'Physics'에 해당되는 글 80건

  1. 2018.03.26 Long distance propagation in open string disk amplitudes (3)
  2. 2018.03.19 비전공자를 위한 끈이론 개론 (1) - 산란실험의 도입 (1)
  3. 2018.03.03 Angular momentum in charge-monopole configuration
  4. 2017.07.07 On-shell recursion relations of scattering amplitudes
  5. 2016.10.23 2016 노벨 물리학상을 이해하기 위해 필요한 것들(2) - 위상수학의 이해
  6. 2016.10.08 2016 노벨 물리학상을 이해하기 위해 필요한 것들(1) - 상전이의 이해
  7. 2016.09.29 Frobenius Theorem in General Relativity
  8. 2016.08.08 Particles in Curved Space (1)
  9. 2015.12.20 간단한 어록 정리
  10. 2015.08.25 Understanding de Sitter and Anti-de Sitter space
  11. 2015.03.04 Measurements and Projection Operators
  12. 2015.02.21 회전과 우주의 구조
  13. 2015.01.09 일반상대론에서의 쌍둥이 역설
  14. 2014.12.24 Fermi-Walker transport (2)
  15. 2014.12.22 불확정성 원리와 상대성이론 (2)
  16. 2014.09.18 Independent Susceptibilities (1)
  17. 2014.08.08 듣는 사람 - P. A. M. Dirac
  18. 2014.06.23 Computation and Heat (2)
  19. 2014.05.22 Constraints on Commutators (5)
  20. 2014.02.23 네 귀중한 교훈들 - 스티븐 와인버그 (6)

얼마 전에 했던 삽질 관련 내용 정리.



이 잘 알려진(하지만 나는 몰랐던) 상식을 증명하는 방법은 Schwarz-Christoffel transform을 이용하는 것. 이 변환은 복소평면의 윗 반평면(upper half plane)을 다각형의 내부로 보내는 등각변환이다. 완전한 등각변환이라고 하기에는 꼭지점에서의 등각성이 깨지긴 하지만 그 정도는 무시하기로 하고(...). 2차원 이상유체 문제나 도파관 문제를 풀 때 이 변환을 이용하는 경우가 있는데, 요즘 물리과에서는 보통 풀 일이 없는 문제들이라 생소한 사람들도 많을듯. 구체적인 설명은 위키백과의 해당 항목으로 넘기기로 하자.


Schwarz-Christoffel map이 하는 일. 변수 z에서의 upper half plane을 등각성을 유지한 상태로 변수 w에서의 다각형 내부로 보낸다.


이 변환을 통해 증명하고 싶은 것은 'open string disk amplitude에서 vertex operator를 집어넣는 점들 중 일부가 한 점으로 수렴하고 이 점들을 a1, a2, ...으로 쓰기로 하자. 한 점으로 수렴하는 극한의 산란진폭은 a1, a2, ...에 해당하는 입자들이 산란하는 산란진폭과 나머지 입자들이 산란하는 산란진폭에 해당한다'는 주장인데, 다르게 이야기하면 'a1, a2, ... , c가 산란하는 진폭과 c, b1, b2, ...(b1, b2, ...는 vertex operator들 중 a1, a2, ...에 해당하지 않는 나머지)가 산란하는 진폭으로 나누어지며 그 사이를 c에 해당하는 상태가 진행하는 극한에 해당한다'가 된다. 단순히 말하면 c에 해당하는 internal propagator가 on-shell에 가까워져서 먼 거리를 이동한다는 이야기.


편의상 4ptc scattering을 생각하기로 하고 t-channel이 on-shell로 가는 극한을 생각하자. 이때 $SL(2,R)$를 이용해 vertex operator를 집어넣는 점 셋을 고정할 수 있다. 정석적인 선택은 $(0,\sigma,1,\infty)$. 따라서 다음 그림과 같은 형태의 Schwarz-Christoffel map을 찾는 것이 목표가 된다.


t-channel에서 intermediate state가 on-shell에 가까워지면 먼 거리를 이동하는 극한과 동등하다는 것을 보이기 위해 필요한 Schwarz-Christoffel map


여기서 $\bar{\sigma_1}$은 왼쪽의 꺾이는 점(혹은 1번과 4번 string이 intermediate state에 해당하는 string으로 합쳐지는 점)에 해당하고 $\bar{\sigma_2}$는 오른쪽의 꺾이는 점(혹은 intermediate state에 해당하는 string이 2번과 3번 string으로 갈라지는 점)에 해당한다. 이제 위 그림에서 $\sigma \to 1$의 극한이 $f(\bar{\sigma_2}) \to +\infty$로 가는 극한, 즉 $\bar{\sigma_1}$에 해당하는 점에서 $\bar{\sigma_2}$에 해당하는 점까지 이동하는 거리가 무한히 늘어나는 극한과 일치한다는 것을 보이면 된다. 이 변환은 다음 미분방정식의 해로서 주어진다.

\[ f'(z) = A (z-x)^{1}(z-0)^{-1}(z-\sigma)^{-1}(z-[\sigma + a(1-\sigma)])^{1} (z-1)^{-1} \]


이 식은 다음과 같이 분수들의 합으로 정리할 수 있다.

\[ f'(z) = A\left\{ \frac{\alpha}{z-0} + \frac{\beta}{z-\sigma} + \frac{\gamma}{z-1} \right\} \]


약간의 Mathematica 계산을 통해[각주:1] $\alpha = \frac{-x(a\sigma - a - \sigma)}{\sigma}$, $\beta=\frac{a(\sigma - x)}{\sigma}$, $\gamma = (1-a)(1-x)$가 된다는 것은 금방 확인할 수 있다. 영 못 믿겠으면 손으로 계산하는 것도 방법. 여기서 $a$와 $x$가 고정되어 있다면 $\alpha$, $\beta$, $\gamma$ 모두 유한한 값으로 고정된다는 것을 알 수 있다. 적분은 단순한 $1/z$의 적분이므로 바로 계산이 가능하다. 단, 복소변수이기 때문에 약간의 주의가 필요. Argument를 결정하는 branch cut은 편의상 -Im(z)축 방향으로 뻗도록 하는 것이 좋다.

