려다 하려던 자이로스코프 이야기는 안 하고 샛길로 새어버렸네요 -_-;; 해당 내용을 추가하기는 늦은 듯 해서 다음에 기회가 생기면 이야기하기로 했습니다.

  1. 정확히는 숫자입니다. 앞으로 각주를 달 내용은 글의 내용과 관련만 있고 흐름과는 상관없는 내용들만 쓸 예정이므로 읽지 않으셔도 좋습니다. 어느 정도 배경지식이 있는 사람들을 위한 이야기라서요. 접어둔 내용은 글을 이해하시는 데 필요할 수 있는 정보들입니다. [본문으로]
  2. 3은 사실 연속성(비슷한 벡터는 비슷한 벡터로)과 같이 생각해야 하는 조건입니다. 연속성이란 조건을 날려버리면 '구 하나를 쪼개고 잘 합쳐 둘로 만드는' 것도 가능합니다. Banach-Tarski 역설을 참조: <a href="http://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox" target="_blank" class="tx-link">http://en.wikipedia.org/wiki/Banach-Tarski_paradox</a> [본문으로]
  3. 복소수에서 사원수로 확장하는 과정을 이용해서 수 체계를 계속 확장하는 것이 가능합니다. <a href="http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction" target="_blank" class="tx-link">http://en.wikipedia.org/wiki/Cayley-Dickson_construction</a> [본문으로]
  4. 사원수의 경우 Gibbs가 벡터 연산을 개발하기 전까지 물리학의 기본 언어로 쓰일 정도로 물리에 영향을 많이 미쳤습니다. 이후 사원수와 같은 방향으로 나아간 것에는 geometric algebra란게 있는 모양입니다만 공부해보진 않았네요. 참고로 xyz 단위벡터를 쓸 때 ijk를 쓰는 것은 사원수의 흔적입니다. [본문으로]
  5. 바로 다음 파트에서 다룰 예정이지만, 단위 사원수의 집합은 SU(2)와 동일합니다. [본문으로]
  6. 앞선 각주를 읽으셨고 게이지 장론을 공부하셨다면 회전을 나타내는 방법 중 SO(3)는 fundamental representation에, SU(2)는 adjoint representation에 해당한다는 것을 확인할 수 있습니다. [본문으로]
  7. 공간이 2차원이 되면 한 바퀴 회전할 때 얻는 부호가 1 또는 -1로 제한될 필요가 없습니다. Anyon이 이런 경우를 다룹니다. [본문으로]

댓글을 달아 주세요

일반물리학2 기말고사에서 양자역학과 (특수)상대론을 다루는 것을 보고 멘붕했는데(전 왜 배운 기억이 없을까요 =_=;;)[각주:1] 채점을 맡은 문제에서 틀린 사람이 너무 많아서 해설지를 써보았습니다. 스캔 상태가 엉망인 것과 악필인 것은 감안하시고...



sol.pdf





4.(a) 폭이 $L$인 1차원 무한 포텐셜 우물의 내부( $0<x<L$)에서 자유로이 움직일 수 있는 양자입자가 있다. 양자입자의 바닥상태 에너지가 0이 될 수 없음을 불확정성 원리를 이용해서 간단히 설명하라.


이 문제는 하이젠베르크의 불확정성 원리에 대한 이해를 물어보는 문제였습니다. 표준적인 방법은 위치-운동량 불확정성 원리를 이용하는 것인데, 사람에 따라서는 시간-에너지 불확정성을 이용하더군요. 문제는 시간-에너지 불확정성은 위치-운동량 불확정성과는 전혀 다르게 해설한다는 것이지만요(그래서 전부 오답처리).




8. (a) 철수가 광속에 가까운 속력 $v$로 일정하게 달리는 우주선을 타고 먼 별을 향해 여행을 떠난다. 지상에 남아 있는 영희는 철수에게 일정한 간격 $T$로 빛신호를 보내 안부를 전한다. 우주선에 타고 있는 철수는 빛 신호를 얼마의 간격으로 받고 있을까?


평범한 상대성이론 문제입니다. 상대론 문제를 풀 때 가장 중요한 건 "내가 누구 관점에서 문제를 풀고 있더라?"를 끝까지 기억하는거죠. 이게 엉켜버리면 난리가 나고요. 여러가지 방법으로 답을 구하는 방법을 적어보았습니다.


사실 마지막 '기하학적 풀이'에는 4-벡터를 이용한 해도 적어볼까 했지만 처음부터 설명하는건 무리라고 판단해서 생략. 사실 4-벡터를 내적해서 값을 구하는 짓을 하게 되면 불변량들을 가지고 숫자놀음을 하게 되기 때문에 식이 절대로 엉키지 않습니다. Landau 2권에서 retarded potential을 구할 때 이 방법을 쓰는 것으로 기억하고 있는데, 가장 논리를 따라가기 힘들었던 파트중 하나였죠.

  1. 물론 제가 들은건 1학년 상대로 4-벡터를 가르치던 고급물리였습니다만(다같이 멘붕) 양자는 한 기억이 없어요... [본문으로]

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
불확정성 원리와 상대성이론  (2) 2014.12.22
네 귀중한 교훈들 - 스티븐 와인버그  (6) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28

댓글을 달아 주세요

  1. 지나가던 사람  댓글주소  수정/삭제  댓글쓰기

    에너지-시간 불확정성 원리로 왜 해결할수 없다는게 이해가 안가는데 혹시 더 자세하게 설명해주실수 있으신가요?

    2017.08.16 22:05 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2017.08.23 23:32 신고  댓글주소  수정/삭제

      에너지-시간 불확정성은 '시스템이 특정한 에너지를 갖는 처음 상태에서 Δt만큼의 시간 동안 외부의 영향을 받아 나중 상태로 변화했을 때 나중 상태들이 갖는 에너지의 분포가 ΔE만큼 퍼져있을 경우 ΔtΔE~h의 관계가 성립한다'로 해석해야 합니다. 시간에 따른 시스템의 변화에 방점이 찍혀있기 때문에 시간과는 무관한 바닥상태의 에너지와는 관련이 없습니다.

다음 연작 트윗에 대한 보충설명.



일단 susceptibility라는 뭉뚱그려진 표현(?)은 '하나의 제한조건(에너지가 일정할 것 등)이 걸려있을 때 두 상태함수의 변화비'로부터 유도되는 값들을 말한다. 정압비열은 '압력이 일정할 때 온도의 변화에 대한 엔트로피의 변화비'에 온도를 곱한 값이 되고, 쓰로틀링(throttling)에 등장하는 줄-톰슨 계수(Joule-Thomson coefficient)는 '엔탈피가 일정할 때 압력의 변화에 대한 온도의 변화비'가 된다.


C_p\equiv T\left.\frac{\partial S}{\partial T}\right|_p=\left.\frac{\delta Q}{\delta T}\right|_{\delta p=0} \\\\C_{JT}\equiv\left.\frac{\partial T}{\partial p}\right|_H


열역학에서 다루는 기체(물론 액체나 고체, 플라즈마에도 적용되지만 고체를 다룰 경우에는 자화를 다루며 자기장까지 끌려나오는 경우가 있어서 좀 애매하다. 보통 '무언가를 태우는' 열역학에서 써먹을법한 상태를 가정한다)는 '단 두개의 변수로 상태를 완전히 정의할 수 있다'는 가정이 붙는다. 이건 canonical ensemble의 partition function을 구할 때 온도 T와 부피 V만 주어지면 된다는 사실로부터도 알 수 있고, 더 쉽게는 제1법칙에서 에너지가 단 두개의 열역학적 변수로 적분이 가능하다는 사실로부터 알 수도 있다. 이렇게 '상태를 정해주기 위해 선택한 두 열역학적 값'을 열역학적 변수로 부르기로 하자.


열역학에서는 굉장히 다양한 함수를 다룬다. 에너지에 엔트로피와 온도의 곱을 뺀 헬름홀츠 에너지라던가, 에너지에 부피와 압력의 곱을 더한 엔탈피라던가. 이렇게 하나의 상태가 주어졌을 때 그 상태가 갖는 여러 물리적 성질들을 열역학적 (상태)함수라고 부르자. 우리가 열역학에서 관심갖는 대부분의 함수들은 다섯가지 변수(에너지 E, 온도 T, 엔트로피 S, 압력 p, 부피 V)로부터 정의된다. 따라서 임의의 열역학적 함수 f에 대해 이 함수의 변화량은 다음과 같이 전개할 수 있다. f의 정의로부터 미분이 가능하기 때문이다.


f=f(E,T,S,p,V) \\\delta f=\frac{\partial f}{\partial E}\delta E+\frac{\partial f}{\partial T}\delta T+\frac{\partial f}{\partial S}\delta S+\frac{\partial f}{\partial p}\delta p+\frac{\partial f}{\partial V}\delta V


여기에 어떤 장난을 치느냐? 열역학 1법칙을 이용해 변화량을 열역학적 변수 두개로 줄여버린다.


\delta E=T\delta S-p\delta V \\\delta T=\left.\frac{\partial T}{\partial S}\right|_V\delta S+\left. \frac{\partial T}{\partial V}\right|_S\delta V \\\delta p=\left.\frac{\partial p}{\partial S}\right|_V\delta S+\left. \frac{\partial p}{\partial V}\right|_S\delta V \\\therefore\delta f=\frac{\partial f}{\partial E}\delta E+\frac{\partial f}{\partial T}\delta T+\frac{\partial f}{\partial S}\delta S+\frac{\partial f}{\partial p}\delta p+\frac{\partial f}{\partial V}\delta V \\\text{ }=\left.(T\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left.\frac{\partial T}{\partial S}\right|_V+\frac{\partial f}{\partial S}+\frac{\partial f}{\partial p}\left.\frac{\partial p}{\partial S}\right|_V\right)\delta S \\\text{ }\text{ }+\left.(-p\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left. \frac{\partial T}{\partial V}\right|_S+\frac{\partial f}{\partial V}+\frac{\partial f}{\partial p}\left. \frac{\partial p}{\partial V}\right|_S\right)\delta V


참고로 Maxwell relation에 의해 맨 마지막 줄에 등장하는 편미분 넷 중 둘이 같다. 여기서 '세 susceptibility(소괄호로 강조되어 있다)로 임의의 열역학적 상태함수에 대한 편미분을 구할 수 있다'는 중간정리를 얻는다.


\left. \frac{\partial p}{\partial S}\right|_V=-\left. \frac{\partial T}{\partial V}\right|_S \\\therefore\left. \frac{\partial f}{\partial S}\right|_V=\left[T\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left(\left. \frac{\partial T}{\partial S}\right|_V\right)+\frac{\partial f}{\partial S}-\frac{\partial f}{\partial p}\left(\left. \frac{\partial T}{\partial V}\right|_S\right)\right] \\\left. \frac{\partial f}{\partial V}\right|_S=\left[-p\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left(\left. \frac{\partial T}{\partial V}\right|_S\right)+\frac{\partial f}{\partial V}+\frac{\partial f}{\partial p}\left(\left. \frac{\partial p}{\partial V}\right|_S\right)\right]\delta V


이제는 편미분을 임의의 함수에 대해서 쓸 차례이다. 원 증명에서는 알파베타감마를 썼는데 귀찮은 관계로 A, B, C라고 하자. 이 값들의 변화는 다음과 같이 쓸 수 있다.


\\\delta A=\left. \frac{\partial A}{\partial S}\right|_V\delta S+\left. \frac{\partial A}{\partial V}\right|_S\delta V \\\delta B=\left. \frac{\partial B}{\partial S}\right|_V\delta S+\left. \frac{\partial B}{\partial V}\right|_S\delta V \\\delta C=\left. \frac{\partial C}{\partial S}\right|_V\delta S+\left. \frac{\partial C}{\partial V}\right|_S\delta V


이것을 이용해 편미분을 계산할 수 있다. 자세한 계산과정은 간단한 산수니 생략하겠다.


\left. \frac{\partial A}{\partial B}\right|_C=\left. \frac{\delta A}{\delta B}\right|_{\delta C=0} \\\\\\=\frac{\left. \frac{\partial A}{\partial S}\right|_V\left. \frac{\partial C}{\partial V}\right|_S-\left. \frac{\partial A}{\partial V}\right|_S\left. \frac{\partial C}{\partial S}\right|_V}{\left. \frac{\partial B}{\partial S}\right|_V\left. \frac{\partial C}{\partial V}\right|_S-\left. \frac{\partial B}{\partial V}\right|_S\left. \frac{\partial C}{\partial S}\right|_V}


자, 저 계산식 안에 있는 모든 항목들은 단 세 susceptibility로 모두 계산할 수 있다. 따라서, 세 susceptibility의 값만 있으면 모든 susceptibility를 알 수 있다는 말이 된다. 증명 완료.




트위터에서도 말했다시피 이건 통계역학 문제보다는 열역학 문제에 가깝다. 편미분을 얼마나 자유롭게 사용할 수 있는지를 살펴보겠다는 문제.

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    LaTex 코드 입력하느라 고생하셨습니다 ㅋㅋ 통계역학 수업 들어보고 싶었는데 이리저리 치이느라 못듣게 되었네요. 종종 글 올려주세요ㅋ 잘 읽고 갑니다.

    2014.09.25 22:51 신고


오늘도 하라는 공부는 안 하고 트위터에서 놀다가 함수해석학과 양자역학 이야기가 나와서 위 글을 다시 검토하던 중, '유한 차원에서라면-선형대수학의 영역이라면- 교환자(commutator)가 identity의 상수배가 나오지 않는다는 것을 증명할 수 있지 않을까?'란 생각이 들었다. 결론: 매우 쉽게 보일 수 있다.


아이디어는 매우 쉽다. 2×2 행렬은 Pauli matrice에 identity를 더해 기저로 잡은 복소수체 벡터공간의 원소로 생각할 수 있다. 3×3 행렬은 Gell-mann matrice에 identity를 더하면 된다. 일반적으로 n×n 행렬은 SU(n) 군의 생성자(generator)에 identity를 더해 기저로 잡은 복소수체 벡터공간의 원소로 생각할 수 있다.


\text{In general, a }n\times n\text{ matrix can be thought as} \\\text{an element of a vector space spanned by the set} \\\\\{I,g_1,g_2,\dots,g_{n^2-1} \} \\\\\text{where }I\text{ is the identity matrix and }g_i\text{'s are the} \\\text{generators of SU(}n\text{) group. Note that all bases} \\\text{except for }I\text{ are traceless.}


이제 n×n 행렬 두개를 가져다 교환자를 구성한 뒤 trace를 구하면 0이 됨을 쉽게 알 수 있다. 그런데 identity는 trace가 n이므로, identity의 상수배는 trace가 0일 수 없다. 따라서 유한차원에서 작용하는 연산자(operator)들의 교환자는 identity의 상수배가 될 수 없다.


\text{Let }A\text{ and }B\text{ be arbitrary }n\times n\text{ matrices and let} \\\\A=\alpha_0I+\alpha_ig_i, B=\beta_0I+\beta_ig_i \\\\\text{where summation over }i\text{ is implied. Then the trace} \\\text{of the commutator }[A,B]=AB-BA\text{ vanishes.} \\\\Tr([A,B])=Tr(\gamma_ig_i)=0 \\\gamma_i=\sum_{j,k}C_{ijk}\alpha_j\beta_k \\\\\text{The }C_{ijk}\text{'s are the structure constants. Since identity} \\\text{and its scalar multiple cannot be traceless, commutators} \\\text{in finite dimensional linear algebra cannot be a multiple} \\\text{of identity.}


이제 함수해석학을 배워야 하는 이유가 하나 더 추가되었다(...)




수정: 잠결에 생각해보니 너무 어렵게 풀었네요. 결론은 똑같지만 trace가 0이어야 한다는 것은 다음 trace의 기본 성질로부터 훨씬 쉽게 보일 수 있습니다.


\text{Trace has the following properties} \\\\Tr(cA+dB)=cTr(A)+dTr(B) \\Tr(AB)=Tr(BA) \\\\\text{where lowercase letters are scalars. Therefore} \\\\Tr([A,B])=Tr(AB)-Tr(BA)=0


그러면 위에서 일반적인 연산자를 identity와 SU(n) 군의 생성자를 이용한 기저로 나타내는 것이 무슨 의미를 갖는지 생각해볼 수 있겠죠. 알려진 것과 같이 양자역학에서는 모든 측정가능량이 연산자로 주어집니다. 그리고 임의의 측정량이 있을 때, 여기에 identity의 상수배를 더하는 것은 측정량의 기준점을 이동한다는 의미가 됩니다. 단순히 모든 고유값(eigenvalue)들을 일정한 값만큼 이동하는 것과 동일하니까요. 따라서 identity는 실제 물리적인 의미를 갖는 부분이 아니라고 생각할 수 있습니다. 결국 n개의 독립적인 상태를 가질 수 있는 계가 있다면 이 계에서 얻을 수 있는 모든 측정량들은 SU(n) 리 대수(Lie algebra)의 원소로 생각할 수 있다는 뜻이 되겠죠. 이젠 군론을 배웁시다 야호!


댓글을 달아 주세요

P. A. M. 디락의 생일 기념으로 The Second Creation(Robert P. Crease, Charles C. Mann, Rutgers University Press, New Jersey, 1996)의 5장 The Man Who Listened의 발췌번역입니다. 디락의 일화를 소개하는데 무게를 두었습니다.


[..]


젊은 과학자들이 첫 논문으로 과학계를 흥분시키고 모든 박사논문이 새로운 분야를 열어젖히던 때, 가장 많은 영향을 미친 것은 디락이었습니다. 양자이론에 대한 반감을 가졌던 아인슈타인이 마지막 고전물리학자라면, P. A. M. 디락(그는 항상 이렇게 서명했지요)은 첫 완전한 현대물리학자였습니다. 1984년 디락의 죽음 직전에 물리학자 실판 슈베버(Silvan Schweber)는 이렇게 평가했습니다. "디락은 양자역학의 주요 저자 중 하나일 뿐 아니라 양자전기역학의 개척자이며 양자장론의 주된 설계가이기도 합니다. 삼사십년대의 양자장론의 중요한 발전은 모두 디락의 작업에서 출발하고 있습니다"


환경은 그가 지독히 내성적이고 과묵하게 자라나도록 짜인 것처럼 보입니다. 디락은 1902년 8월 2일 영국 브리스톨(Bristol)에서 스위스 출신의 아버지 밑에 태어났습니다. 그의 아버지는 반사회적이라고 할 수 있을 정도로 활동이 없었습니다; 디락의 가족은 손님이 없었고, 놀러 나가지도 않았습니다. 자리가 부족했기 때문에 다른 가족들은 부엌에서 식사할 동안 디락은 아버지와 함께 식사했습니다. 아버지는 그가 불어를 배우기 좋을 것이라 생각해 자신과 불어로만 대화하도록 규칙을 만들었는데, 불어로는 자신을 표현할 방법을 못 찾아 조용했다고 디락은 회상했습니다. 대부분의 시간을 야외에서 홀로 산책하며 보냈던 디락은 질서와 대칭을 좋아했습니다. "내 대부분의 작업은 그냥 공식을 가지고 논 뒤 어떤 결과가 나오는지 본 것입니다. 다른 물리학자들도 같다고 생각하지는 않습니다; 물리적으로 전혀 의미가 없을지도 모르는 공식을 가지고 놀며 어떤 아름다운 수학적 관계가 있는지를 살피는 것은 제 특성인듯 합니다. 가끔은 물리적 의미가 있기도 합니다"


디락의 아버지는 사회성의 중요성을 무시했지만 좋은 교육의 필요성은 인식했고, 디락의 수학적 재능을 장려했습니다. 역사의 우연으로 이 재능은 더욱 클 수 있었습니다: 나이에 비해 이르게 전쟁으로 징집되어 텅 빈 고등반에 진학했거든요.[각주:1] 디락은 브리스톨 공과대학과 일부를 공유했던 머천트 벤처러 학교(Merchant Venturer's School)을 좋아했습니다. 부분적으로는 그가 거의 평생 이해할 수 없었던 철학과 미학을 중요히 여기지 않았기 때문이지요. 디락은 대학에 진학하면서 수학으로는 직업을 가질 수 없으리라 생각해 공학을 전공하기로 했습니다. 그는 좋은 학생이었으나 분야의 이론적인 부분에만 관심을 가졌습니다. 실무 훈련은 최악이었죠.


