2015. 1. 9. 19:20 Physics/Speculations
일반상대론에서의 쌍둥이 역설
페이스북 타임라인에 쌍둥이 역설과 관련이 깊은 질문들이 올라와서 이런저런 생각을 해봤다. 이 글은 대충대충 쓸거라 일반상대론에 대한 지식이 어느 정도 있어야 읽을 수 있다는 것을 미리 알려드리며.
쌍둥이 역설이야 다들 아실테니 설명을 제끼기로 하자. 그렇다면 쌍둥이 역설의 기하적인 의미는 무엇일까? (약간의 비약을 넣어) 기하적으로 접근하면 '평면에서는 두 직선을 두 번 교차시킬 수 없다'는 것을 의미한다. 1
두 직선을 두번 교차하게 만드는 방법은 공간을 휘는 것이다. 예컨데 구에서 서로 다른 직선 둘을 그리면 두 점에서 교차하게 된다. 일반상대론에서는 중력이 공간을 휘어주는 역할을 하고, 직선은 중력을 따라 자유낙하하는 물체의 궤적이다. 일반상대론에서 직선의 길이는 자유낙하하는 물체의 고유시간이다.
이제 휘어진 공간에서 두 직선의 길이를 비교해 보자. 가장 간단하게 생각해볼 수 있는 방법은 지구를 이용해 공간을 휜 뒤 A는 지구의 원궤도에, B는 머리 위로 똑바로 던져서 다시 받는 궤도에 놓되 조건을 잘 맞추어서 같은 시간 같은 점에서 출발한 A와 B가 조금 뒤 같은 점에서 다시 만나도록 하는 것이다. 같은 시공간상의 점에서 출발한 두 직선-A와 B가 만드는 시공간상의 궤적-이 다시 한 점에서 만났을 때, 두 직선의 길이는 과연 같을 것인가? (계산을 해보지는 않았지만) 일반적으로 다르리라고 예상할 수 있다. 쌍둥이 역설일까? 물론 아니다. A가 그린 직선과 B가 그린 직선은 분명히 다르기 때문에 2 A가 그린 직선의 길이와 B가 그린 직선의 길이가 다른 것이 문제가 될 이유는 없다. 3
문제를 더 꼬아보자. A가 그린 직선과 B가 그린 직선을 구분할 수 없다면? 그런 종류의 공간으로 더 시터르 공간(de Sitter space: dS)와 반-더 시터르 공간(anti-de Sitter space: AdS)이 있다. 이 공간들 위에서 두 물체 A와 B가 4직선을 그리며 운동할 때 A가 그리는 직선과 B가 그리는 직선은 근본적으로 구분이 불가능하다. 따라서 쌍둥이 역설이 생기지 않으려면 (1) A가 그리는 직선과 B가 그리는 직선은 절대로 만나지 않던가(dS공간이 여기에 해당한다) (2) A가 그리는 직선과 B가 그리는 직선이 만났을 때 두 직선의 거리는 똑같아야 한다(AdS공간이 여기에 해당한다).
재미있는 점은 (2)의 경우 A와 B의 상대속도에 무관하게 같은 고유시간 뒤에 다시 만나게 된다는 부분. 이건 다음과 같이 증명할 수 있다. 우리는 A 위에 앉아있다고 하고, B와 C를 준비한다. 이제 B와 C를 (A에 대해) 같은 속력으로 날리되 방향은 다르게 한다. 그리고 공간은 대칭적이므로 B와 C는 동시에 A에 도착하게 된다. 그런데 B와 C 모두 관성운동을 했으므로, 우리는 B나 C 위에 앉아서 이 과정을 구경해도 된다. C에서 이 과정을 볼 경우 A와 B는 일반적으로 다른 속력을 가지고 관성운동을 하므로, 임의의 상대속력을 갖고 출발한 두 관성운동은 항상 같은 고유시간 뒤에 다시 만나게 된다. 5
결론: 일반상대론에서의 쌍둥이 역설으로부터 'AdS 공간에서의 한 점에서 출발하는 모든 timelike geodesic은 다른 한 점으로 수렴하며, 그 고유길이(고유시간)은 모두 같다'는 결론을 내릴 수 있다.
P.S. 고전역학에서는 harmonic oscillator가 정확히 똑같은 현상을 보인다. 우주상수를 넣고 아인슈타인 방정식의 구면대칭적인 해를 찾을 때 나오는 답의 $g_{00}$항이 1(또는 convention에 따라 -1)에서 벗어나는 정도를 Newtonian potential로 해석할 수 있는데, 이 potential 항이 harmonic oscillator의 potential을 갖는다는 것과 연결지어 생각할 수 있다.
- 상대론에서 '중력(0일 수도 있다)만을 받으며 운동'하는 점입자의 궤적은 직선(geodesic - 정확히는 time-like geodesic)이다. 단지 3차원에서 사는 사람의 눈에는 직선으로 보이지 않는 것일 뿐. [본문으로]
- purely radial motion이라고 생각하면 된다 [본문으로]
- 예를 들어 A와 B는 각각 자유낙하를 하면서 공간의 리만 곡률텐서의 값을 읽어볼 수 있다. A가 읽는 곡률은 일정하겠지만 B가 읽는 곡률은 위치에 따라 달라진다. [본문으로]
- 관성운동(본문의 직선을 그리는 운동)을 하는 모든 입자가 자신이 정지한 좌표계에서 똑같은 공간을 보려면 시공간의 곡률을 만들어주는 stress-energy tensor가 metric tensor의 상수배여야 한다. maximal symmetry를 가정하면 Lorentz boost에 해당하는 임의의 좌표변환을 하더라도 모양이 변하지 않는게 metric밖에 없기 때문. [본문으로]
- 정확한 증명(a.k.a. 수학적 증명)을 하려면 (v의 속력에서 시작했을 때/c=1) 상대속도 0에서 상대속도 2v/(1+v)까지의 모든 운동이 같은 고유시간에 도착한다는 것을 보인 뒤(각도 문제다), 이걸 반복하면 임의의 u<1도 포함된다는 것을 보이면 된다. [본문으로]
'Physics > Speculations' 카테고리의 다른 글
Understanding de Sitter and Anti-de Sitter space (0) | 2015.08.25 |
---|---|
Constraints on Commutators (5) | 2014.05.22 |
슈퍼맨은 팬티 위에 쫄쫄이를 입지 않아 (0) | 2014.01.15 |
광양자 가설 없이 어디까지 갈 수 있을까? (0) | 2013.12.04 |
레이저로 가열할 수 있는 최대 온도에 대하여 (1) | 2013.10.18 |