\[ f(z) = A\left\{ {\alpha}\text{Log}z + {\beta}\text{Log}(z-\sigma) + {\gamma}\text{Log}(z-1) \right\} + B \]


state 1은 $-A\alpha$방향, state 2는 $-A \beta$방향, state 3는 $-A \gamma$방향, state 4는 $A(\alpha+\beta+\gamma) = A$방향에 위치한다는 것을 알 수 있다. 그러므로 위의 그림에 맞게 $A$의 값을 정하면 $A<0$이 된다. 이제 string worldsheet이 갈라지는 점들($f(\bar{\sigma_1})$과 $f(\bar{\sigma_2})$)의 위치를 살펴보자. 여기서 중요한 것은 Im(w)축상의 위치가 아니라 Re(w)축 방향의 거리이므로 Log의 argument에 해당하는 항은 잠시 무시해도 좋다. 우선 왼쪽의 합쳐지는 점의 위치를 구하면 다음과 같다.

\[ f(\bar{\sigma_1}) = A \left\{ \alpha \log |x| + \beta \log |x-\sigma| + \gamma \log |x-1| \right\} + i \cdots + B \]


오른쪽의 합쳐지는 점의 위치는 다음과 같이 주어진다.(수식이 약간 깨지는데 중요한 부분은 다음 문단에 있으므로 굳이 편집하지는 않겠다)

\[ f(\bar{\sigma_2}) = A \left\{ \alpha \log |\sigma + a(1-\sigma)| + \beta \log |a(1-\sigma)| + \gamma \log |(a-1)(1-\sigma)| \right\} + i \cdots + B \]


$\sigma \to 1$의 극한에서 발산하는 항만 모아보면 다음과 같다.

\[ f(\bar{\sigma_2}) = A \left\{ \beta \log |(1-\sigma)| + \gamma \log |(1-\sigma)| \right\} + \cdots \]


참고로 이 극한에서는 $\beta + \gamma \to 1 - x$이기 때문에, 오른쪽의 갈라지는 점은 $+\infty$의 방향으로 밀려나는 것이 맞다(부호를 $x<0$와 $A<0$로 결정했기 때문). 여기서 발산하는 항들은 전부 로그에 들어가는 값이 0으로 수렴하는 극한 때문에 등장했으므로, 이런 현상은 4ptc scattering에만 국한된 것이 아니라 일반적인 산란 상황에서도 관찰할 수 있을 것으로 기대할 수 있다. vertex insertion point가 모이게 되면 amplitude factorisation이 되는 극한, 혹은 intermediate state가 long distance propagation을 하는 IR divergence가 있는 극한으로 생각할 수 있다는 의미.


$\sigma \to 1$ 극한은 두 갈라지는 점 사이의 거리가 무한이 멀어지는 극한으로 생각할 수 있다


다만 이 논증은 worldsheet에서의 이야기이고, 실제 target space로 바로 연결되지는 않는다. 하지만 induced metric을 생각해보면 worldsheet상에서의 거리가 무한히 멀어지는 것과 target space상에서의 거리가 무한히 멀어지는 것은 비슷하다고 봐도 무방해 보인다.

  1. Apart 함수를 쓰면 된다. [본문으로]

댓글을 달아 주세요

  1. 진민서  댓글주소  수정/삭제  댓글쓰기

    wlsalstj0321@naver.com 저는 지금 학생이구요! 제가 블로그를 운영하게 되면 IT, 정보보안,컴퓨터 쪽으로 제가 블로그를 운영하게 된거 같아요!!! 제가 블로그를 운영하게 되면 같이 정보도 공유하고 같이 소통할수 있었으면 좋겠어요!!! 제글 읽어주셔서 감사합니다!! 초대장이 없어서 블로그를 운영하지 못하고있어요 ㅜㅜㅠ 초대장 보내주시면 같이 소통도하고 지낼수 있을거 같아요!! 감사합니다

    2018.09.16 01:39 신고
  2. Favicon of http://no1gs.co.kr/ BlogIcon 강남  댓글주소  수정/삭제  댓글쓰기

    잘보고 가요!!!

    2018.09.16 21:15 신고
  3. 예나아빠  댓글주소  수정/삭제  댓글쓰기

    안녕하세요. 깔끔하게 양질의정보로만 블로그를 꾸려나가시네요.. 워너비입니다.
    저는 평범한 직장인이구요.
    블로그를 시작해보려는데 번잡한 네이버보다는 티스토리가 좋을것 같아
    티스토리 초대장을 보내주실수 있을까 해서 댓글 남깁니다.

    2018.10.17 14:48 신고

지도교수님과 회식을 하던 도중 이런 이야기가 나왔습니다.

최근 들어 논문 원고만 쓰고 블로그는 방치해뒀다는 약간의 자책감과 글을 쓰지 않는 버릇을 들이다가는 생각하는 법도 잊어버린다는 약간의 위기감과 연구에 진척이 나질 않는데 잠시 숨을 돌려볼까 하는 약간의 일탈감에 힘입어 오랜만에 글을 써 볼까 키보드를 잡았습니다. 주제는, 교수님의 이야기에서 아이디어를 얻어, 제 전공이 있는지조차 모르는 사람들을 위한 안내서가 좋겠다 싶었죠. 제가 제 전공에 대해 글을 쓸 정도로 제 전공을 잘 아느냐고 물으신다면 양심의 가책은 느끼겠지만, 그런 것에 전혀 구애받지 않고 배짱으로 들이대는 것이 젊음의 특권 아니겠습니까(?)


이제부터는 나이를 묻거든 얼굴에 철판을 깔고 살기로 했습니다


과거 인기를 끌었던 사극 중 <태양인 이제마>가 있습니다. 사상의학의 개척자 이제마의 일대기를 다룬 드라마였는데, 드라마 중간에는 양의학을 접한 이제마가 다음의 말을 하는 장면이 있습니다.

"양의학은 부분을 깊게 살펴 빠르게 효과를 보지만 전체를 고려하지 않아 근본적인 대책이 되지는 못한다"(기억에 의존한 대사라 정확하지 않을 수 있습니다)

인터넷의 영원한(?) 떡밥 중 하나인 '한의학과 양의학 중 어느 쪽을 믿을 것인가'란 질문은 잠시 제쳐두고, '부분을 깊게 살핀다'는 말에 초점을 맞춰보겠습니다.


'부분을 자세히 파고들어 전체를 이해해보겠다'는 접근방식을 환원주의(reductionism)라 부릅니다. 예컨대 시계가 어떻게 작동하는지 알고 싶다면 시계를 구성하는 톱니바퀴들 사이의 관계를 이해하면 된다는 것이지요. 환원주의는 근대과학의 주된 구심점으로 작동했습니다. 현실 세계는 복잡하지만 현실 세계에서 '중요하지 않은 부분'을 쳐내고 나면 보다 단순한 현상으로 환원되고, 환원된 단순한 현상은 우리가 충분히 이해할 수 있으며, 단순화된 현실을 다루는 것으로 얻은 지식을 현실 세계로 다시 외삽하면 현실 세계를 이해할 수 있다는 것이 과학의 근간이었으니까요. 20세기부터 이어진 근대과학의 눈부신 성장을 보면 이런 접근법이 매우 성공적이었다고 평할 수 있겠죠.