1921년 가을 공학 학위를 끝낸 디락은 직업을 구할 수 없었습니다. 재능있는 수학자가 공학과정을 밟는다는 것에 낙담했던 브리스톨 대학의 수학과 교수들은 수업료를 면제해주겠다고 제안했습니다. 달리 할 일이 없었던 디락은 그러기로 했지요. 명예 수학과정을 밟던 다른 유일한 학생은 물리에 사용될 수 있는 응용수학을 공부하기로 단단히 결심한 여학생이었습니다. 딱히 확신이 없었던 디락은 그녀의 목표를 따라갔고, 세기의 대 물리학자중 하나는 이렇게 활동을 시작했습니다.[각주:2]


디락은 물리를 무계획적으로 시작했던 때부터 말년까지 수학이 물리 발전의 열쇠라고 보았습니다. 그의 마지막 연설들 중 하나에서 그 신조가 드러납니다. "사람은 수학이 이끄는 방향을 따라야 합니다. [...] 사람은 그 끝에서 시작한 것과 전혀 다른 곳에 도착하더라도 수학적인 착상을 좇아야 합니다. [...] 수학은 물리적인 생각만 따라갔을 때 택하지 않았을 길도 갈 수 있게 해 줍니다"


디락은 브리스톨에서 상대론을 배웠고 매료되었습니다. 이학사를 취득한 후 1925년 케임브리지의 성 요한 대학(Saint John's College)에 진학하였고, 1927년 25세가 되었을 때의 양자역학에 대한 기여로 그가 세계에서 가장 중요한 물리학자중 하나라는 것이 확실해졌습니다.[각주:3]


명성은 그를 크게 변화시키진 못했습니다; 계속 과묵했던 디락을 만난 사람들은 자주 무례하다고 생각했습니다. 디락은 케임브리지 물리학 그룹의 명예회원이었으나 적은 학생을 키웠고, 학풍을 세우지도 않았으며, 실험가들과 드물게 대화했습니다. 1930년대 말을 실험실에서 보낸 새뮤엘 데본스(Samuel Devons)는 우리에게 말했습니다. "캐번디시 물리학회 모임이란 준격식적인 모임이 격주로 있었어요. 한 강연자가 들어오면 디락은 첫 줄에 앉아 듣곤 했죠. 그는 매우 드물게 입을 열었어요. 가끔 러더포드가 '그래서 이론하는 사람들은 어떻게 생각하나?'라고 찔러보곤 했죠. 러더포드는 이론이 일종의 사색에 불과하고 진짜는 실험에 있다고 믿었죠.[각주:4] 그리고 디락은 앉아 아무 말도 안 했습니다."


디락은 매우 정확하고 조심스럽게 말했기 때문에 매우 난해했습니다.[각주:5] 양자역학을 강의할 때 그는 강연대 뒤에 서서 그가 쓴 책을 읽어주었는데, 책에 더 이상 명료할 수 없게 적었다고 믿었기 때문입니다.1928년 라이덴(Leiden)에서 몇 개의 강연을 했을 때 폴 에렌페스트는 디락의 태도에 질려버렸습니다. 그 자리에는 H. B. G. 캐시미어도 있었는데, 회상하길 "(각 강연은) 완벽했습니다. 디락은 버릇대로 누군가 이해하지 못한다면 별 다른 설명을 하는 대신 매우 침착하게 정확히 동일한 내용을 반복했습니다. 보통은 충분했지만, 에렌페스트가 선호하는 방법은 아니었죠." 에렌페스트는 항상 사람이 어떻게 작업하는지를 보고 싶어했습니다. 캐시미어는 이어서 말했습니다. "한번은 에렌페스트가 디락에게 질문했고, 디락은 곧바로 답이 떠오르지 않았습니다. 그래서 디락은 칠판에 풀어보기 시작했죠. 그는 온 칠판을 자그마한 글씨로 채웠고, 에렌페스트는 그의 바로 뒤에 서서 무엇을 하고 있는지 보며 외쳤습니다. '애들아, 애들아-이걸 봐라! 이제 그가 뭘 하는지 알겠네!'[각주:6]"


[...]




이 이후는 디락의 작업에 대한 이야기입니다. 하이젠베르크가 발견한 불확정성 원리를 고전역학의 푸아송 괄호와 연결지어 해석하는 것과(더 보편적인 결과입니다) 양자전기역학의 발견, 디락방정식의 발견을 다루고 있고 디락방정식의 중요한 예측인 반전자의 존재에 대해 다루고 있습니다. 디락은 처음엔 디락방정식의 음에너지 해를 보고 양성자(당시만 해도 양전하를 가진 입자는 양성자 뿐이었습니다. 심지어 중성자도 발견되지 않았을 시기죠.)라고 생각했다고 하죠. 그리고 당시만 해도 미국은 예일대의 조시아 깁스[각주:7]를 제외하면 유럽에 비해 급이 떨어졌다고 하네요.

  1. 역주) 시기상으로는 일차대전인데, 이 당시만 해도 전쟁에 참여하는 것에 대한 낭만(?)같은 것이 있던 시절이라 학생들이 적었을 수도 있겠다는 생각이 드네요. [본문으로]
  2. 역주) 하고 싶은걸 하는게 아니라 할 수 있는걸 하는게 중요하다는 교수님의 일갈이 생각나는군요. 하... [본문으로]
  3. 역주) 디락은 1926년 봄 박사학위를 취득했습니다. 1년만에 박사라니... [본문으로]
  4. 역주) 책의 다른 부분을 보면 러더포드는 '간단하면서 본질적인 속성을 드러내는 실험'을 중요시했다고 나옵니다. 러더포드 산란 실험은 대표적인 '간단하고 본질적인 속성을 드러내는 실험'이죠. [본문으로]
  5. Dirac spoke so precisely and carefully that he approached the Delphic; (번역이 힘드네요) [본문으로]
  6. Kinder, Kinder! Schaut jetzt zu! Jetzt kann man sehen, wie er es macht! [본문으로]
  7. 사원수 대신 벡터미적분학을 도입했고 통계역학을 완성했다고 보시면 됩니다. [본문으로]

댓글을 달아 주세요

양자역학에서 가장 유명한 commutator를 뽑으라면 누구나 하이젠베르크의 불확정성 원리를 꼽을 것이다. 아무래도 제일 먼저 발견된 교환이 불가능한 물리량이니까.


[x,p]=xp-px=i\hbar


그런데 왜 i가 붙을까? 고민해본 사람? 문제는 의외로 쉽게 풀린다. 두 측정가능한 물리량 A와 B를 가정하자. 따라서 A와 B는 에르미트(Hermitian) 연산자이다. 적당한 양자책을 잘 공부했다면 이를 설명할 필요는 없을 터(간단하게 말하자면 고유값(eigenvalue)이 실수가 나와야 해서). 한번 유도해보자.


\text{For observables }A,B\\A^\dagger=A, B^\dagger=B \\\\\therefore [A,B]^\dagger=(AB-BA)^\dagger\\=B^\dagger A^\dagger-A^\dagger B^\dagger=BA-AB \\\\\therefore [A,B]^\dagger=-[A,B] \\\\\text{or, equivalently;} \\\exists C(C^\dagger=C),\,\,[A,B]=iC


측정 가능한 물리량의 commutator는 항상 반에르미트(anti-Hermitian) 연산자여야 한다는 결론을 얻는다. 반에르미트 연산자는 단위허수 i를 곱하거나 나눠서 에르미트 연산자로 만들어줄 수 있으니 이제 그 미스테리한 i가 어디에서 튀어나왔는지 알 수 있다.


이제 조금 더 재미있는 명제를 도출해보자.


\text{Assume observables }A,B\text{ and an eigenstate of }A\\\\A\left|a \right \rangle=a\left|a \right \rangle \\\\\text{Then, we get the expectation value of the commutator}\\\\ \left\langle a|[A,B]|a \right\rangle=\left\langle a|AB-BA|a \right\rangle = (a^\ast - a)\left\langle a|B|a \right\rangle=0 \\\\\text{or, equivalently;} \\\\ C \equiv \frac1i [A,B],\;A\left|a \right \rangle=a\left|a \right\rangle \Rightarrow\left\langle a|C|a \right\rangle=0 \\\\\text{for any observables }A, B


아직 이상한 점을 눈치 못챘는가? A에 x를, B에 p를 넣어보자.


[x,p]=i\hbar\\\\\therefore \left\langle x\middle|\frac1i[x,p]\middle|x \right\rangle=\hbar\left\langle x|x \right\rangle=0\\\left\langle p\middle|\frac1i[x,p]\middle|p \right\rangle=\hbar\left\langle p|p \right\rangle=0


?!?!


이 비정합성은 commutator가 identity의 배수이기 때문에 나타난다. 다르게 말한다면, 어떤 한 측정량이 다른 측정량과 만드는 commutator가 identity의 배수로 나온다면 그 측정량의 고유상태(eigenstate)는 그다지 예쁜 성질을 갖지 않으며(예컨데 위치 x의 고유상태나 운동량 p의 고유상태는 L2(Square-integrable)공간에 속하지 않는다), 따라서 주의를 기울여 다루어야 한다고 결론지을 수 있다.


참고로 가장 간단(?)한 양자화 방법은 고전역학에서의 Poisson bracket을 양자역학의 commutator로 해석하는 것이기 때문에(Dirac quantisation 혹은 canonical quantisation) 양자역학의 미래가 골치아프다는 것은 확실해졌다. 양자장론이 괜히 머리 뽀개지는게 아니라니까...

댓글을 달아 주세요

  1. Favicon of http://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    0 \times delta(0) = ? 문제랑 비슷하군요.

    2014.05.23 00:05 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.05.23 00:52 신고  댓글주소  수정/삭제

      함수 x\delta(x)로 읽어서 순간 당황했네요. 이 함수는 0이었죠(...)

    • Favicon of http://kipid.tistory.com BlogIcon kipid 2014.05.23 15:58 신고  댓글주소  수정/삭제

      아하 그런문제도. 더 간단하게는 0 * 무한대(infinity) 문제랑 비슷하겠네요 =ㅇ=;;ㅋ
      (a-a)*<a|B|a> 에서 이게 0이라고 넘어갈때 이런문제가... <a|B|a>가 L2 (Square-integrable) basis 를 쓰는 경우가 아니라면 무한대도 될 수 있어서.
      아무튼 생각지 못했던 부분이네요. 그런데 이게 "commutator가 identity의 배수이기 때문"이 맞나요? 그냥 state가 L2로 표기 안되어서 그런것도 같은데... 저것 때문이라고 단순히 말하면 필요/충분조건 요런거에서 헷갈리는 말인거 같아요. 양쪽 state가 L2로만 표현되면 그냥 숫자로 바꿀수 있긴 할테니까요.

    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.05.23 19:24 신고  댓글주소  수정/삭제

      양쪽의 state가 L2공간에 속한다고 하면 더 문제가 되겠죠. 우변이 0이니까 좌변 또한 0이어야 한다는 결론이 나오는건데, square-integrable하면 우변이 0*(유한한 숫자)가 되어서 빼도박도 못하는 0이 되어버리니까요. 관측가능량의 commutator로 identity가 나오는 순간 관련 고유상태의 규격화(normalisation)에 문제가 생긴다고 보는 편이 맞는 것 같습니다.

    • Favicon of http://kipid.tistory.com BlogIcon kipid 2014.05.24 04:31 신고  댓글주소  수정/삭제

      처음부터 A, B에 x,p를 넣고 전개해보면...
      Then, we get the expectation value of the commutator
      <x|[x,p]|x> = (x^* - x) <x|p|x> = ? (0 곱하기 무한대 형태라 결론을 못내림.)
      여기서 ?가 '0' 이란 결론을 못내릴거란 이야기였는데...

      그렇기 때문에
      C \equiv [x,p]/i 라고 해도 => <x|C|x> = ? (위의 물음표와 같은 놈.)
      란 결론까지 밖에 안되지 않나요? 뭔가 다른 이야기인가;;;;

      x가 L2였다면야 <x|p|x>가 유한할테니 ?=0이라고 결론 내릴 수 있고. (있나??? p의 eigenvalue 중에 무한대가 있으면 이렇게 결론 내릴 수 없을수도 있는건가 =ㅇ=;;)
      [x,p]가 identity의 배수라고 할지라도 (\equiv c) => <x|c|x>=0 이란 결론이?
      아 이게 문제였구나;;; 제 이해가 뭔가 꼬였었네요.

      결론적으론 L2 Hermitian operator A,B의 commutator [A,B]는 indentity의 배수가 될 수 없다가 되겠네요. 신기하넹 -ㅇ-;;; (지금 제가 이해한것도 듬성듬성 논리가 뚫려있어서 천천히 다시 생각해보긴 해야겠네요.)

방학이 끝나감에 따라 멘탈이 허약해지고 있어서 멘탈 강화를 위해 소소하지만 결과가 있는 일을 해보았습니다. 멘탈이 가루가 되어갈 때에는 이렇게 작은 일을 해 보면서 물을 뿌려 단단히 다지는 것도 필요한 일이라서요.


가끔 교수님들이 링크로 걸어놓곤 하시는 스티븐 와인버그의 글을 옮겨보았습니다. '과학자로서 첫 발을 내딛는 학생들을 위한 조언'이라는 말이 붙어있는데, 이건 번역을 안 했네요.


번역에 대한 신조(?)는 '최대한 자연스럽게'라서 의역을 기본으로 채택했습니다. 가령 첫 문단의 중간 쯤 나오는 '익사하거나 이겨내거나'는 'sink or swim'의 번역인데, 도저히 가라앉음과 수영으로는 두음 운율을 맞출 수가 없어서 '이겨내다'란 의역을 사용했습니다.


글로벌 스탠다드(?)에 맞추어 pdf로도 만들어 올립니다.


네 귀중한 교훈들.pdf





수정 - 27 Feb 2014


아래 댓글에서 어떤 분이 지적해주셨다시피, "역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다"는 "The least important reason for this is that the history may actually be of some use to you in your own scientific work"의 번역문입니다. 직역하면 "역사가 당신의 연구에 도움이 될 수도 있는 것은 가장 덜 중요한 이유입니다"이고 의미상으로는 "역사가 당신의 연구에 도움이 될 수도 있겠지만, 중요한 이유들 중 가장 중요도가 낮은 이유입니다"가 됩니다. 그런데 한국어에서는 이런 표현을 쓰지 않죠(...) 그래서 어떻게든 자연스럽게 만드려다 보니 문장이 꼬여버렸네요. 해당 문장은 보다 자연스럽고 의미가 통하는 문장으로 수정하였습니다.




네 귀중한 교훈들(Four golden lessons)

스티븐 와인버그(Steven Weinberg)


제가 학부 졸업장을 받았을 때 - 백 년은 전이었던 것 같은데 - 물리학은 구석구석까지 살펴본 뒤에야 나만의 연구를 시작할 수 있는 드넓은 미지의 대양같았습니다. 어떻게 남들이 했던 일을 모르고서 무언가를 할 수 있을까? 운 좋게도 대학원 첫 해에 만난 선배 물리학자들께서는 일단 연구를 시작하고 그 과정에서 내가 알아야 할 것들을 익히라고 조언해 주셨습니다. 익사하거나 이겨내거나였지요. 그리고 놀랍게도 이 방법이 먹힌다는 것을 알게 되었습니다. 저는 빠른 박사학위를 받을 수 있었습니다 - 제가 물리에 대해 아는 것이 거의 없었는데도 말이지요. 하지만 저는 한 가지 중요한 것을 알게 되었습니다: 아무도 모든 것을 알지는 못하고, 그럴 필요도 없다는 것을요.


다른 교훈을 바다에 빗대어 말해보자면, 익사하지 않고 파도를 이겨내고 있는 한 더욱 거친 파도를 향해 나아가야 한다는 것입니다. 제가 1960년대 후반에 매사추세츠 공과대학(Massachusetts Institute of Technology; MIT)에서 교직을 맡고 있을 때 한 학생이 제 전공인 기본입자(elementary particle physics)보다는 일반상대론(general relativity)을 공부하고 싶다고 말했습니다. 일반상대론이 매우 잘 정립된 학문인 반면에 다른 하나는 엉망진창으로 보인다는 이유에서였지요. 제게는 반대로 행동해야 할 아주 좋은 이유였습니다. 입자물리는 아직 창조적인 작업을 할 수 있는 분야였습니다. 1960년대에는 정말 엉망진창이었지만 그 후 많은 이론물리학자와 실험물리학자들은 입자들을 분류하고 모든 것을 (뭐, 거의 모든 것을) 표준모형이라는 아름다운 이론으로 정리하는데 성공하였습니다. 제 조언은 난장판인 곳으로 가라는 것입니다 - 할 것이 있는 곳이니까요.


제 세번째 조언은 아마 가장 받아들이기 힘들 것입니다. 자신이 시간을 낭비하는 것을 용서하십시오. 교수들은 학생들에게 풀 수 있다고 아는 문제들(매우 심술궂은 경우가 아니라면)만 줍니다. 또한, 그 문제들이 과학적으로 중요한가는 상관없습니다 - 수업을 통과하기 위해서 푸는 것이니까요. 하지만 실세계에서 어떤 문제가 중요한지 알기는 매우 어렵고, 지금 이 순간 그 문제를 풀 수 있는지는 절대 알 수 없습니다. 20세기 초 로렌츠(Lorentz)와 아브라함(Abraham)을 포함한 많은 유명한 물리학자들은 전자에 대한 이론을 세우려 하였습니다. 왜 사람들이 지구가 에테르(Ether)를 통과하면서 일어나는 효과를 감지하는데 실패했는지 이해하기 위한 시도이기도 했죠. 모두 알듯이, 사람들은 잘못된 문제에 매달리고 있었습니다. 양자역학이 발견되지 않았던 시절이었기에 아무도 전자에 대한 성공적인 이론을 세울 수 없었지요. 1905년, 알베르트 아인슈타인(Albert Einstein)은 탁월하게도 운동이 시간과 공간의 측정에 주는 영향이 풀어야 할 올바른 문제임을 알아차렸고, 이 발견은 특수상대성이론으로 이어집니다. 무엇이 노력해야 할 올바른 문제인지 확신할 수 있는 사람은 아무도 없기 때문에 실험실이나 책상 위에서 보내는 대부분의 시간은 낭비됩니다. 창의적이고 싶다면, 대부분의 시간을 창의적이지 않은 채 보내는 데, 혹은 지식의 대양에서 정체하는 데 익숙해져야만 합니다.