입자물리, 혹은 고에너지물리는 이런 환원주의의 끝에 놓인 학문 중 하나입니다. 예로부터 사람들은 자신을 둘러싼 세계를 이해하고자 노력했습니다. 각종 신화 및 설화를 살펴보면 '왜 번개가 치는가?' 혹은 '왜 무지개가 생기는가?'와 같은 질문에 대한 답을 어렵지 않게 찾을 수 있다는 것이 그 방증이지요. 그리고 (어떤 의미에서는 지나치게) 성공적이었던 환원주의를 이 런 문제들에 적용해보는 사람들이 나타나는 것은 필연이라 할 수 있겠지요. 환원주의에 따르면 우리는 우리를 둘러싼 세계를 보다 작은 부분으로 나누어 그 작은 부분을 이해하는 것으로 원래 이해하고자 했던 세계를 이해할 수 있습니다. 이렇게 계속 세계를 작은 부분으로 나누어 나가다 보면 물질의 구성 요소라 여겨지는 소립자들을 이해하는 문제와 마주하게 됩니다. 소립자물리, 혹은 입자물리를 환원주의의 끝에 놓인 학문이라 부르는 것은 이러한 맥락에서입니다. 입자물리학의 성배를 최종이론(final theory), 혹은 모든 것의 이론(TOE; Theory Of Everything)이라 부르는 것 또한 이 연장선상에 있습니다.




입자물리는 고에너지물리라고도 부릅니다. 물리학자들이 작은 물체들의 행동을 가장 정확하게 묘사한다고 믿는 양자역학에 따르면 보다 작은 것을 보기 위해서는 보다 높은 에너지를 필요로 하므로, 가장 작은 것을 보고자 한다면 가장 높은 에너지를 이용해야만 하기 때문입니다. 그리고 실제로는 입자가 아닌 것들 또한 다룬다는 점에서 고에너지물리라는 명칭이 보다 정확하다고도 할 수 있지만, 용어의 혼동을 방지하고자 이 글에서는 입자물리라는 이름을 계속 사용하도록 하겠습니다.


입자물리는 그 이름이 시사하듯이 입자들의 행동을 다룹니다. 그렇다면 먼저 입자가 무엇인지 정의하는 것이 필요하겠지요. 양자역학이 등장하기 이전까지 물리학자들이 세계를 바라보는 관점에 커다란 영향을 미쳤던 뉴턴의 입장을 따른다면 입자는 하나의 점이고, 따라서 점입자(point particle)이란 용어를 쓰기도 합니다. 기하학에서 다루곤 하는 '크기와 부피를 갖지 않는 추상적인 점'이 바로 입자라는 것이지요. 물론 이 정의는 '얼마나 공간을 차지하는가'의 관점에서 주어지는 것으로, 점입자는 다른 물리적인 성질 즉 질량이나 전하와 같은 성질은 얼마든지 가질 수 있습니다. 또한 우리가 책을 한 권, 두 권 세는 것처럼 입자도 한 개, 두 개 셀 수 있지요. 이런 입자의 정의는 직관적으로는 잘 와닿기는 하지만 실제 연구를 하는 사람들에게 있어서는 충분히 세밀하지 못하다는 단점이 있습니다.


보다 현대적인 입자의 정의는 헝가리 출신 미국 물리학자 유진 위그너(Eugene Wigner)에 의해 정립되었습니다. 위그너 분류법(Wigner classification)은 다음과 같은 아이디어를 따릅니다.


1. 이론상 어떤 물체의 에너지와 운동량은 정확하게 측정할 수 있다. 그러므로 물체의 에너지와 운동량을 기본적인 변수로 잡자.

1'. (특수)상대론에 따라 에너지와 운동량을 조합하여 질량을 정의한다.

2. 어떤 물체든 그 물체를 회전시키면 그 회전에 반응한다[각주:1]. 물체의 운동량을 변화시키지 않고 물체를 회전시켰을 때 물체가 반응하는 방식을 따라 같은 운동량을 갖는 물체를 분류하자.

2'. 회전에 반응하는 방식을 스핀으로 정의한다.


운동량이라는 개념이 생소할 분들을 위해 운동량을 약간 설명해보자면, 운동량이란 말 그대로 '물체가 얼마나 많은 양의 운동을 갖고 있는가?'를 계량화한 것입니다. 같은 속도로 달리는 소형차와 거대한 트럭을 비교하면 거대한 트럭 쪽(무거운, 혹은 질량이 큰 쪽)이 보다 많은 운동을 갖고 있다고 할 수 있습니다. 또한 같은 소형차라고 해도 보다 빠르게 달리는 소형차가 보다 많은 운동을 갖고 있다고 할 수 있지요. 뉴턴의 입장에서는 이 두 관찰 결과를 반영하여 운동량을 질량과 속도의 곱으로 정의합니다. 운동량의 현대적인 정의는 이와는 조금 차이가 있지만 필요 이상으로 길어지게 되므로 이 정도에서 설명을 마치겠습니다.


정리하자면 현대적인 입자의 정의에서는 입자를 다음과 같은 것들에 의해 무엇인지 식별할 수 있는 대상으로 봅니다; 운동량 및 에너지가 몇인가(질량이 몇인가), 그리고 스핀은 몇인가. 이 과정을 통해 분류한 입자 한 개 한 개를 모아 입자 여러개를 묘사하는 것 또한 가능하다고 여깁니다. 물론 이 관점에서는 뉴턴의 입장에서와 마찬가지로 '전하가 몇인가'란 질문을 통해 서로 다른 입자를 식별할 수 있는 여지는 남아 있습니다. 하지만 이 정의에 '입자의 크기는 얼마이고 위치는 어디인가?'란 질문이 비집고 들어올 틈은 보이지 않죠. 그렇다고 입자의 크기나 위치를 묻는 질문이 의미가 없다고는 할 수 없습니다. 분명히 모든 존재하는 것은 어딘가 공간을 조금이라도 차지하고 있으니까요.




'입자의 크기가 무엇인가?'란 질문에 답하려면 '입자의 크기는 어떻게 측정하는가?'를 묻는 것이 더 나을 수도 있습니다. 이렇게 어떤 개념을 그 개념을 얻어내는 과정을 이용하여 정의하는 것을 조작적 정의(operational definition)라 부릅니다[각주:2]. 입자의 크기는 어떻게 측정할 수 있을까요?


우리는 손에 닿지 않는 물건의 크기를 가늠하는데 눈을 사용하곤 합니다. 눈이 하는 역할은 그 물건의 표면에서 반사된 빛을 잡아채는 것이지요. 그리고 이 과정을 다르게 표현하면 빛과 물건이 충돌을 일으킨 뒤 튕겨져 나온 빛을 관찰하는 것이라고 할 수 있습니다. 비슷한 방법을 입자의 크기를 측정하는 데 써볼 수 있습니다. 각기 다른 입자끼리 충돌시켜 보는 것이죠. 이처럼 입자와 입자를 충돌시키는 실험을 산란실험이라고 부릅니다. 가장 기본적이고 가장 투박하면서도 그에 걸맞지 않을만큼 강력한 실험이지요. 최근 힉스 입자의 발견으로 (약간의 희망을 담아 멋대로 수식어를 붙여본다면) 대중에게 널리 알려진 LHC에서 하는 실험도 이런 종류의 실험입니다. 그 이름(Large Hadron Collider; 큰 강입자 충돌기)이 암시하듯 LHC에서는 물리학자들이 강입자라고 분류하는 입자들을 매우 빠르게 가속시켜 서로 충돌시키는 실험을 하고 있습니다. 강입자는 나중에 이야기의 주연으로 등장하게 되지만 강입자에 대해서는 그 때 설명하기로 하죠.


산란실험은 반복수행을 염두에 두고 설계된 실험입니다. 작고도 작아 정확한 제어가 힘든 소립자들을 이용해야 하는 실험이라는 점이 반영된 셈이죠. 이렇게 반복수행을 염두에 두고 설계된 실험에서는 총 반복한 실험 횟수에 대하여 어떤 결과가 몇 번 얻어졌는지 그 비율을 관측하는 것이 실험의 목적이 됩니다. 그리고 이 비율은 입자의 '크기'를[각주:3] 정의하는 기준이 됩니다. '큰 물체일수록 더 많은 빛을 반사한다'란 일상생활에서의 관찰 결과를 소립자의 세계까지 확장한 것이지요. 재미있게도 산란실험은 '입자가 어디에 위치하고 있는가'에 대한 부분적인 답 또한 줍니다. 한 입자가 다른 입자와 충돌을 일으켰다면, 두 입자는 서로 같은 위치를 지나친 것이니까요. 어떻게 보면 당연해 보이는 '같은 위치를 지나쳐야만 충돌을 일으킨다'는 성질은 사실 상당히 강력한 제약이 됩니다. 이에 대해서는 다음 글에서 이야기하도록 하겠습니다.


물리학자들은 산란실험으로 결정되는 '크기'를 산란단면적(scattering cross-section)이라 부릅니다. 현대 입자물리학 역사의 큰 줄기는 산란실험으로 얻은 산란단면적의 정보로부터 이 산란단면적과 일치하는 예측치를 주는 이론을 역추적하는 일과 주어진 이론으로부터 원하는 산란과정에 해당하는 산란단면적을 계산해내는 일로 요약할 수 있을 정도로 산란단면적은 입자물리학에서 거대한 주축을 담당하고 있습니다. 끈이론은 이 거대한 주축으로부터 탄생했습니다.


연관글:


비전공자를 위한 끈이론 개론(2) - 산란행렬의 계산 (작성중)

비전공자를 위한 끈이론 개론(3) - TBA (작성 예정?)


  1. 여기서 반응이라는 것은 '책상 위의 책을 뒤집으면 더 이상 앞면이 보이지 않고 보이지 않던 뒷면이 보이는 것'처럼 그 물체를 기술하는 방법이 바뀐다는 것을 의미합니다. [본문으로]
  2. 보다 물리학, 특히 고전역학에 익숙한 독자들을 위해 약간의 설명을 덧붙이자면, '힘을 받지 않는 물체가 등속운동하는 기준계'가 관성기준계에 대한 일반적인 정의라면 '힘을 받지 않는 물체들을 각기 다른 방향으로 던져 그 물체들이 등속운동을 하는 것으로 보이도록 잡은 좌표계'가 관성기준계의 조작적 정의에 해당합니다. [본문으로]
  3. '크기'에 따옴표를 친 이유는 크기를 (조작적으로) 정의하는 다양한 방법이 있을 수 있기 때문입니다. 대부분의 경우 크기에 대한 각기 다른 정의는 물체의 크기에 대해 다른 답을 줍니다. 다양한 크기의 정의법을 보고 싶으신 분은 이 글을 참고하시면 좋겠습니다(링크된 글에서 전자의 크기를 정의하기 위해 사용하는 조작적 정의들은 이 글에서 사용한 정의와는 차이가 있습니다). [본문으로]

댓글을 달아 주세요

  1. Favicon of https://womenra247.com BlogIcon 호빠  댓글주소  수정/삭제  댓글쓰기

    잘보고 가욤

    2018.07.19 03:41 신고

전하와 자하를 동시에 두면 이로부터 만들어지는 전자기장이 각운동량을 갖는다는 사실은 잘 알려져 있다. 처음으로 이 계산을 한 것이 톰슨이었다던가. 이 계산은 각운동량의 양자화로부터 전하와 자하의 양자화를 유도해내는 과정인 Dirac quantisation 혹은 Dirac-Schwinger-Zwanziger quantisation을 정당화하는데 이용되기도 한다.


여튼, 정석적인 계산방법은 전하를 원점에, 자하를 적당한 z축상의 한 점에 둔 뒤 원통좌표계를 써서 각운동량을 계산하는 것인데 이 방법 말고 벡터미적분학을 적절히 이용해서 쉽게(?) 계산하는 방법이 있다. 이 방법이 있다는 것은 알고 있었는데 정확한 과정을 떠올리는데 만 하루가 걸리고 나니 조금 슬프지만.