마지막으로, 조금이라도 과학사에 대해, 최소한 몸담고 있는 과학 분과의 역사에 대해 배우십시오. 역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다 사실 중요한 이유는 다른 곳에 있습니다.[각주:1] 예컨대, 프랜시스 베이컨(Francis Bacon)에서 시작해 토마스 쿤(Thomas Kuhn)과 칼 포퍼(Karl Popper)와 같은 철학자들이 제시한 과학에 대한 과하게 단순화된 모형들은 이따금 그 모형을 믿는 과학자들을 방해하곤 합니다. 과학철학에 대한 가장 좋은 해독제는 과학사에 대한 지식입니다.


더 중요한 이유는 과학사를 익혀 자신이 하는 일을 더 가치있게 느낄 수 있기 때문입니다. 과학자가 되어 부자가 되기는 어렵습니다. 친구들과 친척들은 보통 하고 있는 일을 이해하지 못할테고요. 더군다나 기본입자물리학과 같은 분야에서 일하게 된다면 당장 유용한 일을 한다는 보람조차 없습니다. 하지만 하고 있는 일이 역사의 일부가 된다는 사실을 아는 것으로 충분히 만족할 수 있습니다.


100년 전인 1903년을 되돌아봅시다. 1903년 대영제국의 국무총리가 누구였는지, 혹은 미합중국의 대통령이 누구였는지가 지금 얼마나 중요합니까? 정말 중요한 일은 맥길 대학교(McGill University)에서 에른스트 러더포드(Ernest Rutherford)와 프레더릭 소디(Frederick Soddy)가 방사능을 연구하고 있었다는 것입니다. 이 연구는 (당연하게도!) 실용적으로 응용할 수 있었지만 더욱 중요했던 것은 이 연구가 가진 문화적인 함의였습니다. 방사능에 대해 이해하게 되면서 물리학자들은 어떻게 태양과 지구의 핵이 수백만 년이 지난 후에도 뜨겁게 유지되는지 설명할 수 있게 되었습니다. 이렇게 많은 지질학자와 고생물학자들이 지구와 태양의 긴 나이에 대한 과학적인 반론이라고 여겼던 주장이 사라졌지요. 이후 기독교인과 유대인들은 성경을 문자 그대로의 진실로 믿는 것을 포기하거나 지적 무책임함으로 물러나야만 했습니다. 그리고 이 작업은 갈릴레오(Galileo)와 뉴턴(Newton), 다윈(Darwin)이 내딛고 지금까지 이어지는 종교 독단주의(religious dogmatism)의 약화라는 여정의 한 발걸음이 되었지요. 아무 신문이나 하나 집어서 읽어보면 이 작업은 아직 끝나지 않았음을 알 수 있습니다. 하지만 과학자들이 자부심을 느낄 만한 세련된(civilizing) 작업입니다.

  1. 오역이라는 의견이 있어 수정하였습니다 [본문으로]

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
불확정성 원리와 상대성이론  (2) 2014.12.22
네 귀중한 교훈들 - 스티븐 와인버그  (6) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    이수종교수님 홈페이지에서 자주 보았던 글이네요ㅋㅋ 개인적으로는 제목으로 '네 가지 황금률'이나 '네 가지 귀중한 교훈들' 이 좋은 것 같아요. 네 라고 하니 [your]의 번역 같은 느낌이라...

    2014.02.24 21:45 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.02.26 01:28 신고  댓글주소  수정/삭제

      저도 '네가지' 대신 '네'라고 번역하면서 그런 느낌이 있는 부분이 마음에 걸렸었는데, '세가지 교훈들'보다는 '세 교훈들'이 좀 더 간결한 느낌이 들어 네를 택했습니다 :)

      저도 이수종교수님 홈페이지에서 처음 봤던 것으로 기억하는데 최근에 찾아보려고 이수종교수님 홈페이지 들어갔더니 링크가 사라져서 한동안 기억을 의심했었네요 ㅠㅠ

  2. 헐퀴  댓글주소  수정/삭제  댓글쓰기

    오역이 있습니다.

    > 역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다.

    원문은 The least important reason for this is that the history may actually be of some use to you in your own scientific work. 이거더군요.

    이건 역사가 가진 많은 중요한 이유중 [가장 하찮은 이유정도 되는 것] 이 [당신의 연구에 직접 도움이 된다] 정도로 이해하시면 될 겁니다. [최소한, 네가 연구하는 분과의 역사에 대해서 알고 있다면 그게 앞으로의 연구에도 도움이 되겠지.] 정도로 바꿔 쓸 수 있겠네요.

    2014.02.26 12:17 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.02.27 01:54 신고  댓글주소  수정/삭제

      그 내용을 최대한 자연스럽게 한국어로 만드려다 보니 의도치 않게 오역이 발생했네요. 지적 감사합니다. 더 자연스러운 문장은 뭐가 있을지 고민을 해봐야겠네요...

  3. BlogIcon 함마  댓글주소  수정/삭제  댓글쓰기

    아아 물리가 좋아 물리학과를 지망했지만
    좀민들어가도 어려운게 물리네요.
    덱스터님은 물리를 전공의 계기가 뭐었냐요?

    2014.10.18 12:04 신고

고등과학원 겨울학교에 다녀왔습니다. 일주일의 3일은 마이티/포커/블랙잭/고스톱/섯다를 치느라(...) 밤을 새고 나머지 3일밤은 논문 읽느라 밤을 샜더니 아직도 피로가 덜 풀려서 고생중입니다.


그룹연구주제로는 Monopoles in real and momentum spaces of condensed matter systems를 했습니다. 같은 조원분이 버스를 태워주셔서 유일하게 교수님들께 안 까인 발표(...)가 되었습니다. 프레젠테이션에 맥락과 일관성이 존재한다고 앞으로 이런 식으로 발표해야 한다는 과찬(..)을 받았습니다. 결국 상금 획득. 받은 문화상품권으로 겨울왕국 OST를 사야겠군요.


인상깊었던 부분들을 간략하게 정리해서 옮겨봅니다.




이준규 교수님: "물리에는 사기가 적절하게 들어가야 생명이 있는 거예요" "와인버그 그 사람 책은 생명이 없어. 사람이 너무 박식해서 그래"[각주:1]

(기억나는대로 적어봤습니다)




이필진 교수님이 간략하게 homotopy 이론에 대해 설명해주셨는데, 작년 1학기에 이거 혼자 공부한다고 삽질했던게 원래는 이렇게 쉬운거였나 하는 자괴감이 들더군요. 물론 다시 책을 집었을 때 이해하는가 하는 것은 다른 문제.


사실 (대수적)위상수학보다는 미분기하학 공부가 더 절실하다는 생각이 들어서 공부는 나중에 하기로 했습니다. 재미있어 보이긴 한데...


3차원 구인 S^3가 Hopf Fibration으로 2차원 구 S^2와 1차원 구S^1으로 나누어질 수 있다는데, 알고보니 globally하게는 안 되고 local하게만 된다고 합니다. S^3를 실수공간 R^3에서 무한원점을 하나의 점(대척점이 됩니다)으로 만들어 이미지화하는 버릇이 있는데 '이게 어떻게 되는거냐' 생각으로 하루종일 고민했더랬죠. 대척점과 원점이 같다니?!?! local한 경우에는 당연히 되는거지만요.


(S^3 공간에서는 한 방향으로 계속 나아가다 보면 원점으로 돌아옵니다. S^2에서 방향을 정해주고 S^1으로 쭉쭉쭉쭉 나아가는 것을 이미지화하면 국소적으로는 이게 가능하다는 것을 알 수 있습니다. 그리고 이것이 trivial하지 않은 fibre bundle의 한 예라고 하더군요.)


c.f. 이필진 교수님이 강의록을 개인 홈페이지에 올려 놓으셨더군요. Physics 탭을 누르면 열립니다.




주제가 geometric phase였던지라 이걸 이해해보려고 여러 삽질을 했는데(결국 발표 슬라이드에는 하나도 안 넣었지만요) 그 중 하나가 고전역학적으로 이해해보려는 시도였습니다. 여기에 대해서는 이미 책이 있던데(Geometric Phases in Classical and Quantum Mechanics) 하필이면 djvu를 못 읽는 iPad만 가져왔던지라 맨땅에 헤딩...


일단은 재미있는(?) 결과물이라는 생각이 들어 그 삽질을 공유해보려고 합니다.


geometric phase의 가장 간단한 예는 전하가 자기장이 있는 공간에서 폐곡선을 그리는 운동을 해 원점으로 돌아왔을 때 위상이 변화하는 것입니다. Berry's Phase라고도 하지요. 이때 얻는 위상의 변화는 그 폐곡선이 잡아둔 자기장의 세기, 혹은 그 폐곡선이 만드는 곡면에 대한 자기선속(magnetic flux)에 비례합니다. 고전적으로는 무슨 의미가 있는 양인가, 가 질문.


결론부터 말하자면 한 폐곡선에 대해 운동량을 선적분한 값입니다. 유체역학의 circulation이라는 값과도 연관이 있고, 사실 가장 쉽게 이해하는 방법은 슈뢰딩거와 하이젠베르크 이전의 구양자이론에서 본-조머펠트 양자화조건에 해당하는 양이라는 것이죠. 여기에서 B는 자기장입니다.


\oint_C \bold{p}\cdot d\bold{l}


유도하려면 다음의 조건을 이용합니니다.


\text{The Lorentz force equation can be written as} \\\frac{d\bold{p}}{dt}=e(\bold{E}+\frac{d\bold{x}}{dt}\times\bold{B}) \\\therefore d\bold{p}=e(\bold{E}dt+d\bold{x}\times\bold{B}) \\\\\text{By suppressing changes in time, one gets} \\d\bold{p}=ed\bold{x}\times\bold{B}


벌써부터 쓰기 귀찮아지는데(...) 작은 사각형 루프 ABCDA를 잡아서 값을 더해주면 다음 식을 얻습니다.


\text{Let a closed square loop }ABCDA\text{be specified} \\\text{by infinitesimal lateral displacement }d\bold{x}\text{ and} \\\text{infinitesimal vertical displacement }d\bold{y}\text{. Then} \\\oint_{ABCDA} \bold{p}\cdot d\bold{l} \\\approx \bold{p}(A)\cdot d\bold{x}+\bold{p}(B)\cdot d\bold{y}-\bold{p}(C)\cdot d\bold{x}-\bold{p}(D)\cdot d\bold{y} \\\text{Where} \\\bold{p}(B) \approx \bold{p}(A) + ed\bold{x}\times\bold{B} \\\bold{p}(C) \approx \bold{p}(B) + ed\bold{y}\times\bold{B} \\\approx \bold{p}(A)+ e(d\bold{x}\times\bold{B} + d\bold{y}\times\bold{B}) \\\text{etc. Rearranging terms, one gets} \\\oint_{ABCDA} \bold{p}\cdot d\bold{l} \\\approx e(d\bold{x}\times\bold{B}\cdot d\bold{y}-d\bold{y}\times\bold{B}\cdot d\bold{x}) \\= 2ed\bold{x}\times d\bold{y}\cdot\bold{B} \\=2e\bold{B}\cdot d\bold{a} \\\text{which is the infinitesimal magnetic flux enclosed} \\\text{by the loop.}


계수에 2가 붙는 것이 신경쓰이기는 하는데 그것보다 이걸 momentum space에서 바꾸어서 해석할 방법을 찾지 못해 포기.




또 다른 접근법은 게이지 장론의 minimal coupling을 반대로 이용하는 방법. 보통 minimal coupling은 시공간상의 모든 점에서 운동량에 correction term인 게이지 장을 시공간상의 좌표에 대한 함수로 걸어주는 것으로 생각할 수 있는데 이걸 반대로 momentum space에서 시공간 좌표에 대해 momentum에 대한 함수로 correction term을 걸어주는 방식으로 이해할 때, 이 녀석이 어떤 역할을 하느냐는 것이었습니다. 수식으로 쓰자면


\text{The solutions }\Psi\text{ to the Hamiltonian }\hat{H}(\hat{\bold{p}}+q\bold{A}(\hat{\bold{x}}),\hat{\bold{x}}) \\\text{can be expressed by the solutions }\phi\text{ to the} \\\text{Hamiltonian }\hat{H}(\hat{\bold{p}},\hat{\bold{x}})\text{ by the relation} \\\Psi=e^{-iqf(\bold{x})}\phi \\f= \int_\bold{x_0}^\bold{x} \bold{A}\cdot d\bold{l}


이므로(디락상수는 1로 둡시다), 이 반대 버젼인


\text{The solutions }\Psi\text{ to the Hamiltonian }\hat{H}(\hat{\bold{p}},\hat{\bold{x}}+g\bold{B}(\hat{\bold{p}})) \\\text{can be expressed by the solutions }\phi\text{ to the} \\\text{Hamiltonian }\hat{H}(\hat{\bold{p}},\hat{\bold{x}})\text{ by the relation} \\\Psi=e^{igh(\bold{p})}\phi \\h= \int_\bold{p_0}^\bold{p} \bold{B}\cdot d\bold{p}


를 생각해보자는 것. 재미있는 점은 위에서 언급한 B는 Bloch function에 대해 해석할 경우 unit cell의 원점을 잡는 자유도로 작용하게 됩니다. 또한 momentum space에서 그린 폐곡선에 대해 B를 선적분한 값은 원점의 net displacement가 되지요. 문제는 위의 h라는 함수가 global하게 정의되지 않는다는 것.


나중에 해보고 싶은 시도 중 하나는 위의 방식처럼 momentum space를 기준으로 잡았을 때 momentum space에서 periodic potential을 잡을 경우 x의 spectrum이 discrete해지는데, 어쩌면 이걸 spin wave를 나타내는데 써먹을 수 있는 방법이 없을까, 하는 질문.




아, 그리고 발표 도중에 증명에 사기를 친 것이 있는데(T^2공간에 대한 적분인데 S^2라고 사기를 쳤습니다.) 교수님들이 그냥 넘어갔다는 훈훈한 일화. 사실 ppt 다 만들고 발표 당일 아침에 발견한 문제인데다가 수정하기 귀찮아서 그대로 놔둔 것이었는데, 결국 안 걸렸네요. 물론 증명이 이상하다고 지적하셨면 "역시 교수님들 상대로 사기치기는 쉽지 않네요"라는 드립을 치면서 옆의 칠판을 끌어다가 제대로 된 증명을 쓰려고 했었지만 그냥 넘어갔습니다.

  1. 사기가 너무 없이 타이트한 논리전개를 가지고 있다는 맥락이었습니다. 와인버그 양자장론 교재. [본문으로]

'Daily lives' 카테고리의 다른 글

절대마왕을 향한 투쟁 - Hero Detected  (0) 2014.05.23
무제  (0) 2014.04.20
2014 KIAS-SNU Physics Winter Camp  (0) 2014.02.17
공부합시다...  (3) 2013.12.14
Words from Feynman  (0) 2013.10.25
당신의 드립을 보여주세요.  (2) 2013.10.20

댓글을 달아 주세요

공부합시다...

Daily lives 2013.12.14 02:47

1.

가지고 있는 양자역학 책이 무언가 아쉽다고 생각이 들어서 이런저런 책을 찾아보고 있다. 일단 눈에 들어오는건 란다우 이론물리학 시리즈 3권과 Schiff책. 둘 다 archive.org에서 구한 상태. (사실 란다우 양자역학은 구글링으로 3판을 찾았지만) 란다우 양자역학은 교보문고에서 슬쩍 봤는데 핵물리도 들어있어서 상당히 땡기는 상태. QCD전의 파이 중간자를 이용한 이론체계로 보인다.


인상깊었던 것은 왜 충돌이 공명(Breit-Wigner formula)으로 설명되는가에 대한 논증. 두 핵이 합쳐지면서 핵의 구성입자들 사이에 운동에너지가 고르게 분포되어 어느 한 구성입자도 서로의 인력을 벗어나기 충분한 에너지를 갖지 못하기 때문에 공명으로 취급할 수 있다는 내용. 제대로 공부해 봐야겠지만 공명식 자체는 허접해 보였던(...) partial wave를 이용해서 얻어내는 것으로 보인다. Sakurai책을 펴보니 딱 그 전까지만 다시 봤던 흔적이 남아있다(...)



2.

란다우를 검색하다가 란다우의 최소요구치라는 시험문제를 발견. 아무리 몇 달은 준비하고 시험치는 거라고 하지만(더군다나 수십년간 단 43명만 통과했다고) 일단 난 한참 멀었다는게 느껴진다. 깝치지 말고(...) 기본기부터 다시 쌓아야겠다.


관련해서 재미있게 읽었던 글: http://arxiv.org/abs/hep-ph/0204295


실험논문은 읽고 저자의 입장에서(!) 논문을 방어하게 시켰다고 한다. '저자에 따르면'이란 표현을 쓰는게 금지되었다고. 엄청나게 하드코어한데, 이 지옥(?)을 살아남으면 어디에 가서도 살아남을 거란 생각이 든다. 그리고 인터넷에서 발굴한(?) 몇몇 문제:


1> The electron enters a straight pipe of circular cross section (radius r). The tube is bent at a radius R≫r by the angle α and then is aligned back again. Find the probability that the electron will jump out.


2> A hemisphere lies on an infinite two-dimensional plane. The electron falls on the hemisphere, determine the scattering cross section in the Born approximation.


3> The electron "sits" in the ground state in the cone-shaped "bag" under the influence of gravity. The lower end of the plastic bag is cut with scissors. Find the time for the electron to fall out (in the semi-classical approximation).


1번은 감도 안 잡히고(파동광학을 본 적이 없는게 문제다) 2번은 image charge를 써서 V를 구한 다음 푸는 것 같긴 한데 막상 born series에서 cross-section을 구하는 과정이 기억이 안 난다. 작년 겨울에 Sakurai책 산란 파트를 끝까지 안 봤더니... 마지막 껀 긴가민가(...) Airy함수 꼴로 나오는 해를 이어붙이는 문제인것 같긴 하다.


전자기학 공부가 가장 시급하다.



3.

생각난김에 archive.org에서 Herman Weyl의 『군이론과 양자역학』을 구해서 서론을 읽고 있는데(책장의 벽돌이 될 가능성이 높은 책이라도 서론까지는 읽으려고 노력한다) 참고하라고 찝어주는 책들에서 독일어 제목이 엄청 많이 튀어나온다. 한 80%는 읽히는데 독어를 취미로 시작한 것이 이런 곳에서 도움이 될 줄이야. 제목을 읽을 줄 안다고 내용을 아는 것은 아니긴 하지만 어떤 내용을 찾으면 되는지는 알 수 있는거니까.


언급된 독일어 책의 제목들에 분광선(Spektrallinien)이란 단어가 쏟아지는 걸로 봐서는 양자역학이 화학에 빚진게 많아 보인다. 하긴 (말도 안 되는) 보어 원자모형이 받아들여진 가장 큰 이유가 발머선을 기가 막히게 잘 설명해서였다고 하니.

'Daily lives' 카테고리의 다른 글

무제  (0) 2014.04.20
2014 KIAS-SNU Physics Winter Camp  (0) 2014.02.17
공부합시다...  (3) 2013.12.14
Words from Feynman  (0) 2013.10.25
당신의 드립을 보여주세요.  (2) 2013.10.20
블로그를 너무 방치해뒀나...  (0) 2013.02.22
TAG 물리학

댓글을 달아 주세요

  1. 말로 표현할수 없슴니다  댓글주소  수정/삭제  댓글쓰기

    질문이 있습니다!
    양자역학이 흥미로워 물리학을 해보려는 고 1입니다만
    어찌해야하는지 조언을 좀 해주실수 있을까요?