먼저 전하를 원점에, 자하를 $\vec{r'}$에 두자. 그리고 다음과 같이 벡터 $\vec{\rho} := \vec{r} - \vec{r'}$를 정의한다. 전하와 자하가 만들어내는 전자기장은 다음과 같이 계산할 수 있다.

\[ \vec{J} = \int \vec{r} \times \vec{P} = \int \vec{r} \times \left( \vec{E} \times \vec{B} \right)  \]


전기장과 자기장을 쓰기 위한 단위계는 cgs를 택하기로 한다.

\[ \vec{E} = \frac{e \vec{r}}{r^3} \] \[ \vec{B} = \frac{g \vec{\rho}}{\rho^3} \]


실제 계산에 문제가 되는 항은 다음 항이다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} \]


벡터 삼중곱을 쓰면 이 항은 다음과 같이 쉽게 정리할 수 있다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = \vec{r} \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} - \frac{\vec{\rho}}{r \rho^3} \]


이제부터 벡터미적분학의 묘미가 시작된다. 다음 등식은 어렵지 않게 증명 가능하다.

\[ (\nabla \phi) \cdot (\nabla \varphi) = \nabla \cdot (\phi \nabla \varphi) - \phi \nabla^2 \varphi \]


이 식을 $\vec{a}/a^3$꼴의 식에 적용한다.

\[ \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} = \nabla \frac{1}{r} \cdot \nabla \frac{1}{\rho} = \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) - \frac{1}{r} \nabla^2 \frac{1}{\rho} \]


다음 항등식은 전자기학을 공부했으면 심심찮게 만날 수 있다.

\[ \nabla^2 \frac{1}{r} = - 4 \pi \delta^3 (\vec{r}) \]


정리하면

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \vec{r} \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) + \frac{1}{r} \nabla \frac{1}{\rho} \]


또는, Einstein summation convention을 도입할 경우,

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) \]


가 되어 total divergence만 남는 것을 확인할 수 있다. 따라서,

\[ \vec{J} = e g \int 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) = 4 \pi e g \hat{r'} + \oint \text{boundary terms} \]


으로 정리할 수 있으며, 약간의 order of magnitude analysis를 통해 boundary term은 0이 된다는 것을 증명하면 정리는 끝난다. 해당 증명은 어렵지 않으니 생략.

\[ \therefore \vec{J} = 4 \pi e g \hat{r'} \]


단위계가 엉망인데 계산과정이 중요한 것일 뿐이니 적당히 알아서 집어넣으시길...

댓글을 달아 주세요

산란진폭의 재귀적 구성을 다룬 원고로, 그룹미팅 발표용으로 준비했던 자료를 TeX으로 문서화해봤습니다. 연구과목 보고서로 때우기 위해 작성한 불순한(?) 의도도 있긴 한데 뭐 상관없겠지요. 생각보다 길어져서 계산으로 실제 다뤄봤던 예시는 포함하지 않았습니다. 어차피 참고문헌에 다 들어있으니 알아서 찾아보시면 될 듯(무책임).


Amplitude recursion public.pdf



댓글을 달아 주세요

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




위상수학에 대해 가장 널리 알려진 예시라고 한다면 도넛과 머그잔이겠지요. 거기에 질세라 노벨위원회에서 올해 수상자를 발표할 때 위상수학을 설명하면서 베이글과 프레츨을 예시로 들었습니다. 이 물체들이 어떻게 위상수학적으로 같고 다른지는 찰흙을 가지고 장난을 치다가 부모님께 혼나본 경험이 있으시다면 이해할 수 있으시겠지요. 아쉽게도 위상론적 물질에서 필요한 위상수학적인 양은 천 숫자(Chern number)라는 값으로, 앞선 예시들과는 달리 쉽게 머리 속으로 그릴 수 있는 것들은 아닙니다.


위상수학에서는 우리가 머리 속으로 그릴 수 있는 평범한 도형들을 다양체(manifold)라는 개념을 이용해 정의합니다. 구체적인 정의는 논의를 괜히 쓸데없이 복잡하게 만들테니 필요없겠지요. 천 숫자는 접속(connection)이란 특별한 종류의 수학적인 물체를 다양체 위에 올려놓았을 때 그 접속에 대한 위상론적인 정보를 담고 있는 값입니다. 그러면 우선 접속이 무엇인지에 대해 알아야 위상수학이 어떤 역할을 하는지 알 수 있겠지요.


그다지 좋은 예는 아니지만[각주:1] 접속을 이해하는데 쓸 수 있는 장난감으로 굴렁쇠가 있습니다. 비록 저 자신은 굴렁쇠를 실제로 굴려본 적이 없고 교과서 사진으로나 봤을 뿐이지만 동전은 자주 굴려봤으니 자신감을 가져도 좋겠지요. 다시 굴렁쇠로 돌아와서, 어떤 위치에서 굴리기 시작한 굴렁쇠를 적당한 경로를 따라 원래 위치로 돌아오는 것을 생각해 봅시다. 만약 굴렁쇠의 각 점에 눈금이 매겨져 있었다면 굴리기 전의 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금과 굴리고 같은 위치로 돌아왔을 때 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금은 다르겠지요. 홀로노미(holonomy)나 모노드로미(monodromy)는 이 눈금이 얼마나 달라지는가를 잡아내기 위해 정의된 수학적인 물체입니다. 하지만 오늘 논의에서는 다루려던 내용이 아니므로 두 용어에 대해서는 이 정도에서 설명을 마치도록 하지요.


접속이란 개념을 이해하기 위해서는 굴렁쇠를 굴린 경로 위의 각 점에 굴러가고 있는 굴렁쇠를 관찰하는 관찰자를 올려놓는 것이 좋습니다. 각 점에 앉아있는 관찰자는 굴렁쇠의 눈금 중 어떤 눈금이 바닥과 닿아있는지를 기록할 수 있겠지요. 그리고 한 점에 앉아있는 관찰자가 관찰한 눈금은 바로 옆에 앉은 관찰자가 관찰한 눈금과 일정한 관계를 맺고 있습니다. 굴렁쇠는 미끄러지지 않고 굴렀을테니, 두 관찰자 사이의 거리만큼 굴렁쇠와 바닥이 닿은 눈금이 변했을테니까요. 이처럼 한 점에서 관찰한 무언가의 값을 바로 옆의 점으로 끌고가면 일반적으로는 그 값이 변합니다. 수학에서는 이런 정보를 담은 것을 접속이라고 부릅니다. 한 점에서의 정보를 바로 옆의 점으로 연결시켜 준다는 점에서 더없이 적절한 용어(접속은 영어로 connection이라 부릅니다)라고 할 수 있겠지요. 한 점에서 바로 옆의 다른 점으로 움직이는 방법은 움직일 수 있는 방향만큼이나 다양하기 때문에 접속은 '어떤 방향으로 움직이는가'에 대한 정보도 함께 담고 있어야 합니다. 방향에 대한 정보를 가지고 있다는 점에서 접속은 벡터장과 매우 비슷합니다.