    2014.03.07 21:10 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.03.08 22:43 신고  댓글주소  수정/삭제

      고1 수준에서는 추천할 수 있는 것이 교양서적 정도인데 이런 걸 원하시는 것 같지는 않고, 또 양자이론 자체가 약팔기 좋은(...) 학문이라 전문가가 쓰더라도 곧이 곧대로 볼 수 없는 점도 많아서(단순히 100명의 물리학자가 있다면 100개의 해석이 존재한다고 해도 큰 문제는 없을겁니다) 제대로 이해해보겠다 한다면 직접 공부하는 수 밖에는 없어요. 그리고 양자이론을 공부하겠다고 한다면 그 바탕이 되는 이론에 대해서도 어느 정도는 이해하고 있어야 하고요. 결론적으로 말씀드리자면 진짜 제대로 해보고 싶으시다면 물리학과로 오세요(...)
      요즘은 교양서적쪽을 거의 안 읽어서 추천드리기 난감한데, 우선은 파인만 강의록을 번역한 책 중 QED에 대한 책이 있어요. <일반인을 위한 파인만의 QED 강의>로 번역되었는데 여기에서 출발하는 편이 가장 무난하다고 생각합니다.
      조금 더 관심이 생기신다면 (번역이 어렵게 되어있어서 추천하기에 망설여지지만) 하이젠베르크의 <부분과 전체>도 읽어볼만 합니다.
      개인적으로는 재미있게 읽었었지만 브라이언 그린의 책은 보통 초끈이론을 다루기 때문에 추천하고 싶지는 않네요. 양자이론에 관심을 가지신다면 약간 다른 내용이라서 제끼는 편이 낫습니다.

    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.03.08 22:53 신고  댓글주소  수정/삭제

      "앞으로 물리학을 공부하려면 어떻게 해야 하는가"라는 질문이시라면, 제가 답할 수 있는 질문이 아닙니다. 저도 어쨌든 그 길 위를 헤매고 있는 한 사람이라서요(...)
      다만 1) 수학에 대한 흥미를 잃지 말 것, 그리고 2) 독립적으로 재해석하기를 두려워하지 말 것 정도는 말할 수 있을 것 같네요. 수학에 대한 흥미를 유지하는 법이라면 역시 재미있는 문제와 계속 마주하기 이상의 좋은 방법은 없겠지요. 테렌즈 타오의 <경시대회 문제, 어떻게 풀까>를 시도해보시는 것이 좋겠다는 생각이 듭니다. 독립적으로 재해석하기는 딱히 가이드라인을 제시하기 힘드네요.
      그리고 마지막, 계속되는 노력과 꽤 단단한 멘탈이 필요할 겁니다. 이건 세상 만사에 해당하는 내용이기는 하지만요.

통계역학 시험결과가 나왔는데 광자의 화학포텐셜(chemical potential)이 0이라고 가정했다고 점수가 까인 것 때문에 까칠모드로 전환해 써 보는 글. 완벽히 고전적으로 할 경우 어디까지 갈 수 있나 해 봅시다.




1. 먼저 진공이 차 있는 실린더를 가정합니다. 실린더 안은 전자기파로만 채워지고 양자역학적으로 말하면 photon gas에 해당하는 radiation continuum으로 채워진다고 가정하겠습니다. '광자'라는 개념 자체가 없으므로 광자의 수 dN은 등장하지 않습니다.


2. 실린더 안의 radiation continuum을 설명할 때 쓸 변수를 T와 V로 고정하고 이것으로 충분하다고 가정합니다.


3. 여기까지의 가정에서 다음 두 정리를 얻습니다.


3.1. 에너지 U는 extensive variable입니다. 따라서 같은 extensive variable인 V에 대해 선형적으로만 영향을 받을 수 있습니다. 그러므로 U/V=u(T)라는 결론을 얻습니다. 엔트로피 S 또한 extensive variable이기 때문에 부피에 선형적으로 비례하고 S/V=s(T)라는 결론을 얻습니다.


3.2. 압력(있다고 가정할 경우) p는 intensive variable입니다. 따라서 V와는 무관한 변수여야 하며, p=p(T)를 얻습니다.


4. 상태방정식 u=3p를 얻어야 하는데, 이 부분이 제일 까다로와 보이네요. 일단


4.1. 상대론적인 물질은 E/P=c라는 방정식을 만족합니다. 여기서 P는 운동량입니다.


4.2. 임의의 방향으로 분포된 P로부터 압력을 구하면 p = Pc/3V를 얻습니다.


dP_\text{avr}=\frac{(dA \times cdt\cos\theta)\times(P/V\times\cos\theta)\times(\sin\theta d\phi d\theta)}{2\pi} \\\\\text{average momentum passing through an area element}\\=\frac{(\text{swept volume})\times(\text{momentum component per volume})\times(\text{solid angle})}{\text{solid angle of half-sphere}}


통과한 평균 운동량 = (면적 * 통과한 수직길이 = 통과한 부피) * [(단위부피당 존재하는 운동량의 크기) * 면에 수직한 성분을 위한 코사인] * (고체각 성분) / (반구-한쪽 방향만 생각하므로-의 고체각)


넘어가면서 phi에 대한 부분은 적분으로 날려버립니다.


dp=\frac{dP_\text{avr}}{dA\times dt}=\frac{Pc}{V}\cos^2\theta\,d(\cos\theta) \\\\\text{contribution to pressure}\\=\frac{\text{momentum flux contribution}}{\text{area element}\times\text{time elapsed}}\\\\0\leq\theta\leq\pi/2


압력을 구하기 위해 적분하면 p = Pc/3V를 얻네요.


4.3. 에너지를 집어넣습니다. P=E/c=U/c에서 p=U/3V=u/3을 얻습니다.


5. 위의 과정을 통해 U/V=u(T)와 p=u(T)/3을 얻습니다. 독립적인 변수는 T와 V 뿐입니다. 따라서 열역학 제 1법칙을 다음과 같이 정리합니다.


dU=TdS-pdV=T\left[ {\left. \frac{\partial S}{\partial T}\right|}_V dT +{\left. \frac{\partial S}{\partial V}\right|}_T dV \right]-pdV \\\therefore dU=T{\left.\frac{\partial S}{\partial T}\right|}_VdT+\left[T{\left. \frac{\partial S}{\partial V}\right|}_T-p \right]dV


5.1. dT=0으로 두면 s = 4u/3T을 얻습니다.


{\left. \frac{\partial U}{\partial V}\right|}_T=u(T)=T{\left. \frac{\partial S}{\partial V}\right|}_T-p=Ts(T)-p(T) \\\therefore u+p=\frac43u=Ts \\\therefore s=\frac{4u}{3T}=\frac{4p}{T}


6. 비열을 구해 봅시다. 정적비열은 다음과 같이 구합니다.


c_V=\frac1V {\left. \frac{\partial U}{\partial T}\right|}_V=\frac TV{\left. \frac{\partial S}{\partial T}\right|}_V=\frac{4T}{3V}{\left. \frac{\partial (U/T)}{\partial T}\right|}_V=\frac{4T}{3V}\left[{\left. \frac1T\frac{\partial U}{\partial T}\right|}_V-\frac{U}{T^2}\right] \\\therefore c_V=\frac43 c_V - \frac{4U}{3VT} \\\\c_V=\frac{4u}{T}=3s=\frac{du}{dT}


6.1. 정압비열은 구할 수 없습니다. 압력이 온도에 대한 함수로 나오기 때문에 압력을 고정한 채로 온도를 변화시킬 수 없기 때문이죠.


7. 마지막 결과를 조금 꼬아 봅시다. 그러면 고전적으로 스테판-볼츠만 법칙(Stefan-Boltzmann law)을 얻을 수 있습니다.


c_V=\frac{du}{dT}=3s=\frac{4u}{T} \\\\\therefore \frac{du}{u}=\frac{4dT}{T} \\\\\ln u=4\ln T +C \Leftrightarrow u=AT^4




스테판-볼츠만 상수는 구할 수 없는데, 그 이유는 스테판-볼츠만 상수에는 플랑크 상수가 들어가기 때문이며 플랑크 상수는 양자역학을 도입해야만 등장할 수 있기 때문입니다. 4번까지가 문제가 되고 5번부터는 위키백과에도 나오는 별로 특별할 것은 없는 문제.(신나게 유도해놓고 혹시 있나 해서 찾아봤더니 있었죠...=_=;;)


상대론적인 에너지와 운동량 관계식을 제외하고는 전부 고전열역학적 취급입니다. 양자 가설은 코빼기도 안 비치고, 굳이 태클을 건다면 4.2에서 kinetic theory가 필요하다고 볼 수 있겠네요.

댓글을 달아 주세요

페이스북의 타임라인에 계신 많은 물리 전공자 분들께 질문을 날려보았습니다. 답변을 기다리는 중...


===========================================


음... 제가 뭔가 놓친 것 같은데 제 타임라인의 물리에 목숨 건 여러분들의 도움을 요청합니다....


주제는 '특정 파장의 레이저로 물질의 온도를 몇 도 까지 올릴 수 있는가'. 구글 스칼라로 "laser heating limit"을 검색해봤는데 관련있어 보이는 검색결과는 안 잡히네요(문헌조사가 두뇌 가동 알고리즘에 누락되어 있다는 뼈아픈 지적을 계속 받고 있어서 트레이닝중...).


왜 이런 문제를 생각하게 되었는가는 생략하고(전혀..까지는 아니지만 다른 문제에서 파생된(?) 문제라서요) 단순하게 '레이저의 세기가 물질의 복사에너지와 일치하는 시점에서 온도의 상승이 멈춘다'고 할 경우 다음과 같은 사고실험을 해 볼 수 있지 않느냐는 거죠.


===========================================


아이디어는 다음과 같습니다. 아무리 낮은 온도의 복사체라도 얼마든지 높은 에너지의 광자를 방출할 수 있습니다. 그러면 온도 T를 가진 한 복사체를 포물면거울의 초점에 두고, 반사되어 평면파로 바뀐 복사광을 회절 격자에 쬐어 스펙트럼으로 나눕니다. 그 중 특정 파장에 해당되는 빛만 취하고 나머지는 거울을 이용해 되돌려보냅니다. 유사 레이저를 만드는 거죠. 좀 더 그럴듯하게 하고 싶으면 편광판을 이용하는 방법도 있고요. 어쨌든 이것을 '온도 T의 유사 레이저 발진기'라고 부릅시다.


'온도 T의 유사 레이저 발진기'를 병렬로 연결합니다. 그러면 나오는 유사 레이저의 세기를 얼마든지 올릴 수 있겠죠(쓰다 보니 자신없어진 부분). 그러면 '온도 T의 유사 레이저 발진기'를 수십만개 연결해서 물체A를 가열하기 시작합니다. 물체A의 에너지는 계속 오르다가 어느 시점에서 평형을 이룰 텐데, 만약 이 평형을 이루는 온도가 레이저의 세기에만 의존한다면 충분히 많은 '온도 T의 유사 레이저 발진기'를 병렬로 연결하는 것으로 물체A의 온도를 T 이상으로 끌어올릴 수 있다는 말이 됩니다. 수많은 '온도 T의 유사 레이저 발진기'로 물체A를 T1(T1>T)으로 가열하는 거죠.


여기서 잠깐. 열역학 2 법칙에 따르면 더 낮은 온도에서 더 높은 온도로 열을 전달할 수는 없습니다(GRE Physics 9277인가에 나왔던 문제라 기억하고 있습니다. 틀렸거든요(...)).


...어라?


============================================


일단 보이는 '현실적'인 불가능한 부분은 과연 '완벽한 반사체'가 존재하냐는 것인데요, 빛을 반사하는 과정에서 반사체의 온도가 상승할 가능성을 무시할 수 있느냐는 질문이 되겠네요.


두 번째로 이렇게 유사 레이저를 제작한다고 해도 그 유사 레이저를 병렬로 연결하면 과연 위상이 잘 맞아들어가서 유사 레이저의 광도가 증가할 것인가의 문제가 있습니다. 이 경우엔 레이저의 광도에 해당하는 흑체복사온도가 있다는 결론이 나올테니(유사 레이저의 세기는 흑체복사로 방출되는 복사광의 해당 파장에서의 세기 이상은 못 가질테니까요) 레이저의 광도와 온도를 직접적으로 대응시키는 방법이 생기네요. 문제 해결? 그런데 평균이 0인 정규분포를 따르는 변수를 모으면 모을수록 그 합의 분산은 증가하는데 꼭 광도가 어느 정도 이상의 값은 가지지 못할 것이라고 결론내리는 것이 너무 성급한 것은 아닌가 싶기도 합니다.


나머지 하나는 이 이상한(?) 현상을 받아들이고 다른 해석(?)을 하는 것. 물체A의 에너지를 물체A의 온도의 함수로 보고 canonical ensemble처럼 처리해서(온도 T의 reservior와 반응하는 것으로 생각하는 거죠) 평형상태 온도가 확률이 극대화가 된다는 것을 보이는 것인데(density of state를 고려해야 할 테니 잘 하면 한 계의 엔트로피 계산에도 쓸 수 있겠네요.) 신나는 계산이 기다리고 있죠...=_=;; 어떻게 계산하는가와 원하는 결과가 나올 것인가는 일단 옆으로 치워 두고...




Rev. 07Nov13


흑체복사에서 벗어나는 radiation의 분포 때문에 물질 내부의 상태는 equilibrium distribution이 아닙니다. 해당 파장의 radiation의 흡수율이 급격히 떨어지게 된다는 뜻. 이걸 고려해야 하는데, 이게 말이야 쉽지...=_=;;


더 이상 canonical distribution을 갖지 않는 상태에 대한 연구가 될 듯 합니다.

댓글을 달아 주세요

  1. 초짜 물리학자  댓글주소  수정/삭제  댓글쓰기

    제가 학부 때부터 궁금하게 생각한 문제입니다. 광학을 깊이 공부하고 나서야
    어떻게 된 건지 감이 오더라고요. 최종 계산은 아직 안 했지만...
    열 광원에서 나오는 빛은 레이저와 다른 성질을 가지는데요. 공간적 결맞음 이라고 하는
    것이 많이 떨어지지요.spatial coherence의 번역어인데요. 이렇게 공간적 결맞음이
    떨어지는 빛은 레이저처럼 거울의 초점에서 가능한 작은 영역에 모이지 않습니다.
    훨씬 넓은 영역을 지나는데요. 특히 공간적 결맞음이 0이면 무한히 퍼지고 말지요
    Hecht 광학의 coherence 또는 결맞음 부분 하고, van cittert-zernike 정리나 Wiener-Kintchin 정리를 찾아보면 무슨 얘기인지 이해가 가실 겁니다.

    2014.08.25 19:10 신고

'과학과 기술 글쓰기' 수업 과제. 초고 제출한지 한 서너주 되었으니 블로그에 올려 본다. 다음주까지 수정본 제출인데 수정본은 천천히 올리게 될 듯. 쓰고 나서 비평을 맡은 조원들에게 왜 이렇게 길게 쓰냐고 욕먹었다(...). 그런데 내용에 빈 틈이 없게 하려다 보니 이렇게 길어져 버렸(...) 오히려 비평 받은 다음에 내용을 추가해야겠다는 생각이 들어버려서 문제인데, 면담 가면 어떻게 고쳐야 할 지 방향이 잡히지 않을까.


설마 블로그에 올렸다고 카피처리하지는 않겠지?(김광식 교수님 이거 제 블로그입니다 =_=;;)




나무 하나 없는 황량한 벌판을 한겨울의 매서운 칼바람이 가득 채우고 있었습니다. 그리고 벌판 한 가운데 사나운 겨울바람에 맞서며 거대한 구조물을 계속 손보는 형제가 있었습니다. 가문비나무 막대를 복잡하게 얽고 그 위에 얇고 질긴 면직물을 덮어씌운 구조물에 형제는 직접 깎은 프로펠러와 체인으로 연결된 가볍지만 강력한 엔진을 얹었지요. 형제는 세세한 주의사항 모두를 꼼꼼하게 점검하였습니다. 마침내 점검이 끝났습니다. 동생은 그 구조물 안에 탔고, 엔진 시동음이 바람 사이로 퍼져나갔습니다. 구조물은 맞바람을 받으며 달려나갔습니다.


1903년, 12월 17일, 10시 35분. 노스캐롤라이나의 키티 호크. 라이트 형제는 플라이어 1호를 타고 첫 공기보다 무거운 비행(heavier-than-air)에 성공하였습니다.


비행기는 우리 일상에 많은 영향을 미치고 있습니다. 여객기와 화물기는 빠른 운송 수단으로 이 곳과 해외 사이에 가로놓인 높은 장벽을 낮추어 주는 역할을 하며, 전투기는 끔찍했던 전쟁 이후 강력한 전쟁억지의 수단으로 자리잡았습니다. 이렇게 비행기 한 번 탄 적 없는 사람이라도 비행기가 가져온 세계의 변화에 휩쓸리지 않은 사람은 없습니다. 그리고 닿을 수 없는 자유의 상징으로만 여겨졌던 하늘은 더 이상 잡을 수 없는 밤하늘의 별이 아니게 되었지요. 비록 기계의 도움을 받기는 했지만요.


비행기는 어떻게 날까요? 실제 비행기를 가지고 여러 가지 실험을 해 볼 수는 없으니 더 싸고 더 쉽게 볼 수 있는 대용품을 찾아보기로 하겠습니다. 가장 간단한 대용품은 아무래도 종이비행기겠지요. 만들어지는 재질과 크기에서 차이가 나기는 하지만, 종이비행기가 잘 날기 위해서 가져야 할 조건은 비행기가 날기 위해서 가져야 할 조건과 같습니다. 그렇다면 종이비행기가 잘 날려면 무엇이 필요할까요? 이 질문에는 모두가 공통적으로 떠올리는 한 단어가 있지요.


“추락하는 것은 날개가 있다”는 말이 있습니다. 소설 제목과 영화 제목으로도 사용된 말인데, 이 말에는 얼핏 보아서는 못 보기 쉬운 삼단논법이 숨어있지요.


가. 추락하기 위해서는 날아올라야 합니다.

나. 그리고 날아오르기 위해서는 날개가 있어야 합니다.

다. 그렇기 때문에 추락하는 것은 날개가 있습니다.


그런데 날기 위해서는 날개가 있어야만 할까요? 확실히 흔히 볼 수 있는 날짐승들을 살펴보면 모두 날개가 있습니다. 참새, 잠자리, 메뚜기, 쏙독새, 비둘기에 이르기까지(비둘기는 다시 생각해야 할지도 모르겠네요.) 모두 날개를 갖고 있지요. 날려면 날개가 있어야만 할 것 같습니다. 실제로 많은 비행 연구는 ‘어떻게 해야 효과적으로 날 수 있는 날개를 만들 수 있는가’에 초점을 맞추고 있습니다.


날개가 어떻게 날 수 있는 힘을 만들어 주는지에 대한 설명은 이미 많은 좋은 글이 나와 있으니, 여기서는 날개 자체에 대해서만 생각해보겠습니다. 날려면 날개가 있어야 하는데, 반대로 날개가 있기만 하면 날 수 있을까요? 날개가 있지만 뛰어다닐 뿐 날지는 못하는 타조와 같은 새가 있는 것을 떠올려보면 날개가 있다고 무조건 날 수 있는 것은 아닌 것 같지만, 실제로 실험해보기 전까지는 알 수 없겠지요. 그러면 다음 그림처럼 비행기를 접어봅시다.




종이비행기를 많이 접어 보신 분들은 아시겠지만, 이런 형태로 접은 비행기는 날지 못합니다. 종이비행기를 접어 본 적이 없는 분들은 이 종이를 접어 바로 실험해보시면 되겠지요(대신 다시 읽을 수 있도록 땅바닥이 더러운 곳에서 실험하는 것은 피해주세요). 분명히 날개가 있는데 왜 날지를 못할까요? 그러면 다음과 같이 종이비행기를 접어봅시다.



이렇게 접은 비행기는 자주 보셨겠지요. 실제로 날려보면 이렇게 접은 비행기는 아주 잘 날지는 않더라도 최소한 날개만 만들어주었던 그 전의 종이비행기보다는 비행기같이 행동합니다(이 종이로 실험하시는 분들은 너무 멀리 날아가지 않게 조심해주세요). 날기 위해서 날개가 그렇게 중요하다면 분명히 날개가 클수록 더 잘 날아야 합니다. 그런데 실제로는 날개의 크기가 줄어든 두 번째 종이비행기가 훨씬 잘 날지요. 이 실험에서 알 수 있는 것은, 날기 위해서 중요한 것은 날개만이 아니라는 것입니다. 여태 날기 위해서 가장 중요한 것이 날개라고 생각하고 있었는데, 이 현상은 다소 이해하기가 힘들지요.


물리학자들은 한 어려운 현상을 이해하기 위해 좀 더 잘 아는 다른 현상에 견주어보고 그 사이의 공통점을 이끌어내는 버릇이 있습니다. 이 버릇으로 전기와 자기가 하나의 힘이라는 것과, 더 나아가서는 수많은 자연현상들이 단 네 가지 힘으로 설명할 수 있다는 것을 알아내게 되었지요. 그러면 이 글에서도 물리학자들의 버릇을 따라 잠깐 동안 종이비행기와는 조금 달라 보이는, 하지만 이해하기는 더 쉬운 예시를 끌어들여 보도록 하겠습니다.


넓은 공원이나 뜰에 나가면 부메랑이나 원반던지기를 하는 사람들을 쉽게 볼 수 있습니다. 그 사람들이 원반을 던질 때, 던지는 방향과 어떤 모양을 이루도록 던지나요? 보통은 원반을 날아가는 방향과 평행하도록 맞추어 던지지 날아가는 방향과 원반의 면이 수직이 되도록 던지지는 않습니다. 왜 수직으로 던지지는 않는 것일까요? 실험해보면 평행하게 던진 원반은 잘 날지만 수직으로 던진 원반은 꽤 큰 저항이 느껴지며 평행하게 던진 원반보다 잘 날지 못한다는 사실을 알게 됩니다. 이 큰 저항이 원반이 날아가는 것을 방해합니다. 모래주머니를 차고 달리면 더 금방 지치는 것처럼, 원반도 더 큰 저항에 더 빨리 날아갈 에너지를 잃는 것이지요.


종이비행기에서도 이와 같은 일이 일어납니다. 첫 번째의 날개만 있는 종이비행기는 날릴 경우 조금 나아가다가 머리가 수직으로 들려버리는 것을 보실 수 있습니다. 원반에 비유하자면, 평행하게 던진 원반이 갑자기 수직으로 바뀌어 버리는 것이지요. 이 상태를 실속(stall)이라고 부릅니다. 실속 상태에서는 날개가 비행기가 날기 위해 필요한 힘을 충분히 만들어내지 못하고 커다란 저항만 일으키게 되며, 때문에 비행기에서는 실속이 일어나면 추락할 위험이 매우 높아집니다. 비행기 사고가 가장 일어날 확률이 높은 때가 이륙할 때와 착륙할 때라고 하는데, 그 이유는 비행기가 이착륙할 때 실속이 간신히 일어나지 않을 정도의 한계에서 비행하기 때문이지요. 한편 두 번째 비행기는 머리를 들기는 하지만 그렇게 높이 들지는 않습니다. 날아가는 도중에 자세가 흐트러질 법도 한데, 절대 실속이 일어나지는 않도록 잘만 자세를 유지합니다. 두 번째 비행기는 어떻게 자세를 유지할 수 있는 것일까요?


이번에도 물리학자들의 버릇을 따라 좀 더 이해하기 쉬운 다른 예를 보겠습니다. 약수터의 가장 인기 있는 스포츠종목 중 하나로 배드민턴이 있습니다. 배드민턴은 셔틀콕이라는 특이한 공을 사용하는데, 코르크에 거위 깃털을 고르게 꽃아 놓은 것이지요. 그런데 셔틀콕이 날아가는 것을 잘 보면 특이한 점을 하나 알 수 있습니다. 편의상 셔틀콕의 코르크 부위를 앞, 깃털이 꼽힌 부위를 뒤라고 부른다면, 셔틀콕은 항상 앞으로 날아간다는 것이지요. 두 번째 종이비행기도 한 방향으로만 나는데(실제로 충분히 강한 힘으로 종이비행기를 뒤쪽으로 날려 보면 어느새 방향을 바꾸어 바른 방향으로 날아가는 것을 볼 수 있습니다), 우연의 일치일까요?


셔틀콕과 두 번째 종이비행기는 둘 다 앞쪽은 날렵하고 뒤쪽은 부피가 크며 둔하게 생겼다는 공통점이 있습니다. 이것은 무엇을 의미할까요? 바람 부는 날에 바람에 떠밀려 본 분은 아시겠지만, 공기는 물체에게 힘을 줄 수 있습니다. 이런 힘을 압력이라고 부르는데요, 압력은 물체의 모든 표면에 동시에 작용하기 때문에 그 총합을 직접 계산하기는 매우 까다롭습니다. 그래서 물리를 하는 사람들은 이 힘이 한 점에 집중되어 있다고 가정하여 계산을 단순화한 뒤 현상을 설명하고는 하는데, 이 점을 압력중심이라고 부릅니다. 압력중심은 바람이 불어오는 방향과 그 세기, 그리고 물체의 모양에 영향을 받아 그 정확한 위치를 결정하는 것은 매우 힘들지만, 대체적으로 부피가 큰 쪽에 있다는 사실이 알려져 있습니다. 앞쪽 보다는 뒤쪽이 부피가 크고 둔하게 생긴 물체는 앞쪽보다는 뒤쪽에 압력중심이 위치한다는 것이지요.


그렇다면 압력중심은 어떻게 자세를 유지하는 역할을 할까요? 이제는 이 표현이 식상해지려고 하지만, ‘물리학자들의 버릇을 따라’, 조금 더 생각하기 쉬운 예를 떠올려 보겠습니다. 우리 주변에서 원래 자세로 돌아가려고 하는 물체 중 가장 자주 볼 수 있는 것은 진자입니다. 진자는 살짝 건드리면 한 점을 중심으로 왔다 갔다 하다가 결국에는 건드리기 전의 원래 위치로 돌아옵니다. 진자와 종이비행기의 압력중심은 어떤 관계가 있을까요? 진자는 고정된 축과 추 두 가지로 이루어져 있습니다. 축을 중심으로 회전하도록 만들어진 진자의 추에 작용하는 중력은 진자를 원래 자세로 돌아가게 합니다. 진자의 비유에서 추와 중력은 압력중심과 압력에 대응합니다. 그러면 진자의 비유에서 고정된 축에 대응하는 것은 무엇일까요?


답부터 말하자면 비행기의 질량중심이 고정된 축의 역할을 합니다. 질량중심이란 압력중심과 마찬가지로 한 점에 한 물체의 모든 질량이 있다고 가정했을 때 그 점입니다. 좀 더 많은 질량을 가진 쪽에 위치하며, 압력중심과 같이 물리학자들이 계산을 좀 더 편리하게 해 보자는 의도에서 생각해내었지요. 두 번째 종이비행기의 경우 앞 쪽을 접어주었기 때문에 더 많은 질량이 앞쪽에 몰려 질량중심이 보다 앞 쪽으로 움직이게 됩니다. 그런데 질량중심은 어떻게 축의 역할을 하는 것일까요?


물리학이라는 학문(혹자는 과학이라는 학문 체계라고도 하더군요)의 개척자인 아이작 뉴턴은 처음으로 물리학이 제 모습을 갖추기 시작한 책 『프린키피아Principia』에서 세 가지 법칙을 제시하였습니다. 그 중 첫 번째가 바로 ‘관성의 법칙’입니다. 관성의 법칙이란 쉽게 말한다면 (외부에서 힘을 주지 않는 한) 움직이던 물체는 움직이던 그대로 움직이려 하고, 멈춰있던 물체는 멈춰있는 그대로 있으려 한다는 것이지요. 우리가 한 물체를 던지고 그 물체를 따라가면서 본다면, 그 물체는 상대적으로 멈춰 있는 것처럼 보인다는 것을 의미합니다.


하지만 연필만 던져보아도 던져진 물체는 회전까지 한다는 것을 알 수 있습니다. 그러면 회전하는 던진 물체를 따라가면서 볼 때, 그 물체는 어떻게 움직이는 것처럼 보일까요? 아무래도 물체는 가만히 있고 한 축을 중심으로 계속 회전하는 것처럼 보이겠지요. 이 축이 지나는 점이 질량중심입니다. 질량중심은 한 물체의 질량 전부를 대표하는 점이어야 하기 때문에 관성의 법칙을 더욱 철저하게 지켜야 합니다. 따라서 던진 물체를 따라가면서 보는 동안 질량중심은 가만히 정지해 있는 것처럼 보여야만 합니다. 고정된 축의 역할을 하게 되는 것이지요.


다시 잘 나는 두 번째 종이비행기로 돌아와서, 날린 종이비행기를 날아가는 속도 그대로 따라가면서 본다면 종이비행기의 한 점은 정지해 있는 것처럼 보입니다. 그 점은 위에서 설명한 질량중심이 되지요. 그리고 앞서 설명했던 것처럼 압력중심은 종이비행기의 뒤쪽에 위치하게 되며, 궁극적으로는 질량중심보다도 뒤에 위치하게 됩니다. 마지막으로 종이비행기는 날아가는 동안 공기가 날아가는 방향의 반대 방향으로 힘을 줍니다. 가슴이 터질 것처럼 뛰어보신 분들이라면 앞으로 내달릴 때 바람이 얼마나 세게 더 이상 못 달리게 하려는지 경험으로 알고 계시겠지요. 전체적인 그림을 다시 한 번 살펴본다면, 흔히 보는 진자를 옆으로 뉘어놓은 구도가 된다는 것을 알 수 있습니다. 중력이 진자를 원래 자세로 되돌리려는 것처럼, 공기의 압력이 종이비행기를 원래 자세로 되돌리려고 하는 것이지요.


이 비유는 첫 번째의 못 나는 종이비행기에게도 적용할 수 있습니다. 첫 번째의 종이비행기는 날개만 접어주었기 때문에 질량중심이 종이비행기의 한 가운데에 위치합니다. 압력중심 또한 특별히 부푼 부분이 없기 때문에 종이비행기의 한 가운데에 위치하지요. 회전의 중심이 되는 점과 되돌리려는 힘을 받는 점이 일치하게 된 것인데, 이는 진자의 축을 고정하는 축에 다는 것과 같습니다. 추의 정중앙에 못을 꿰어 벽에 박아놓으면 아무리 돌려보아도 원래 자세로 돌아오려 하지 않습니다. 마찬가지의 이유로 첫 번째 종이비행기는 처음 날린 자세 그대로 돌아오려 하지 않습니다. 조금 날다가 머리를 들어 그대로 실속을 맞이하는 것이지요.


우리는 이 글에서 종이비행기처럼 주변에서 흔히 보이는 아주 사소한 물건에도 복잡한 물리법칙이 작용해서 균형을 이루도록 한다는 것을 살펴보았습니다. 그리고 갖가지 비유를 통해 이 물리법칙들은 매우 달라 보이는 원반, 셔틀콕, 진자에게도 작용한다는 것을 알게 되었지요. 이 글을 읽고 잘 나는 종이비행기를 접는 법을 익힌다고 해도 라이트 형제처럼 내가 타고 날 수 있는 비행기를 만들 수는 없겠지만, 이 글이 물리학이 어떤 학문이고 얼마나 보편적으로 작용하는지 엿보는 기회가 되었으면 합니다. 그리고 이 글을 통해 여러분이 물리학이 어렵기만 한 학문이 아니라 실제로는 매우 재미있고 아름다운 학문이라는 것을 느끼신다면 그것만큼 큰 보람은 없겠지요. 지금까지 이 글을 읽어주셔서 감사합니다.





p.s. 실제로는 공기에 의해 힘을 받기 때문에 뉴턴의 제1 법칙은 완벽하게 적용되지 아니하나, 그 힘이 상대적으로 작아 무시할 수 있기 때문에 논의를 그대로 진행하였습니다. 또한, 실제 항공기 설계에서는 압력중심보다는 공력중심(aerodynamic centre)라 부르는 점을 이용합니다. 하지만 공력중심은 과도하게 논의가 어려워진다는 문제가 있어 압력중심으로 글을 이끌어간 점 양해 부탁드립니다.

댓글을 달아 주세요

  1. hmmm  댓글주소  수정/삭제  댓글쓰기

    ㅋㅋweistern's에서 타고타고 넘어와 여기 처음 본것도 중학생때였던거 같은데 저도 대학교 2학년생이군요
    제대하셨나보네요 잘 지내시나요?

    2013.10.13 01:17 신고
  2. hmmm  댓글주소  수정/삭제  댓글쓰기

    ㅋㅋㅋ전 중고딩 때 꿈을 잃은거 같았는데 오랜만에 예전에 보던 블로그들 돌아보니 감회가 새롭네요
    대학와서 실망한 부분도 많았는데 제 공부는 제가 하는 거란 걸 새삼 배워갑니다

    2013.10.13 01:41 신고
  3. 이대곤  댓글주소  수정/삭제  댓글쓰기

    네모로 종이비행기접어도 앞쪽에 무개만 있으면 잘 나는데요...

    2013.12.19 15:39 신고
  4. BlogIcon 성현석  댓글주소  수정/삭제  댓글쓰기

    종이 비행기의 꼬리날개로 방향을 조절하수있다는데 그렇게되는 과학적 원리를 자세히 말해주실수 있나요?

    2015.11.28 16:03 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2015.12.10 22:12 신고  댓글주소  수정/삭제

      이건 비행동역학을 알아야 자세히 설명할 수 있는데, 배운지 오래라 간략하게만 설명하겠습니다.

      비행기의 머리를 멀어지는 방향으로, 그러니까 시선 방향과 비행기의 방향을 일치시킨 상태에서 설명하도록 하겠습니다. 꼬리날개의 뒤쪽(방향키-rudder라 부릅니다)을 왼쪽으로 꺾으면 꼬리날개는 오른쪽으로 양력을 받습니다. 비행기가 시선 방향으로부터 왼쪽으로 꺾이는 방향으로 돌림힘을 받는다는 의미입니다. 이렇게 비행기가 왼쪽으로 돌아가게 될 경우 비행기의 주날개(일반적으로 뒤쪽으로 쳐져 있지요) 양쪽을 비교해보면 왼쪽보다는 오른쪽이 상대적으로 더 넓게 바람을 쐬는 것을 알 수 있습니다. 오른쪽 날개에 더 많은 양력이 걸리는 셈이지요. 따라서 비행기는 오른쪽이 뜨고 왼쪽이 가라앉는 모양새를 하게 됩니다. 이 상태에서는 양력이 위쪽 방향뿐만 아니라 왼쪽 방향으로도 작용하기 때문에, 비행기는 전체적으로 왼쪽으로 움직이는 힘을 받습니다.

      보통 종이비행기가 날아가는 방향을 조정할 때 보조날개(aileron)도 같이 조정하는 이유는 방향키 말고 보조날개도 비행기의 움직임에 영향을 미치기 때문입니다. 비행기가 선회하는 힘은 결국 선회하는 방향으로 양력이 만들어져서 나오는 힘이므로, 방향키만 조정하는 것보다는 보조날개까지 조정해야 더 효과적으로 선회할 수 있겠죠.

디랙해Dirac sea를 항해하는 히치하이커들. 그들은 겔만의 팔정도Eightfold way를 가슴에 품고 파인만 도표Feynman diagram를 지도삼아 슈뢰딩거의 고양이Schrodinger's cat와 함께 하이젠베르크의 불확정성Heisenberg's uncertainty principle을 극복하며 나아간다.[각주:1] 그들을 위한 항해의 안내서를 공개하니 도움이 되기를 바란다.

1. Second Creation
The Second Creation (Reprint, Paperback)
Crease, Robert P./Rutgers Univ Pr
현대 물리학이라고 하면 대부분 초끈이론을 떠올리지만 실세는 표준모형이다. 아직 초끈이론이 이론의 수준에 머물러 있는 반면 표준모형은 쏟아지는 새로운 물리현상들을 설명하기 위해 도입되었고 물리 현상을 포괄적으로 설명할 수 있는 "실험적으로 검증된" 이론이다. 하지만 표준모형에 대한 교양서는 찾아보기 힘들다.

몇 안 되는 표준모형의 역사를 다루는 책인 Second Creation은 표준모형을 만든 사람들의 이야기이다. 항상 계산을 틀리고는 했다는 맨하튼 프로젝트Manhattan Project의 오펜하이머J. R. Oppenheimer, 말이 없는 것으로 유명한 디랙P. A. M. Dirac, 봉고를 치고 다니며 직관을 중요하게 생각했던 파인만R. Feynman, 돈 벌어 먹고 살만한게 없어 물리를 했다는 말이 있을 정도로 다방면에서 뛰어난 재주를 보였던 겔만M. Gell-Mann 등 표준모형이라는 건축물의 주춧돌을 깎아냈던 개성 넘치는 사람들의 이야기는 읽는 이의 시간을 흡입하는 마력이 있다.

더군다나 고등학교 물리 시간에 배우는 톰슨J. J. Thomson의 푸딩모형과 우리가 현재 원자력을 하면 떠올리는 원자핵이 가운데에 있고 전자가 그 주위를 도는 그림의 원인을 제공한 러더퍼드E. Rutherford의 실험들의 비화 또한 즐겁게 읽을 수 있다. 방사능의 위험이 알려지지 않았던 시대에 고도로 농축된 방사성 물질으로부터 화상을 입어 가면서 새 물리학의 기둥을 새웠던 실험가들의 이야기와 양자역학을 태동시킨 보어N. Bohr, 하이젠베르크W. Heisenberg, 슈뢰딩거E. Schrodinger의 일화는 물리에 관심있는 사람들에게 도움이 될 것이다. 더군다나 깊게 공부하고자 하는 사람들이라면 덴마크 사람인 보어가 영국으로 유학가서 지냈던 불행한 시절에 대해 조금이라도 알아야 하지 않을까?

다만 아쉬운 점이라면 상대적으로 오래 된 책(80년대면 현대물리학에서는 근대이다)인지라 표준모형에 아직 3세대 입자, 그러니까 Top, Bottom 쿼크와 타우 입자Tauon가 도입되기 전까지의 역사까지만 다루고 있다는 것이다. 하지만 현재 이론에 대한 이해와 해석이 과거와는 다르다고 해서 과거의 이해와 해석이 전혀 쓸모없는 것은 아닌 것처럼, 누락된 역사는 이 책의 아쉬운 점이 될 수는 있을지언정 오점이라고 할 수는 없을 것이다.


2. 엘러건트 유니버스

엘러건트 유니버스
브라이언 그린 지음, 박병철 옮김/승산
초끈이론의 전도사라 할 수 있는 그린B. Greene의 초기작이다. 후속작이었던 『우주의 구조』는 어려워서 읽다가 중도에 포기했는데(106페이지였을 것이다) 이 책은 끝까지 읽을 수 있었다. 아무래도 중학생이 소화하기에는 무리였던 것일까?