약간은 의외의 사실일 수 있겠지만, 어떤 다양체에는 벡터장을 임의로 올려놓지 못한다는 것이 알려져 있습니다. 가장 간단하고 머리 속으로 그려볼 수 있는 예시로는 털난 공 정리(hairy ball theorem)이 있습니다. '털난 공을 빗을 수 없다'란 표현으로 유명한 이 정리는 공의 표면(2차원 곡면이므로 $S^2$라 부릅니다) 위에 올려놓은 벡터장은 항상 0이 되는 지점이 있어야 한다고 주장합니다. 크기가 0이 아닌 벡터장을 공에 납작하게 붙은 털에 빗댄 것이지요. 실제로 그런지 의심이 드는 분이라면 바람이 부는 지구 표면을 생각해 보시면 좋습니다. 과연 지구 표면의 모든 점에서 동시에 바람이 불 수 있을까요? 털난 공 정리에 따르면 지구의 적어도 한 점에서는 바람이 불고 있지 않아야 합니다.


위의 정리는 위상수학적인 결과입니다. 털난 공이라고는 했지만 그것이 꼭 공일 필요는 없는 것이지요. 공이 조금 찌그러져 있다거나 허리같은 길쭉한 부분이 있다거나 해서 벡터장이 0인 지점이 하나는 있어야 한다는 사실이 변하지는 않는다는 말입니다. 천 숫자는 털난 공 정리와 비슷하게 다양체 위에 올려놓은 접속이 임의로 주어질 수는 없다는 것을 말해줍니다. 천 숫자를 계산하면 정수를 얻지만 이 정수가 정확히 무엇을 세는가에 대해서는 저도 좋은 설명이 없다는 점이 아쉽군요. 다만 한 가지 확실하게 말할 수 있는 것은 두 접속에 대해 계산한 천 숫자가 서로 차이가 난다면 하나의 접속에 작은 변화를 누적시켜서 다른 접속으로 바꾸는 것이 불가능하다는 것이고, 이런 의미에서 천 숫자가 위상론적인 불변량이라는 것입니다.




천 숫자에 대해 이해하려면 우선 접속에 대해 더 자세히 알아야 합니다. 그러므로 접속에 대해 좀 더 이야기해보도록 하죠.


잘 만들어진 굴렁쇠라면 모든 점이 서로 엇비슷하게 생겼을 겁니다. 굴렁쇠에 눈금을 새겼더라도 어떤 눈금을 1로 두고 그 눈금부터 번호를 매길 것인가에 대한 자유가 남아있는 것이지요. 때문에 각 점에 앉아있는 관찰자가 각자 굴렁쇠를 하나씩 들고 '나는 이 눈금을 1로 세겠다'고 주장하는 것을 생각해 볼 수 있습니다. 이 눈금을 1로 세는 점을 기준점이라고 부르도록 하죠. 각 점에 앉아있는 관찰자가 임의로 기준점을 재조정하더라도 실제로 굴렁쇠가 굴러가는 것에는 영향을 미치지 않아야 합니다. 이렇게 기준점을 재조정하는 것을 게이지 변환(gauge transform)이라 부르고, 기준점 재조정에 영향을 받지 않는 것을 게이지 대칭(gauge symmetry)이라 부릅니다. 입자물리에 관심이 있으신 분들이라면 게이지 보존(gauge boson)이란 단어를 들어보셨을텐데, 그 단어에서 말하는 게이지와 지금 여기에서 말하는 게이지는 같은 수학적인 물체입니다. 단지 그 수학적인 물체를 무엇을 나타내기 위해 쓰고 있느냐의 차이 정도만 있을 뿐이지요.


접속은 언제까지나 '한 점에서 읽어낸 값을 바로 옆의 점으로 옮기는 방법'을 결정해주기 때문에 값을 읽어낸 점에서 관찰자가 선택한 기준점과 값이 옮겨질 점에서 관찰자가 선택한 기준점에 영향을 받습니다. 그래서인지 기준점을 재조정하는 과정인 게이지 변환을 할 경우 각 점이 얼마나 다르게 기준점을 재조정했는지의 정보까지 들어가야 해서 보다 복잡하게 변화하지요. 다르게 말하자면 '각 점에서의 기준점 선택'에 영향을 받는다는 의미에서 진짜 물리적인 의미를 갖는 대상이라고 보기는 힘들다고 할 수 있습니다. 게이지 변환에 영향을 받지 않는 것들, 즉 게이지 불변(gauge invariant)인 것만이 실제 물리적인 의미를 갖는 대상이라고 생각해야 한다는 것이지요. 그렇다면 접속으로부터 충분히 물리적인 의미를 갖는 대상을 얻어낼 수 있는지가 문제가 됩니다.


한가지 방법은 아주 작은 폐곡선을 생각하고 그 폐곡선을 따라 굴렁쇠를 원래 위치로 굴린 것과 굴리기 전의 굴렁쇠의 차이를 확인하는 것입니다. 같은 점에서 굴렁쇠를 비교하는 것이기 때문에 기준점을 옮긴다고 해도 눈금의 차이는 변하지 않지요. 마치 12와 16의 차이가 112와 116의 차이와 같은 것처럼 말입니다. 이를 곡률(curvature)이라고 부릅니다.[각주:2] 곡률은 작은 폐곡선의 경우 그 폐곡선을 경계면으로 갖는 곡면의 넓이에 비례해서 눈금의 차이가 커진다는 관찰에 기반을 두고 있습니다. 작은 곡면은 평행사변형으로 근사할 수 있고 평행사변형은 두 방향(마주한 변은 같은 방향이므로 두 방향만 갖습니다)을 갖기 때문에 곡률은 방향에 대한 정보를 둘 가지고 있어야 합니다. 또한 이 두 방향이 겹치게 되면 넓이를 갖는 평행사변형이 만들어지지 않기 때문에 주어진 두 방향에 대해 반대칭적(antisymmetric)이어야 하죠.