"현대물리학이란 초끈이론이구나"라는 스테레오타입을 만들어낸 장본인(그리고 미드 빅뱅이론은 이 편견을 더욱 공고하게 만들었다)이라 할 수 있을 정도로 이해하기 쉽게 잘 쓰여진 책이다. 더 이상의 설명이 필요없을 정도로 괜찮은 책. 다만 현재 서점에 쏟아지는 책들이 죄다 초끈이론에 그 기반을 둔 책들인지라 새로운 관점을 원한다면 다른 책이 더 나을 것이다.


3. Concepts of Space
공간개념
막스 야머 지음, 이경직 옮김/나남출판
(원서가 없어 번역본으로 대체)
어렵다. 철학을 전공하는 사람들도 참고한다고 하니(칸트까지만 하더라도 시공간은 철학의 일부였다.) 그 난이도가 짐작이 가리라. 더군다나 책 중반 이후부터는 원문을 수록하는데 읽은 책이 영어였으니 수록된 원문은 불어와 독일어 등. 덕분에 인용문은 하나도 못 읽었다. 순전히 독자의 능력 부족이기는 하다만.

"공간이란 무엇인가"에 대한 옛 사람들의 생각부터 현대의 생각까지 상세하게 수록하고 있다. 옛 희랍 시절의 사람들이 기발한 논리로 공간을 무엇으로 정의하고 어떻게 생각하였는지, 유대인의 카발라Cabala가 어떻게 기독교 세계관에 영향을 주었는지, 뉴턴의 공간에 대한 가설에 대한 당대 신학자들이 어떻게 비판하였는지 등에 대해서도 담고 있어 물리학 교양서라고 보기에는 애매한 감이 있다. 더군다나 후반으로 갈 수록 현대물리학의 입김이 반영된 "시공간은 어떠한가"에 대한 답변은 관련 전공의 전공지식이 없으면 이해가 불가능할 정도로 어려워진다. 불가해한 것으로 여겨졌던 문장들이 일반상대론을 조금 공부하고 나니 깨우쳐진다면 교양서로서는 낙제다.

또 다른 아쉬운 점이라면 서양쪽의 역사에 치우쳐 동양에서 공간의 개념은 어떻게 발전하였는지 나오지 않는다. 다만 현대의 시공간에 대한 관념은 거의 서양 사상이 원류가 되니 동양의 역사가 도입되면 오히려 책의 통일성만 방해할 위험이 있다는 것은 인정해야겠지.


4. Three Roads to Quantum Gravity
Three Roads to Quantum Gravity (Reprint, Paperback)
Smolin, Lee/Perseus Books Group
(번역본도 나와 있습니다)
현대 물리학의 최전선에 서 있는 이론들에 대한 책은 대부분 초끈이론에 그 초점이 맞추어져 있다. 그도 그럴 것이 초끈이론은 미국에서 대단히 흥행하고 있는 이론이고 한국은 미국의 영향을 많이 받기 때문이다. 그렇다면 현대물리학의 거장들이 활동하고 있는 다른 지역으로 렌즈를 돌리면 어떤 그림이 나오게 될까?

2차대전 이전에는 하이젠베르크와 아인슈타인A. Einstein, 슈뢰딩거 등 독일이 당대 물리학의 최전선에 서 있었고 2차대전 이후에는 그 사람들이 나치를 피해 건너간 미국에서 파인만, 겔만, 와인버그S. Weinberg 등이 현대물리학의 초석을 닦았다. 하지만 현대물리학의 거장들이 그들만 있던가. 뉴턴경Sir I. Newton의 역사를 물려받은 영국에는 펜로즈R. Penrose와 휠체어 위의 지성 호킹S. Hawking박사가 있다.

특이하게도 셋 다 중력에 대한 연구로 이름이 널리 알려져 있다. 그래서일까? 중력의 양자화에 대한 전반적인 접근을 다루는 책이 영국에서 나왔다는 사실에 자연스레 고개가 끄덕여진다. 이 책은 제목에서처럼 중력을 양자화하는 접근법들에 대한 책이다.

중력을 양자화한다는 것은 무엇을 의미할까? 잘 알다시피, 전하는 연속적인 분포를 갖지 않는다. 전자가 가지고 있는 전하량이 일정하고 이 전하량이 기본 단위가 되어 전하를 결정하기 때문이다. 마치 158,259.82원짜리 핸드폰을 생각할 수는 있지만, 실제 현금으로 이 핸드폰을 살 때에는 158,250원이나 158,260원으로밖에 거래를 못 하는 것처럼 말이다. 이런 식으로 물리 법칙에 근본적인 비연속성을 도입해주는 것을 양자화된 이론이라고 부른다. 플랑크M. Plank는 빛의 에너지에 비연속성을 도입해서 흑체복사black body radiation를 성공적으로 설명했고, 보어는 원자 궤도에 양자성을 도입해 수소원자의 스펙트럼을 설명하는데 성공했다. 디랙과 파인만은 여기에서 더 나아가 전자기력의 상호작용까지 양자화하는데 성공하는데, 이것을 두고 양자전자기학Quantum ElectroDynamics, 혹은 양자장론Quantum Field Theory이라고 한다. 다만 아직 양자화가 완전하지 못한 힘이 있는데, 바로 아인슈타인의 일반상대성이론으로 설명되는 중력이다.

중력에 양자성을 부여하는 한 가지 방법은 우리가 잘 알고 있는 초끈이론이 있고, 다른 하나는 약간은 생소한 루프 양자중력 이론이다. 둘의 접근방법은 약간 다른데, 초끈이론이 힘을 매개하는 입자들(보존boson이라고 부른다)의 존재에 뿌리를 둔다면 루프 양자중력 이론은 반대로 시공간이 양자화되어있을 경우 만족할 방정식으로부터 출발한다. 마지막 한 가지 접근법은 아예 백지 상태로부터 출발해 물리 이론을 쌓아 나가는 것으로(예컨데 시공간이 있다는 가정에서 출발하지 않고 이론의 중간 과정으로 시공간을 정의하는 방식이다) 펜로즈의 트위스터 이론이 여기에 해당하나 다른 이론들도 있다고 한다. 이 책에서는 앞서 서술한 이 세가지 이론들을 서로 비교하며 중력을 양자화하기 전까지는 알 수 없었던 시공간의 다양한 측면들을 파헤친다. 초끈이론 말고 다른 현대물리학의 이론을 접할 기회가 없었던 사람들에게 이 책은 신선한 충격이 될 것이다.

그렇다면 저자는 무엇이 궁극적인 중력의 양자이론이 될 것이라고 생각하는 것일까? 저자는 현재 알려진 중력에 양자성을 부여하는 이론들은 결국 진짜 이론의 한 단면일 것이라고 말한다. 마치 코끼리의 코를 만졌던 장님과 귀를 만졌던 장님의 대답이 달랐던 것처럼 우리가 알고 있는 이론들은 맞지는 않지만 그렇다고 현실과 아예 동떨어진 것은 아니라는 것이다. 저자의 바람처럼 수십년 이내에 중력의 양자적 성질이 전부 밝혀질 것인지 기대해 보자.

5. Programming the Universe
Programming the Universe (Reprint, Paperback)
Lloyd, Seth/Random House
(번역본도 나와 있습니다)
이미 한 번 서평을 쓴 적이 있는 책(2008/12/24 - [자연과학] 세스 로이드, 프로그래밍 유니버스)이지만 조금 부족한 것이 있다 싶어 부연설명을 단다.

다른 교양서적과는 다르게 이 책은 새로운 이론을 소개하는 책은 아니다. 단지 "새로운 해석"을 소개하는 것일 뿐. 초끈이론이 세계를 "고차원의 끈들이 공명하는 무대"로 묘사했다면 이 책에서는 우주가 "0과 1들이 벌이는 축제"로 치환된다. 이 책에서는 세계가 숫자들의 잔치라는 그림으로 그려지더라도 그 세계를 설명하는 수식들은 이전의 물리학과 전혀 다를 것이 없다. 몬드리안P. Mondrian의 추상화에서 누구는 냉혹한 아름다움을 느끼고 누구는 이성의 차가움을 느낀다는 것이 비슷한 비유이려나.

관측하는 순간 그 물체는 그 상태로 붕괴한다는 고전적인 코펜하겐 해석, 양자역학적으로 주어진 다양한 가능성들은 각기 그 가능성대로 발현한다는 다세계해석 말고 제 삼의 길을 찾는 사람들에게 이 책은 흥미로운 읽을거리가 될 것이다.


6. 생각의 기차
생각의 기차 1
이상하 지음/궁리
생각의 기차 2
이상하 지음/궁리
벤젠고리는 꿈에서 등장한 자기 꼬리를 문 뱀의 형상을 통해 유명해졌고, 페니실린은 열악한 연구실 환경에서 곰팡이가 잘못 자란 덕분에 여러 사람을 살릴 수 있었다. 비슷한 많은 사례들 때문인지 새로운 과학적 발견은 행운(serendipity)이 필수불가결하다고 생각하는 경우가 간혹 있게 되는데, 실제 발견의 현장은 그러할까? 새로운 발견은 어떤 과정을 통해 만들어 지는 것일까?

과학적 발견이라 하면 과학이 내딛는 걸음 하나 하나를 말한다. 지금 이 시대의 과학은 다각형과 사원소설로 우주 만물의 움직임을 설명하던 요람에서 보이지 않는 미립자들을 관측하고 수많은 괴질들을 정복하는 먼 길을 걸어왔다. 그 먼 길을 걷는 동안 남겨 놓은 발자국들이 모두 앞선 예제들처럼 드라마틱한 이야기를 가지지는 않았을 터. 그렇다면 과학이 남은 발자취에는 어떤 것들이 있을까?

저자는 총 열 두가지 분류로 발자국들을 분류하고 그 분류를 따라 발자국들을 되짚는다. 그 발자취에는 과학이 발달하던 시대적 배경과 그 시대의 한계도 드러나고 새로이 발견된 현상들에 대한 과학자들의 대담한 가설과 보수적인 견해가 서로 배치되며 나타나기도 한다. 이 긴 여정 속에서 점차 분명해지는 것은, 으레 믿는 '과학은 천재들의 거대한 도약으로 쌓아올린 상아탑'이라는 신화가 과학이라는 빙산의 왜곡된 일각에 불과하다는 사실이다.

과학이라는 길을 걷고자 하나 자신의 능력에 믿음이 없는 사람들에게 이 책이 과학을 둘러싼 경외의 환상을 벋겨내고 자신감 있게 길을 내딛는 데 도움이 되리라 믿는다.


7. Feynman's Rainbow

Feynman's Rainbow (Reprint, Paperback)
Mlodinow, Leonard/Grand Central Pub
(번역본도 나와 있습니다)[각주:2]
서점의 과학 코너에 들어가면 반갑게 맞아주는 수많은 책들로 이름을 널리 알리는 파인만씨. 그 사람은 어떤 삶을 살았을까.

저자는 박사과정을 막 마친 후 박사후연구원으로 물리학계의 전설 파인만과 겔만이 있는 칼텍으로 오게 된다. 낯선 환경, 잘 해야 한다는 압박 속에서 만난 파인만. 이 책은 당시 항암 치료로 고생하며 젊음을 잃어버린 후년의 파인만과 나누었던 대화들을 재구성한 것이다. 공자와 그 제자들 사이의 대화를 적은 『논어』에서 공자의 사상을 엿볼 수 있는 것처럼 이 책에서는 천재라는 베일에 가려져 잘 드러나지 않았던 파인만의 삶과 사상이 드러난다.

아직도 기억에 남는 대화를 옮겨 본다.

"And what do you think was the salient feature of the rainbow that inspired Descartes's mathematical analysis?" he asked.
"I give up. What would you say inspired his theory?":
"I would say his inspiration was that he thought rainbows were beautiful..."
 
"그리고 데카르트가 수학적으로 분석하도록 한 무지개의 본질적인 특징은 무엇이라고 생각해?" 그가 물었다.
"모르겠는데요. 데카르트의 이론에 불을 지핀게 무어라 하시겠습니까?"
"나는 데카르트가 무지개가 아름답다고 생각해서라 하겠어..."
p.s. 신판본도 있어 링크를 걸어둔다.
Feynman's Rainbow (Paperback)
Mlodinow, Leonard/Random House Inc


8. 세상에서 가장 아름다운 실험 열 가지
세상에서 가장 아름다운 실험 열 가지
로버트 P. 크리즈 지음, 김명남 옮김/지호
우리는 왜 자연에 대해서 알기를 열망하는 것일까. 그건 자연이 아름답기 때문이다. 그리고 자연이 아름답기 때문에, 자연이 감추어 둔 보석을 드러내는 실험 또한 아름다울 수 밖에 없다.

책에 대한 평가는 이전에 쓴 서평으로 대신한다.(2011/06/05 - 로버트 P. 크리즈 저 김명남 역, [세상에서 가장 아름다운 실험 열 가지]) 부연설명은 불필요하다고 믿는다.


9. 기타
스트링 코스모스
스트링 코스모스
남순건 지음/지호
거의 유일하다시피 한 국내 과학자의 초끈이론에 대한 교양서. 얇고 무난하지만 두어 번인가 오타가 있어 신경쓰였다. 이전 서평(2009/03/24 - 남순건, [스트링 코스모스])

신은 주사위놀이를 하지 않는다
신은 주사위 놀이를 하지 않는다
츠즈키 타쿠지 지음, 김하경 옮김/더블유출판사(에이치엔비,도서출판 홍)
오역만 기억나는 교양서. 소설의 형식을 차용해서 그런지 NNT의 블랙 스완이 연상되는 부분도 있다.[각주:3] 이전 서평(2009/04/14 - 츠즈키 타쿠지, [신은 주사위 놀이를 하지 않는다])

과학 철학
과학 철학
이상하 지음/철학과현실사
어렵기도 하고(후반부는 머리에 우겨넣는다는 생각으로 읽었다) 과학철학에 관심이 없는 사람이라면 전혀 상관없는 책이다. 과학철학이 쿤의 패러다임과 포퍼의 반증가능성이 전부라고 생각하는 사람한테는 다른 견해들을 접해볼 수 있는 기회가 될 듯. 에너지와 운동량에 대한 생각이 역사적으로 어떻게 변해 왔는지에 대해서도 다루고 있다. 서평이 아직도 쓰다 만 채 보관고에서 숙성되는 모양이다.

싸우는 물리학자
싸우는 물리학자
다케우치 가오루 지음, 박재현 옮김, 전영석 감수/시공사
연예인 x파일이라는 것이 한창 화제가 된 적이 있었다. 간단히 설명하자면 물리학자 x파일이다. 물리학 교재에서 간간히 보이는 이름들의 인간적인(?) 부분을 볼 수 있다. 이전 서평(2009/03/14 - 다케루치 가오루, [싸우는 물리학자])

밤의 물리학
밤의 물리학
다케우치 가오루 지음, 꿈꾸는과학 옮김/사이언스북스
"밤의"이라는 수식어는 무림식으로 쓴다면 사파(邪派), 역사식으로 쓴다면 야사(野史). 물리학 전체 커뮤니티에서 일반적으로 통용되지 않는 가설들과 이론들을 다루는 책인데 워낙 이쪽 구석구석을 다 쑤시고 다니는지라 새로운 것은 없었다. 이전 서평(2009/01/07 - 다케우치 가오루, [밤의 물리학])



  1. 재미없는 말장난이다. [본문으로]
  2. 만 품절로 Fail [본문으로]
  3. 논리보다는 이야기가 더욱 쉽게 받아들일 수 있어 그런 구성을 취한다고 했다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://blog.daum.net/kipid BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    잘 읽었습니다. 재밌는 교양 과학 서적?이 많았군요.
    원래는 이런책들에 별로 관심이 없었는데,
    서평 읽으니 시간 날 때 한번 읽어보고 싶어지네요 ^^.

    2012.05.16 22:40 신고
  2. Favicon of http://www.mbtwares.com/ BlogIcon MBTshoes  댓글주소  수정/삭제  댓글쓰기

    간 날 때 한번 읽어보고 싶어지네요 ^^.

    2012.05.28 12:58 신고

덧글에 찔려서 시작하는 백만년만의 물리 포스팅. 물리 포스팅은 수식 쓰는 시간이 길어서 조금 힘들다. 이번에는 Sakurai의 Modern Quantum Mechanics 140페이지에 등장하는 벡터 포텐셜을 구해보자.

\bold{A}=\frac{1-\cos\theta}{r\sin\theta}\hat\phi

시작은 curvilinear orthogonal coordinate system에서(특히 구면좌표계)의 curl에 대한 표현이다.

\nabla\times\bold{A}=\frac1{uvw}\begin{vmatrix} u\hat{x_1}&v\hat{x_2} &w\hat{x_3} \\ \partial_1&\partial_2 & \partial_3\\ uA_1&vA_2 &wA_3 \end{vmatrix}\\d\bold{s}=udx_1\hat{x_1}+vdx_2\hat{x_2}+wdx_3\hat{x_3}

구면좌표계에서는u=1, v=r, w=r\sin\theta인데, 우리가 원하는 curl의 형태는 \frac1{r^2}\hat{r}이기 때문에 해를 구하기 위해 다음과 같이 어느 정도 단순화된 해를 가정할 수 있다.[각주:1]

\bold{A}=A_\phi \hat\phi\\r\sin\theta{A_\phi}=f(\theta)\\\partial_\theta[{r\sin\theta{A_\phi}}]=\sin\theta

물론 이 방정식을 풀면(적분상수 C는 남겨둔다)

f(\theta)=C-\cos\theta\\\therefore{A_\phi}=\frac{C-\cos\theta}{r\sin\theta}


을 얻는다. C=1로 두면 위에서처럼 음의 z축에서만 폭발하는 vector potential을 만들 수 있고, 내가 구했던 경우는 C=0이었는데 이건 z축에서는 사용이 불가능했다.

\bold{A}=-\frac1{r}\cot\theta\hat\phi 

자기 단극자는 흥미로운 현상이다. 원래 없다는 공리에서 세워진 이론 체계에서 있다는 결론을 도출할 수 있다니 어찌 재미없다고 할 수 있겠는가. 요즘 부대에서 하는 물리 생각의 80% 이상은 이 녀석 생각이다. 잠정적인 결론은 "자기 단극자가 있다면 질량이 없을 것이다"이지만.(그래서 광속으로 이동하는 전하의 전기장에 대해 생각하고 있다.)
  1. 역으로 theta방향 성분만 있는 벡터 포텐셜을 생각할수도 있다. 하지만 이 경우 생기는 문제는 특이점의 집합이 평면이 되어버린다는 것이다. [본문으로]

댓글을 달아 주세요

2009/05/06 - Lagrangian formulation(1)

Electromagnetism in Schrodinger Eqn.이라는 글을 쓰다가 생각해보니 쓸데없는 식이 들어와 글을나누었다. 그러면 일단, 시작해보자.

Lagrangian을 사용하는 역학을 조금만 비틀어주면 Hamiltonian을 사용하는 정석적(?)인 Hamilton역학을 얻는다. 먼저 Lagrangian의 정의는 운동에너지와 위치에너지의 차이이다. 이 내용을 수식으로 쓴다면

L(q_i,\dot{q_i},t)=T-V=\frac12mv^2-V

이다. 그리고 Lagrangian을 이용한 운동방정식(Euler-Lagrange equation이라고 부른다)은 각 일반화된 좌표(generalized coordinates) q_i마다 다음과 같다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 일반화된 속도 벡터.(좌표의 시간변화율을 말한다.) 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {q_i}}

이 값을 conjugate momentum이라고 부른다. 이제 Legendre 변환을 취한다.