곡률은 물리적인 정보를 담습니다. 게이지 이론으로 이해할 수 있는 전자기학을 예로 들자면, 전자기장에 해당하는 접속의 곡률은 우리가 실제로 측정할 수 있는 전기장과 자기장으로 인식됩니다. 또한 실제 천 숫자를 계산할 때는 접속을 이용하는 것이 아니라 접속의 곡률을 이용합니다. 이것을 이용해 여러가지 위상론적인 물체들을 만들 수 있습니다. 예를 들어 3차원 공간의 한 점을 감싸는 구의 표면 위에서 전자기장의 천 숫자를 계산하면 그 표면을 통과하는 총 자기장의 양을 얻는데, 천 숫자는 정수로 주어지므로 그 구 안에 들어있는 자기장의 원천 즉 자하의 총량은 정수로 주어진다는 것을 알 수 있습니다. 전하와 마찬가지로 자하 또한 양자화되어야 한다는 것을 의미하는 것이지요. 약간 원래 논의에서 벗어나기는 했지만, 고에너지 물리학에서는 이런 방식으로 위상수학을 이용해 위상론적인 물체들을 다루곤 합니다. 위상론적인 원인이 있고 입자의 성질을 갖기 때문에 이런 물체들을 위상론적 솔리톤(topological soliton)이라고 부르지요. 다른 위상론적인 물체로는 인스탄톤(instanton)들이 있는데 시간을 허수로 만드는 다소 설명하기 껄끄러운 일들을 해야 하므로 넘어가도록 하겠습니다.


천 숫자가 위상론적인 물질에서 물리적인 의미를 갖는 사례 중 하나는 정수 양자 홀 효과(integer quantum Hall effect)입니다. 금속에 아주 강한 자기장을 수직축으로 걸었을 때 전기장을 수평축으로 걸면 자기장과 전기장에 수직한 방향으로 전류가 흐르는데, 정수 양자 홀 효과는 이때 흐르는 전류와 전기장의 비를 측정한 것(홀 전도도라고 부릅니다)이 폰 클리칭 상수(von Klitzing constant)의 정수배로 나타나는 현상을 말합니다. 정수 양자 홀 효과에서는 이 홀 전도도가 천 숫자로부터 계산할 수 있다는 것이 알려져 있습니다.


정수 양자 홀 효과에서 계산하는 천 숫자는 조금 독특한 공간에서 계산합니다. 2차원 공간을 돌아다니는 전자들을 운동량으로 분류했을 때, 이 운동량이 만드는 공간에서의 적분이죠. 이 공간 위에서도 접속을 정의할 수 있습니다. 특정 운동량을 갖는 전자의 위상을 측정할 때 기준으로 삼는 위상을 운동량마다 다르게 설정해 줄 수 있기 때문이죠. 이를 베리 접속(Berry connection)이라고 부르고, 베리 접속으로부터 얻는 곡률을 베리 곡률(Berry curvature)라고 부릅니다. 양자 홀 효과와 관련된 천 숫자는 베리 곡률로부터 얻어지며, 이를 TKNN 불변량이라고 부릅니다.


정리해보자면, 실제로 위상론적 물질에서 쓰이는 위상수학은 접속과 관계된 천 숫자라는 불변량들이고 천 숫자가 실제로 힘을 발휘하는 경우의 예로 정수 양자 홀 효과를 들 수 있었습니다. 논의를 벗어나기는 했지만 고에너지 물리학에서는 위상수학을 어떻게 이용하는지를 다루면서 솔리톤에 대한 이야기도 꺼냈지요. 위상수학에 대한 이야기만 잔뜩 하고 정작 물리 이야기는 거의 하지 않았다는 점이 조금 마음에 걸리지만, 일단은 여기까지가 현재 할 수 있는 범위 내에서는 최선인 것 같네요.




천 숫자를 중심으로 살펴보긴 했지만 실제로는 더 많은 위상수학이 쓰입니다. 예를 들어 애니온(anyon)의 경우에는 매듭 군(braid group)과 관련이 있지만 잘 알지 못하는 관계로 넘어갔습니다. 글에서 언급된 자기단극자의 경우 한 차원 낮추게 되면 소용돌이(vortex)의 양자화를 얻는데, 이건 천 숫자로 표현하기에는 껄끄러운 점이 있어서 넘어갔죠.


마지막 글은 솔직히 쓰기는 할지 모르겠습니다. 요즘 일이 많아서... ㅠㅠ

  1. 수학적으로 정합적(consistent)인 묘사가 불가능하다는 점에서 좋은 예는 아닙니다. [본문으로]
  2. 참고로 일반상대론에서 말하는 '휜 공간'의 곡률과 이 곡률은 같습니다. 단지 곡률을 정의하기 위해 사용하는 접속이 다를 뿐이죠. [본문으로]

댓글을 달아 주세요

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


세 번 정도에 걸쳐 다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




기초적인 질문부터 시작해보도록 합시다. 물질의 상은 어떻게 구분할까요? 누구나 물과 얼음은 다르다는 것을 본능적으로 알고 있습니다. 하지만 기계에게 물과 얼음의 차이를 이해시키고자 한다면 "딱 보면 몰라?"보다는 나은 설명이 필요하겠죠.


한없이 투명한 무언가가 담겨 있는 양동이를 생각해봅시다. 양동이가 전혀 움직이지 않는다면, 이 양동이에 담긴 것이 물인지 아니면 얼음인지 구분하는 것은 쉽지 않겠죠. 어떻게 하면 물인지 얼음인지 구분할 수 있을까요? 답은 손을 대보면 됩니다. 액체인 물이라면 손이 한없이 투명한 표면을 뚫고 들어갈 것이고, 고체인 얼음이라면 손은 단단한 벽과 마주한 것처럼 전혀 표면을 뚫을 수 없겠지요. 이 차이를 두고 '얼음과 물의 층밀리기 탄성(shear elasticity)이 다르다'고 합니다. 층밀리기 탄성을 이해하는 좋은 방법 중 하나는 평평한 책상 위에 올려놓은 책을 떠올려 보는 것입니다. 책의 윗면에 손을 놓고 마찰력을 이용해 책의 윗면을 책상과 평평하게 이동시키면 책은 원래의 네모난 모양을 잃어버리고 각 페이지가 층층이 밀린 듯한 모습으로 변해버리겠지요. 이런 변화를 층밀리기 변형(shear)이라고 부릅니다. 우리는 얼음과 같이 층밀리기 변형에 대해 단단하게 저항하는 성질을 갖는 물체를 고체라고 부릅니다. 반대로 물처럼 층밀리기 변형에 대해 전혀 저항하지 못하는 물체는 액체라고 부르지요.