H(q_i,p_i,t)= \sum_i p_i\dot{q_i}-L(q_i,\dot{q_i},t)

독립변수가 변하는 것에 주목할 것.(일반적으로 우변의 항은 일반좌표의 시간변화율 d(q_i)/dt가 남아있기 때문에 Hamiltonian으로 쓰려면 모두 p_i로 바꾸어야 한다.) 좌표를 일반적인 직교좌표계로 두고 계산해보자.

p_i=\frac{\partial L}{\partial\dot{x_i}}=m\dot{x_i}\\H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+V\\H=\sum_i\frac{{p_i}^2}{2m}+V

얼레. 에너지다.(독립변수인 p_i로 쓴 점에 유의) 이래서 보통 Hamiltonian을 에너지라고 해석하기도 한다(양자역학을 배울 때 Hamiltonian을 에너지라고 가르치기도 하는데 그 이유가 여기있다). 그렇다면 운동방정식은 어떻게 될까? 우선 Lagrangian을 쓸 때 운동방정식은 이것이었다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

Hamiltonian은 일반좌표의 성분이 전부 Lagrangian에서 나오기 때문에(Hamiltonian은 Lagrangian의 일반좌표 q_i와 일반좌표의 시간변화율 d(q_i)/dt 두 독립변수 중 시간변화율을 conjugate momentum으로 바꾼 것이다. 따라서 앞쪽의 p_i는 일반좌표 q_i와 독립적인 변수가 되고, 따라서 편미분하면 0이 된다.)[각주:1] 위의 식을 이렇게 바꿀 수 있다.

\frac{\partial L}{\partial q_i}=-\frac{\partial H}{\partial q_i}=\frac d{dt}\frac{\partial L}{\partial \dot{q_i}}=\dot {p_i}\\\frac{\partial H}{\partial q_i}=-\dot{p_i}

하나의 운동방정식을 구했다. 이제 두 번째 운동방정식을 구할 차례다.(Lagrangian의 운동방정식이 N차원 변수 x의 값과 그 시간변화율에 대한 2계도함수라면 Hamiltonian의 운동방정식은 N차원 변수 x와 N차원 변수 p에 대한 1계도함수이다. 따라서 하나씩 더 필요.) 우선 Lagrangian과 Hamiltonian의 완전미분을 생각해보자.

dH= \sum_i (\dot{q_i}~dp_i + p_i~d\dot{q_i})-dL \\dL=\sum_i\left(\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}+\frac{\partial L}{\partial{q_i}}~dq_i\right)+\frac{\partial L}{\partial t}dt

식을 정리하면 다음처럼 된다.(p_i의 정의를 이용)

dH= \sum_i \left(\dot{q_i}~dp_i + p_i~d\dot{q_i}-\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}-\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt \\dH= \sum_i \left(\dot{q_i}~dp_i -\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt

그런데 Hamiltonian은 conjugate momentum과 일반화된 좌표, 시간에 대한 종속변수이므로

dH= \sum_i\left(\frac{\partial H}{\partial{p_i}}~dp_i+\frac{\partial H}{\partial{q_i}}~dq_i\right)+\frac{\partial H}{\partial t}dt

가 되어여만 한다.(완전미분의 정의를 생각해보자.) 언제 어디서나 어떤 경우에도 바로 위의 식과 그 위의 식이 일치해야 하므로, 우리가 내릴 수 있는 결론은

\frac{\partial H}{\partial{p_i}}=\dot{q_i}~,~\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}

이다. 그리고 Hamiltonian을 시간에 대해 완전 미분한 결과는

\frac{dH}{dt}=\sum_i\left(\frac{\partial H}{\partial{p_i}}~\dot{p_i}+\frac{\partial H}{\partial{q_i}}~\dot{q_i}\right)+\frac{\partial H}{\partial t} \\=\sum_i\left(-\frac{\partial H}{\partial{p_i}}\frac{\partial H}{\partial{q_i}}+\frac{\partial H}{\partial{q_i}}\frac{\partial H}{\partial{p_i}}\right)+\frac{\partial H}{\partial t} \\=\frac{\partial H}{\partial t}

이라 Hamiltonian이 시간에 대한 explicit dependence가 없을 경우 일정한 값을 갖는다.

Lagrangian을 쓸 때와 Hamiltonian을 쓸 때의 차이점은 Lagrangian이 N개의 차원을 갖는 일반화된 좌표공간에서의 움직임을 2계도함수로 풀 때(Euler-Lagrange 방정식이 2계도함수이다) Hamiltonian은 2N차원의 일반화된 좌표-운동량공간(위상공간-phase space-으로 부른다)에서의 움직임을 1계도함수로 푼다는 것이다. 작아 보이는 차이지만 좌표와 좌표의 시간변화율은 완전히 독립이 아니기 때문에 perturbation[각주:2] 다룰 경우 Hamiltonian이 유리하다고 한다.(좌표와 운동량은 독립된 변수로 취급한다.)

다음번에는 Classical Dynamics of Particles and Systems 5판 7.11에 Hamilton's principle을 꼬아서 운동방정식을 유도하는 특이한 방법이 있어서 그걸 다뤄볼 생각이다. 아직 Lagrangian formulation(2)도 쓰지 않은 판에 이걸 쓸 지는 의문이기는 하지만. 이 방법이 Feynman의 경로적분(path integral)과 밀접한 관련이 있어보이는데 그것까지 할 지는 모르겠다.


ps. 고전역학에서 양자역학으로 넘어가는 데에는 위에 나온 미분방정식들보다는 푸아송 괄호(Poisson bracket)가 더 큰 역할을 했다. Shankar책에서 고전적인 계가 어떻게 양자역학적으로 바뀌는지에 대한 부분이 나오는데(아마 quantization이라고 하면서 푸아송 괄호를 commutator로 바꾸고 값에 ih-bar를 붙였던 것 같다) 참조하면 좋을 것이다.
  1. 그런데 그냥 변수가 다르니 편미분하면 0이라고 생각하는게 쉬울지도... [본문으로]
  2. Perturbation theory란 정확한 값을 구할 수 없기 때문에 근사값을 점차 좁혀가는 방법을 말한다. 원주율을 유리수의 합으로 계산하는 것과 비슷하다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://cjackal.tistory.com BlogIcon jackal_anu  댓글주소  수정/삭제  댓글쓰기

    언제나 느끼는 거지만, 같은 수식인데도 수학의 수식과 물리의 수식은 느낌이 완전 다르네요 _-;;

    특히 양자역학은 _-;

    2010.07.14 20:42 신고
  2. lunefey  댓글주소  수정/삭제  댓글쓰기

    텐서에서 좌절 중 OTL

    2010.07.17 12:13 신고

양자역학에서 상태는 추상적인 켓(ket)벡터 \left|\psi\right\rangle로 나타난다. 이 벡터가 시간에 따라 진화하는 법칙이 슈뢰딩거(E. Schrödinger) 방정식으로, 1926년 처음으로 변위(x)에 대한 식을 유도해낸 이의 이름을 붙인 것이다. 당시 슈뢰딩거가 식을 유도해내었을 때에는 위 벡터를 변위공간에 투영한 것(\psi(x)\equiv\left\langle{x}\middle|\psi\right\rangle)의 시간에 따른 진화를 다루는 방정식이었고, 그 방정식의 생김새를 보고 파동함수라고 이름붙였다. 나중에 상태를 추상적인 벡터로 나타내기 시작한 것은 디랙(P.A.M. Dirac)의 업적이다.[각주:1]

이름에서 알 수 있듯이, 슈뢰딩거는 입자가 보이는 파동적 성질에 착안해서 방정식을 만들었다. 드브로이(L. de Broglie)가 빛의 양자성에서 영감을 얻어 제시한 물질파 가정은 물질에 파동적인 성질이 존재한다는 것을 암시한다. 물질의 파동적인 성질은 이후 전자를 이용한 회절실험과 간섭실험으로 증명되었고, 슈뢰딩거 방정식에 등장하는 2계미분의 근간이 되었다.[각주:2] 1차원 입자 하나에 대해 쓰는 슈뢰딩거 방정식이 다음과 같이 생기게 된 것은 그 때문이다.[각주:3]

i\hbar\frac\partial{\partial{t}}\Psi(x)=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x)+V(x)\Psi(x)
1차원, 입자 하나의 슈뢰딩거 방정식

이렇게 슈뢰딩거가 물질이 가지는 파동적인 특성에 집중하고 있던 사이, 하이젠베르크(W. Heisenberg) 등은 물질이 가지는 양자적인 특성(측정값이 불연속적으로 나타나는 특성)에서 영감을 얻어 행렬역학(Matrix mechanics)을 창시했다. 탄생 자체가 측정만 염두에 두고 만들어져서 그런지 양자역학에서 측정에 대한 모든 가정들은 행렬역학에서 유래하였다. 고전역학과 양자역학이 대비되는 대표적인 특징인 '측정의 결과는 고유값(eigenvalue) 중 하나이다'가 행렬역학의 핏줄을 이어받은 것이다.

두 접근법을 잘 드러낼 수 있는 고전역학적인 예는 1차원상에서 두 질점이 후크의 법칙(Hooke's law)에 따라 상호작용을 하는 경우다. 다음 그림을 보자.

x가 이상하게 쓰인건 무시하자

평형거리를 s라고 둔다면, 위 상황에서 운동방정식은 다음과 같다.

m_1\ddot{x_1}=k(x_2-x_1-s)\\m_2\ddot{x_2}=-k(x_2-x_1-s)

또는,

m_1\ddot{y_1}=k(y_2-y_1)\\m_2\ddot{y_2}=-k(y_2-y_1)\\y_1\equiv{x_1},~ y_2\equiv{x_2-s}

슈뢰딩거의 해법은 위 두 방정식을 더하고 빼서 각각 하나의 변수에만 의존하는 방정식으로 만드는 것이다. '직접적인 해법'이라고 할 수 있을 것이다.

\ddot{(m_1y_1+m_2y_2)}=0 \\\ddot{(y_1-y_2)}=-\frac{k(m_1+m_2)}{m_1m_2}(y_1-y_2)

윗식은 운동량 보존에 해당하고, 아랫식은 환산질량으로 쓴 운동방정식이다. 한편, 행렬을 이용한 해법도 존재한다. 이 방법이 하이젠베르크가 도입한 행렬역학의 아이디어이다. 첫 식을 이렇게 변형하면

\ddot{y_1}=\frac{k}{m_1}(y_2-y_1)\\\ddot{y_2}=-\frac{k}{m_2}(y_2-y_1)

행렬을 이렇게 쓸 수 있다.

\ddot{X}=AX \\X=\left( \begin{array}{c}y_1\\y_2\end{array} \right) \\A=\left( \begin{array}{cc} -\frac{k}{m_1} & \frac{k}{m_1} \\ \frac{k}{m_2} & -\frac{k}{m_2} \end{array} \right)

이 경우 해가되는 벡터 X는 A의 고유벡터(eigenvector)의 선형조합으로 쓸 수 있다. 기본적인 아이디어는 해를 정상상태를 나타내는 벡터들을 조합해 나타내자는 것이다. 우린 먼저 조화진동자의 (정상상태의) 해가 다음과 같은 꼴로 쓰일 수 있다는 것을 알고있다.[각주:4]

y=A\cos(\omega{t})+B\sin(\omega{t})

이 해를 추상화(?)하면 이렇게 쓸 수도 있다.

y=Re[Ae^{i\omega{t}}]

여기서 A는 복소수이다. 그리고 미분은 복소수를 켤레복소수로 만드는 과정과는 무관하므로(그러니까 어떤 복소함수를 미분한 다음 켤레복소수를 취하는 것이나 켤레복소수를 취한 복소함수를 미분하나 결과는 같으므로) 시간에 대한 2계미분은 다음과 같이 쓸 수 있다.

\ddot{y}=\frac{d^2}{dt^2}Re[Ae^{i\omega{t}}]=Re\left[\frac{d^2}{dt^2}\{Ae^{i\omega{t}}\}\right]=Re[-\omega^2Ae^{i\omega{t}}]

전기공학에서 쓰는 phasor 기법이라고 생각하면 된다. 어쨌든 이 과정에서 힌트를 얻자. 먼저 해 벡터 X를 시간과 관련된 부분만 따로 빼낼 수 있다고 생각하는 것이다.

X=\chi{e^{i\omega{t}}}~,\frac{d}{dt}\chi=0

여기서 \chi는 시간에 무관한 열벡터이다. 어찌되었든 이런 형태를 취하고 나면 위의 미분방정식은 고유값 문제(eigenvalue problem)가 된다.

\ddot{X}=-\omega^2X=AX\\(A+\omega^2I)X=0

그렇다면 고유값은? 고유값은 바로 각진동수의 제곱이다(부호는 반대). 고유값을 계산해보면 0과 \frac{k(m_1+m_2)}{m_1m_2}[각주:5] 얻고, 각자 평행이동과 서로에 대한 진동을 나타낸다는 것을 알 수 있다. 물론 해는 전의 방법과 전적으로 일치한다.

한가지 의문인 것은, 왜 측정하면 그 측정값의 고유벡터중 하나로 수렴할 확률이 그 고유벡터 계수의 절대제곱(absolute square)에 비례하냐는 것이다. 지금 당장은 신호를 퓨리에(Fourier)변환을 통해 주파수에 따라 분류하면 그 주파수대가 갖는 에너지가 절대제곱에 비례하기 때문에 거기에서 유래했으리라 추측하고 있지만 확실하지는 않다. 아무래도 조금 더 공부를 해야 할 것 같다.

첨언하자면 파동함수의 절대제곱이 확률밀도함수로 해석되게 된 이유 또한 행렬역학의 핏줄을 따라 내려온 것이라는 점이다. 왜 그런지는 독자의 몫으로 남겨 둔다.[각주:6] 쓰기 귀찮아서...



2012.11.08
추가할 내용은 새 글로 올리기로 했다. 다음 글도 읽어보시길.
2012/11/08 - 양자역학의 유래(2)


  1. 이 표기법을 이용하게 되면서 상태를 더욱 다양한 방식으로 나타낼 수 있게 되었고, 상태를 더욱 직관적으로 인식할 수 있게 되었다. [본문으로]
  2. 파동을 e와 허수 i를 이용한 지수함수로 나타낼 경우 진동수(파수)는 미분으로 얻어진다. 슈뢰딩거 방정식을 쓸 경우 허수의 도입이 절대적인 이유이기도 하다. [본문으로]
  3. 원래 슈뢰딩거는 이 방정식이 시간에 대해서는 1계미분방정식이라는 것을 못마땅해했다고 한다. 그것도 그럴 것이, 위 형태의 방정식은 로렌츠 변환에 일정하지 않기 때문이다.(더불어 고전적인 파동을 나타내는 방정식은 시간에 대해 2계미분항을 가지고 있다.) 상대론적 양자역학으로 넘어가면 클라인-고든 방정식(Klein–Gordon equation)이 이 대칭을 갖기는 하지만, 이 경우는 2계미분방정식이라는 것이 문제이다. 자세한 내용은 다른 곳을 참조하시길. [본문으로]
  4. 잠깐 이 문제를 벗어나고 있다. 일반적인 하나의 물체가 용수철로 벽에 연결된 상태를 생각하시길. [본문으로]
  5. 부호는 반전시켰다. [본문으로]
  6. 힌트: 함수는 무한한 행을 가진 열벡터로 쓸 수 있다. 아마 교재를 가지고 공부한다면 거기에 잘 나와있을 것이다. 그런데 실수라는 연속체를 그렇게 쓰기는 힘들텐데 -_-;; [본문으로]

댓글을 달아 주세요

  1. hmmm  댓글주소  수정/삭제  댓글쓰기

    weistern's하고 실타래를 통해 오게 되었군요...
    웬만한 블로그는 다 서로서로 연결된다는 게 신기합니다.
    현실과는 또다른 세계이지만, 역시나 좁은 세상!

    2010.01.21 19:22 신고
  2. Favicon of http://hbar.tistory.com BlogIcon h-bar  댓글주소  수정/삭제  댓글쓰기

    hmmm님도weistern's에서 봤는데,,, 세상 참 좁네요..

    2010.02.11 04:07 신고

Principles of Quantum Mechanics (2 SUB, Hardcover)
Shankar, Ramamurti/Kluwer Academic Pub

별건 아니고, 양자물리를 공부하면서 볼만할 것 같은 책을 한권 샀습니다. 살짝 고전역학이나 전자기학을 더 공부해야 될 것 같기는 하지만 뭐 그런거 무시하고 내맘대로 독학하는게 특징이라 그냥 질렀습니다. 양자책은 혼자 공부하려고 Griffith 책을 사 놓고 수업을 들으면서 교재로 쓰니까 다른 책이 필요해지더군요. 이 글은 기념 포스팅(...)
윗 책은 대충 읽어봤는데 괜찮아 보여서 바로 샀습니다. 가격이 여태 산 교재중에서 제일 비싸긴 하지만(...) 설명은 잘 되어 있는 것 같더군요. 사실 읽기가 버릇 수준으로 중독되면 논리가 있는 거의 모든 글은 이해하게 되긴 하지만 말이죠.

Introduction to Quantum Mechanics (2/e, Paperback)
David J. Griffiths 지음/Addison Wesley

Griffith 책은 순수히 비상대론적인 영역에서만 쓰여서(물론 상대론적인 보정을 하는 법-perturbation-은 나와 있지만)살짝 아쉽던 차에 잘 되었네요. 물론 나오는 상대론적 양자역학은 Marion의 고전역학책에서 특수상대론을 다루는 정도만큼만 나오는 수준이지만, 그게 어디입니까(...)

Classical Dynamics of Particles and Systems (5th, Hardcover)
Thornton, Stephen T./Cengage Learning

생각해보니 고등학교때 역학공부하려고 산 책이군요(흠...). 그때는 조금 헤매였던 것 같은데, 지금은 그냥 무난하게 읽히네요. 역시 수학이 받침이 되어야...(수학적인 내용이 아니면 쉽거든요. 물론 그거야 모든 책이 그렇지만...)

해석역학
G. R. Fowles & Cassiday 지음, 강주상 옮김/홍릉과학출판사

가진 책중에 드문 번역본이네요. 사실 이 책은 거의 안봤습니다. 이 책이 더 쉽다는 분들도 있는데, 전 오히려 Marion 책이 더 쉽더군요. 고등학교때 사 놓고 Lagrangian 부분 조금이랑 중심력 볼 때 빼고는 한번도 본 적이 없는 것 같네요.


7판으로 공부했습니다. 사실 내용은 하나도 기억이 안 나지만(...)
그것보다 공부하려고 무식하게 첫장부터 그냥 읽었던 책인데, 나중에 돌아보면 그게 오히려 도움이 된 것 같기도 하네요. 열역학 중간부분정도까지는 무턱대고 읽었던 기억이 납니다. 계속 고등학교때 사 놓았던 책이 흘러나오네요.

새대학물리 2
서울대학교물리교재편찬위원회/교문사

현재 구할 수는 없고, 헌책방에나 가야 구할 수 있는 책입니다. 상하 두권으로 나뉘어 있고요.
할리데이와 2학년 책의 중간단계정도 되는 난이도를 가졌습니다. 원서가 한글이라는 것이 가장 큰 특징이고, 조금 불친절합니다. 그런데 있을 내용은 초보적이더라도 웬만해서는 다 있으니 그정도로 만족... 통계역학은 이 책으로 배웠습니다(물론 사실상 독학).

물리학
물리학교재편찬위원회 엮음/북스힐

산 것은 아니지만 그냥 가지고 있는 책입니다. Halliday 책으로 어느 정도 공부한 뒤에 그냥 받은 책이라(AP-Advanced Placement-를 받을 때 교수님이 던져주신 책) 사실상 장식용(..)으로 쓰고 있습니다. 산 것은 아니지만, 이 책도 고등학교때부터 버려둔 책이군요.
동생이 공부하는 것을 살짝 엿보니 예제 위주로 설명하는 책인 것 같습니다.

알기 쉬운 물리학 강의
Paul G. Hewitt 지음, 공창식 외 옮김/청범출판사

사실 교재라고 하기는 조금 애매하지만, 참 좋았던 책입니다. 고등학교 들어가기 전 물리에 대한 개념을 잡으려고 읽었던 책이구요. 한 12장까지는 무턱대고 읽었던 것 같습니다. 이후에는 전혀 손대지 않았지만(-_-;;)
꾸준히 읽으면 처음 물리를 시작할 때 개념잡기 참 좋은 책입니다. 그것보다 다시 교재로...

Introduction to Electrodynamics (3 SUB, Hardcover)
Griffiths, David J./Addison-Wesley

역시 고등학교때 산 책입니다. 현재 '전기와 자기' 교재(...)로 쓰고 있고요.
이 책으로 배우기 시작할 때부터 물리를 하기위해 수학을 야매로 배우는 버릇이 생겼습니다. 벡터미분(Vector calculus)은 사실상 이 책으로 처음 배웠네요. 이렇게 하다 보니 요즘에는 오히려 더욱 엄격하게 수학적으로 증명하려는 버릇이 생긴 것 같기도 합니다.

The Feynman Lectures on Physics (Definitive and Extended Edition, Hardcover)
Feynman, Richard P./ Leighton, Robert B./ Sands, M/Addison Wesley

고등학교때 산 책은 아니고, 대학에 입학한 직후 혼자 공부해보겠다고 샀던 책입니다. 당시엔 10만원 초반이었는데 그 사이에 두배 가까이 가격이 오른 것 같네요.(망할 만수...) 총 네권이 들어 있습니다.
그런데 정말 더럽게 어렵습니다. 수식은 없는데 논리가 지독해요. 덕분에 재미있게 배우는 것도 많지만... 1학년 2학기에는 전자기학을 이 책으로 배웠습니다. 더러운 벡터포텐셜(...). 양자 공부하면서 3권을 조금씩 보고 있습니다.


1학년 1학기 물리학 종반부에서 느닷없이 튀어나온 통계물리학을 공부하려고 멋모르고 산 책입니다. 사실 자세히 보지는 않아서 내용이 어떤지는 모르겠지만, 그냥 무난해 보입니다. 물론 전 혜택을 하나도 받지 못하고 시험문제에 그대로 발려버렸지만...

기타로 현재 Tai L. Chow의 Mathematical methods for Physicists라는 책을 '기본물리수학' 교재로 이용하고 있습니다. 물론 제본으로... 책 자체는 그리 나빠 보이지는 않는데, 오타가 많이 거슬리네요(...)



공학책은 4대역학(열역학, 고체역학, 동역학, 유체역학) 교재 말고는 없네요. 사실 공학이라고 해도 물리학이나 마찬가지라서.... 기저에 깔린 사고체계가 다르긴 하지만 그런거 언제 따졌나요 -_-;;

최신 공업열역학 (노승탁)
노승탁 지음/문운당

'열역학' 교재로 이용한 책입니다. 위에서 Reif 책이 순수하게 미시적인 관점에서 접근했다면, 이 책에서는 순수하게 거시적인 관점에서 접근합니다. 물론 후반부에 가면 둘이 서로 합쳐지기는 하지만... 고전역학에서 열역학이 어떻게 발달했나를 얕게나마 알게 된 책이지요. 현대의 대세는 양자와 미시라지만, 고전과 거시도 나름대로의 사연이 있고 그 사연을 찬찬이 들여다보면 정말 재밌더군요.

'고체역학' 교재는 Crandall의 Introduction to Mechanics of Solids를 사용했습니다. 친구들은 책 안 좋다고 하는데, 전 왜 괜찮다고 느끼는 걸까요(-_-;;). 논리를 중요시하는 면이 있습니다.(원통형 물체에 모멘트가 걸렸을 때 변형이 왜 반지름에 따라 선형적인가에 대한 부분에서 폭발...) 저야 날림으로 배워서 안 배운 부분이 넘쳐나는데, 안 배운 부분들의 난이도는 별로 생각하고 싶지 않네요. '역학과 설계'과목에서도 주교재로 이용한다고 하더군요.


'동역학' 교재로 사용하고 있는 책입니다. 사실 단위가 더러운 것 빼면(SI Unit으로 나온 동일한 책도 있는데 마찬가지로 inch, feet 등등을 사용합니다) 별 특징이 없는 책이더군요. Marion 책으로 공부를 했던 이상 쉽게 느껴지기는 하지만...
계산기를 직접 써야 하는 문제가 많은 것을 제외하면 그냥 그럭저럭 봐줄만 한 책입니다. 뭐 언제까지나 공학도를 위한 책이니 위의 역학책과는 다를 수 밖에 없겠지만요.

Fluid Mechanics (6 HAR/CDR, Hardcover)
White, Frank M./McGraw-Hill

'유체역학' 교재로 이용하는 책입니다. 사실 유체에 대한 책은 이게 처음이라 무어라 평가내리기는 애매하네요. 정식으로 배운 것도 아니고...(현재 수강중)
다만 한가지, Navier-Stokes 방정식은 공포의 벡터포텐셜보다 더 무섭게 생겼다는 걸 확실히 깨닫게 되었습니다. 아마도 공부하면서 간혹 Reif 책을 뒤적거리게 될지도 모르겠는게, 증명을 조금 날림으로 해치우는 것 같아서 말이지요...

Electronics Fundamentals (8 LAB, Paperback)
Buchla, David M./Prentice Hall

가진건 7판으로 '전기공학개론' 교재로 사용한 책입니다. 공대의 경우 공대소양과목으로 타과의 개론과목을 들어야 합니다. 버티고 안 사려다 결국 숙제 때문에 산 책인데 그다지 인상적이지는 않네요. 초중반부를 전부 알아서 그런가(...)

그런데 이상하게 공학책에 대한 평가는 박하네요. 그럴 수 밖에 없는 건가...-.-;;



그냥 눈독들이는 교재들입니다. 실제로 살 생각은 아직까지는 없구요.

Classical Mechanics (3rd, Hardcover)
Goldstein, Herbert/Addison-Wesley

Modern Quantum Mechanics (Revised Edition, Hardcover)
J.J.J. Sakurai, San F. Taun 지음/Addison-Wesley

Introductory Quantum Mechanics (4th, Hardcover)
Liboff, Richard L./Addison-Wesley

Spacetime and Geometry (Hardcover)
Carroll, Sean M./Addison-Wesley

Gravity (Hardcover)
Hartle, J. B./Addison-Wesley

전부 물리학 교재네요 -_-;;; 얇은 책도 있고 두꺼운 놈도 있고...



IE-International Edition-가 확실히 싸네요.

'경제학개론'에서 배운 가격차별이란게 이런 것인가... 거의 두배 세배 정도는 차이나는 것 같습니다. 그나저나 환율이 안정되어가서 그런지 확실히 교재 가격이 내린 느낌이 납니다. 아니면 물가가 막장으로 오른 거거나.

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Dirac Delta orthonormality  (2) 2009.04.18

댓글을 달아 주세요

  1.  댓글주소  수정/삭제  댓글쓰기

    반가운 책들이네요. 학부 2학년이나 3학년 정도??

    아 그리고 고등학교때 Griffiths 전자기학 책을 보셨다니

    과학고 학생이거나 경시대회 준비하셨나보네요.

    포스팅 된 글 잘보고 갑니다.

    2009.10.15 23:21 신고
  2. laceh  댓글주소  수정/삭제  댓글쓰기

    제가 학부때 많은 도움을 받은 책입니다.

    역학 : landau mechanics(일반역학 한권 정도 보고 봐야함)
    전자기학 : griffith,
    양자 : sakurai quantum mechanics
    (modern quantum은 graduate 레벨입니다.)
    사쿠라의 양자역학은 명저로 꼽힙니다.

    2010.02.18 21:40 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2010.02.18 21:57 신고  댓글주소  수정/삭제

      Landau 책은 고전장론 책을 한번 구해볼까 생각중입니다. 대학원용의 느낌이 나기는 하지만... 역학책은 한번 도서관에 가봐야겠네요.
      Griffiths 전자기학은 명저이지요. Sakurai 책은 학부용도 있다니 놀랍네요. 확실히 대학원용을 조금 살펴보는데 대칭성에 관한 부분은 엄청 잘 썼더군요. 좋은 책 소개해주셔서 감사합니다. 좋은 하루 되세요 ^^

  3. 파인만  댓글주소  수정/삭제  댓글쓰기

    파인만물리강의를 교재로 쓰다니 개념있는 교수군요 ;;
    저도 고등학교때 파인만물리학강의를 무척 재미있게 읽었던... 아
    학부2 학년정도라면
    feynman의 path integral : path integral을 정말 쉽게 설명했습니다.
    modern quantum mechanics (sakurai) : 기본적인 대칭성 개념을 정말 쉽게 설명했습니다.
    jackson 전자기학 : 전자기학의 완전체;;
    susskind 강의: 개인적으로 모든강의가 주옥같으며 학부 2학년정도면 충분히 가능.. 이미 들으셨을수도.

    2010.08.25 21:26 신고
  4.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2015.10.09 08:37
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2015.10.11 00:27 신고  댓글주소  수정/삭제

      무슨 공학을 하고 싶으시냐에 따라 다르겠죠? 전자공학에서 유체역학을 쓸 일은 없다고 해도 상관없을거고 반대로 기계공학에서 전기역학을 쓸 일이 거의 없는 것처럼 무슨 공학을 하고 싶은가에 따라 공부해야 할 교재가 다릅니다. 공학 자체가 엄청나게 넓은 범주예요.

      다만 공통적으로 쓰는 물건들은 골라드릴 수 있는데, 대학수학 및 대학물리학 정도는 필수일거예요(생명공학 쪽은 확신이 서질 않는군요). 대학수학은 미적분학이라고 생각하면 얼추 맞고, 전 조금 다른 책을 썼지만 대체로는 Stewart의 책을 쓰는 듯 합니다. 대학물리학은 보통 Halliday를 쓰는 것으로 기억하고요.

고전역학은 크게 두 흐름으로 나누어 볼 수 있습니다. 첫째는 가장 잘 알려진 힘을 이용한 뉴턴역학이고 나머지 하나는 에너지를 주로 이용하는 해밀토니안 역학입니다. 양자역학에서는 힘이란 개념을 쓰기 어렵기 때문에 해밀토니안 역학이 특별하게 발달한 것을 양자역학으로 보아도 좋겠지요.(물론 기본이 되는 가정은 하늘땅 차이입니다만...)

보통 라그랑지안 역학을 얻는 방법은 두가지가 있습니다. 하나는 변분법이라고 해서 어느 값의 적분이 최소가 되도록 하는 방법이고, 나머지 하나는 가상일(virtual work)을 이용하는 것입니다. 가상일은 어떤 계가 평형상태에 있을 때, 각 위치좌표가 조금씩 변하더라도 힘의 합력은 0이므로 에너지가 변하지 않는다는 것을 이용하는 것이지요.

해밀토니안 역학은 라그랑지안 역학에서 얻어집니다. 보통의 경우 해밀토니안은 총에너지에 해당하기 때문에 해밀토니안을 에너지와 동등하게 취급하기도 합니다. 양자역학의 경우도 해밀토니안을 에너지와 등가로 취급하고 있지요.

이번 글에서는 간단하게 라그랑지안 식을 유도해 보려고 합니다. 첫 방법은 변분법을 이용하는 방법입니다. 먼저 해밀톤의 원리를 보아야겠네요.

Hamilton's Principle

물체는 시간 t_1와 t_2 사이를 운동할 때 운동에너지와 위치에너지의 차이가 최대 혹은 최소가 되도록 운동한다.[각주:1]

식으로 쓰면

\LARGE\!\delta\int_{t_1}^{t_2}(T-U)dt=0

가 됩니다. 여기서 저 차이를 라그랑지안 L로 정의합니다. 따라서 식은 다음처럼 변하지요.

\LARGE\!\delta\int_{t_1}^{t_2}L(q_i,\dot{q_i},t)dt=0

여기서 q_i는 일반화된 좌표들을 말합니다(i로 좌표를 구분합니다). 꼭 위치좌표일 필요는 없습니다. 부피여도 되고, 각도여도 되며, 넓이여도 상관이 없습니다. 점을 위에 붙여준 것은 그 일반화된 좌표의 시간에 대한 미분량이지요. 자, 그러면 변분법이 어떻게 이루어지는건지 먼저 알아야 하지 않을까요?

운동이 실제 경로 \normalsize\!q_i(t)를 따라 일어나고 있을 때, 위의 적분은 최소가 됩니다. 먼저 임의의 경로 \normalsize\!\bar{q_i(t)}=q_i(t)+\alpha\xi_i(t)를 생각해보도록 하겠습니다. 여기서 \normalsize\!\xi_i(t)는 실제 경로에서 벗어나는 정도를 나타내어주는 함수입니다. 하지만 t_1에서 t_2까지 이동할 때 운동을 시작하는 지점과 운동이 끝나는 지점은 같기 때문에 \normalsize\!\xi_i(t_1)=\xi_i(t_2)=0라고 놓아야겠지요. 그리고 실제 경로가 되는 \normalsize\!\alpha=0인 경우에 위의 적분은 극값을 가져야 합니다. 이를 식으로 나타내어보면 다음과 같습니다.

\LARGE\!\frac\partial{\partial\alpha}\left[\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt\right]_{\alpha=0}=0

이제 알파를 적분 안에 넣어 보겠습니다.

\LARGE\!\frac\partial{\partial\alpha}\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt=\int_{t_1}^{t_2}\frac\partial{\partial\alpha}L(\bar{q_i},\dot{\bar{q_i}},t)dt\\=\int_{t_1}^{t_2}\sum_i\left(\frac{\partial{\bar{q_i}}}{\partial\alpha}\frac{\partial{L}}{\partial{\bar{q_i}}}+\frac{\partial{\dot{\bar{q_i}}}}{\partial\alpha}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt\\=\sum_i\int_{t_1}^{t_2}\left(\xi_i(t)\frac{\partial{L}}{\partial{\bar{q_i}}}+\dot\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt

두 번째 항에서는 \normalsize\!\xi_i(t)가 시간에 대해 미분이 되어 있습니다. 보기 거슬리니까 이를 다른 놈한테 넘겨줘 봅시다. 이때는 부분적분을 이용하면 됩니다.

/\LARGE\!\int_{t_1}^{t_2}\frac{d}{dt}\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt=\left[\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right]_{t_1}^{t_2}-\int_{t_1}^{t_2}\xi_i(t)\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt\\=-\int_{t_1}^{t_2}\xi_i(t)\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt

이건 아까 구한 \normalsize\!\xi_i(t_1)=\xi_i(t_2)=0라는 조건에서 알 수 있지요. 그러면 식은 한결 간단해집니다.

\LARGE\!\frac\partial{\partial\alpha}\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt=\sum_i\int_{t_1}^{t_2}\xi_i(t)\left(\frac{\partial{L}}{\partial{\bar{q_i}}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt

알파가 0이면 \normalsize\!\bar{q_i(t)}=q_i(t)+\alpha\xi_i(t)에서 \normalsize\!\bar{q_i(t)}=q_i(t)임을 알 수 있습니다. 그리고 이 때 위의 적분은 항등적으로 0이 되어야 하구요.

\LARGE\!\frac\partial{\partial\alpha}\left[\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt\right]_{\alpha=0}\\=\sum_i\int_{t_1}^{t_2}\xi_i(t)\left(\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}\right)dt=0

그런데 \normalsize\!\xi_i(t)는 말 그대로 임의의 함수이기 때문에 항등적으로 영이 되기 위해서는 괄호 안의 값들이 무조건 영이 되어야 합니다. 따라서

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

를 얻습니다. 이는 모든 i에 대해 성립합니다.

나머지 방법인 가상일을 이용하는 방법(D'Alembert의 원리)은 다음 글에서...(다음 글을 언제 쓸지는 저도 장담을 못하겠네요...)



델랑베르 원리에서 출발하는 라그랑주는 다음 글에서 확인하세요
라그랑지 운동방정식( Lagrange Equations of motion ) (Weistern님)

델랑베르 원리를 직접 언급하지는 않았지만 유도하는 방법(사실상 썼다고 봐야하지만)
Lagrangian and Hamiltonian Mechanics

  1. Marion, Classical Dynamics of Particles and Systems, 4th Ed.에 나오는 내용을 기준으로 작성했습니다. 사실은 최대나 최소가 될 필요는 없다고 하더군요. 참고 : <a href="http://en.wikipedia.org/wiki/Lagrangian_mechanics#Hamilton.27s_principle">http://en.wikipedia.org/wiki/Lagrangian_mechanics#Hamilton.27s_principle</a> [본문으로]

댓글을 달아 주세요

  1. Favicon of http://hbar.tistory.com BlogIcon h-bar  댓글주소  수정/삭제  댓글쓰기

    모든 수식이 깨져 있는 것은 제 컴터의 잘못인가요??

    2010.04.03 22:43 신고

모멘텀 변환 파동함수는 다음과 같이 나타난다(hbar 표현식을 못 찾아서 저렇게 썼음 -_-;;).



이 식은 k에 대해서도 쓸 수 있다. 이때 khbar는 p가 된다.



적분구간을 무한대로 해 놓고 두 모멘텀 파동함수(변수는 k)를 적분하면 Dirac Delta fuction이 얻어진다.



여기서 2pi는 다음과 같은 이유에서 얻어진다. 먼저 적분구간을 [0, 2pi]로 해 보자. 그러면 다음과 같은 관계식이 얻어진다.



여기서의 델타는 Kronecker Delta이다. 이제 이 구분된 적분구간을 무한히 확장한다. 그러면 처음에 얻은 식이 얻어진다.(Dirac Delta가 Kronecker Delta의 무한합으로 보는 관점) 이런 연유에서 규격화된 k에 대한 파동함수는 다음과 같이 쓴다.



보통의 경우, 일반적인 식은 다음과 같이 쓸 수 있다.





여기서



로 정의한다.

덧. 궁금해하던 건데 마침 친구가 알려주더군요. 책 없이 휘갈기는거라 몇몇 상수는 빠졌을 수도 있습니다.(예를 들어 부호가 바뀌었다던지...)

그나저나 그녀석은 요즘 군론 공부한다던데 -_-;;;; (돌은 학부생이죠 예...-_-;;;;)


덧2. 알고보니 변수가 바뀌었군요 OTL 전부 수정했습니다. 마지막 부분은 외우기 쉽게 하려고 도입한 꼼수입니다 ^^ 책에는 없을거예요(Griffith에 없으니 다른 책에도 아마 없으리라 생각)

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Dirac Delta orthonormality  (2) 2009.04.18

댓글을 달아 주세요

  1. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    잘 보고 갑니다.
    행복한 한주 되세요^^

    2009.04.20 09:59 신고

1 2 

글 보관함

카운터

Total : 594,905 / Today : 69 / Yesterday : 137
get rsstistory!

티스토리 툴바