위의 예시처럼 '어떤 계의 상이 변했다'고 말하고자 한다면 그 계의 특징적인 물리량이 어떻게 변했는지를 살펴보면 됩니다. 물과 얼음의 경우에는 층밀리기 변형에 대한 저항이 이런 물리량 중 하나에 해당하겠지요. 이런 특징적인 물리량을 두고 질서 변수(order parameter)라고 부릅니다. 잘 정한 질서 변수는 그 상전이를 완벽하게 묘사해낼 수 있습니다. 이 사실을 바탕으로 만들어진 것이 란다우-긴즈부르크(Landau-Ginzburg) 이론입니다. 란다우-긴즈부르크 이론에서는 '무엇이 상전이를 일으키는가'란 질문보다는 '무엇이 상전이의 특성을 나타내는가'란 질문이 중요합니다. 이제 상전이를 이해하기 위해 우리가 던져야 할 질문은 '어떻게 해야 좋은 질서 변수를 찾을 수 있을까?'가 되겠지요.


물리계 중에는 대칭성을 가진 계들도 존재합니다. 대칭성을 정확히 정의하려면 논의가 복잡해지지만[각주:1] 여기에서는 일상에서 '대칭'이라는 단어가 사용되는 정도로만 이해해도 충분합니다. 정삼각형은 세 꼭지점을 돌리는 것에 대해 회전대칭을 가지고 있고, 대부분의 물고기는 (거의) 좌우대칭입니다. 물리계가 대칭성을 가진다는 것도 비슷한 의미를 지닙니다. 물리계를 전체적으로 돌리거나(회전대칭) 전체적으로 조금 이동시킬 경우(병진대칭) 그 전과 구분되지 않는다는 것이죠. 과거에는 '계가 가진 대칭성이 좋은 질서 변수를 결정한다'고 믿었습니다. 심지어는 계가 가진 대칭성만 가지고도 그 계의 상전이가 완전히 결정된다는 주장도 있었지요. 이것을 보편성(universality)이라고 부릅니다.


보편성은 계가 상전이를 하고 있는 바로 그 순간에는 눈금 바꿈 대칭(scale symmetry)을 가진다는 것에 근거를 둡니다. 어떤 물리계의 어떤 물리량을 측정하고자 한다면 그 물리량을 측정하는데 기준이 되어주는 기준자가 있어야 합니다. 예를 들어 길이를 측정한다고 하면 1cm마다 눈금이 하나씩 그어져 있는 자가 필요하지요. 눈금 바꿈 대칭이란 물리량을 측정하는데 기준으로 쓴 기준자의 눈금을 바꿔도 바꾸기 전과 구분하지 못한다는 것을 의미합니다. 예컨대 어떤 물리계를 한 사람은 a란 크기의 눈금을 가진 기준자로 관찰하고 다른 사람은 b란 크기의 눈금을 가진 기준자로 관찰할 경우 둘은 서로 같은 계를 관찰했지만 다른 상태를 관찰했다고 인식하는 것이지요. 만약 눈금 바꿈 대칭이 없었다면 그 계는 어떤 특성 길이(characteristic length) c를 갖기 때문에 전자는 c/a라는 값이 특별하다는 것을 눈치채고 후자는 c/b라는 값이 특별하다는 것을 눈치채며, 일반적으로 c/a와 c/b는 같지 않기 때문에 둘은 서로 다른 계를 관찰하고 있다고 생각하게 됩니다. 한편 그 특성 길이가 0이거나 무한대가 된다면 두 값은 같으므로 그 물리계는 눈금 바꿈 대칭을 가지고 있다고 할 수 있겠지요.


계가 A라는 상과 B라는 상 사이에 끼어서 상전이를 하는 순간에는 계를 A라는 상으로 바꾸려는 작용과 B라는 상으로 바꾸려는 작용이 균형을 이루기 때문에 작은 변화라고 해도 아주 먼 거리까지 영향을 미칩니다.[각주:2] 팽팽하게 당겨진 실에서는 한쪽으로 움직이려는 힘과 반대쪽으로 움직이려는 힘이 균형을 이루고 있기 때문에 한 끝을 튕기면 그 진동이 반대 끝까지 전달되는 것과 비슷하다고 해야할까요? 이렇게 한 계가 눈금 바꿈 대칭을 가진 경우에는 매우 큰 눈금을 가진 자로 측정해도 살아남는 특징이 계의 특징을 결정한다고 생각할 수 있습니다. 통계역학의 관점에서는 매우 큰 눈금을 가진 자로 측정할 경우 물리량을 측정하는데 관여하는 원자의 수가 엄청나게 많기 때문에 각 원자의 상세한 특징은 거대한 숫자에 쓸려나가 버립니다. 따라서 계의 상세한 특징은 상전이를 기술하는데 별로 영향을 미치지 않는다고 생각할 수 있는 것이지요. 한편 계의 대칭성은 작은 눈금을 이용하든 큰 눈금을 이용하든 영향을 받지 않습니다. 따라서 계의 대칭성은 상전이를 기술하는데 중요한 역할을 한다고 추정할 수 있고, 이것이 앞서 설명한 보편성의 근거가 됩니다.


여기까지가 위상론이 상전이를 이해하는데 필요하다는 사실을 깨닫기 전까지의 이야기였습니다. 정리하자면, 여태까지는 계가 가진 대칭성만 잘 이해하면 계의 상전이를 잘 이해할 수 있다고 믿었던 것이죠.




나머지 내용도 언젠가 올리긴 올릴텐데 과연 노벨상 수상식이 있기 전에 올라갈 것인지는 모르겠군요...=-= 다른 할 일이 많아서...




23. Oct. 2016> 생각해보니 중요한 내용 몇가지를 언급하는 것을 잊어버렸는데, 란다우-긴즈부르크 이론에서 대칭성과 함께 중요한 것은 계가 몇차원에 정의되었는가이며 상전이를 두고 나누어진 두 상은 계의 대칭성이 깨졌는가 깨지지 않았는가를 이용해 구분합니다. 계의 대칭성이 깨지지 않았다면 질서 변수가 계의 대칭성을 보존하는 변환에 대해 변하지 않지만 계의 대칭성이 깨졌다면 질서 변수가 계의 대칭성을 보존하는 변환에 따라 변화하게 되지요. 해당되는 질서변수의 구체적인 예로 철의 자화(magnetisation)를 들 수 있는데, 대칭성이 깨지지 않은 고온의 탈자 상태에서는 회전에 대해 자화가 변하지 않지만(0이니까요) 저온의 자화된 상태에서는 회전하게 되면 자화된 방향이 변하게 되죠.

  1. 관심이 있으신 분은 제가 예전에 적은 노트(영문)의 앞부분에 해당 내용이 있으니 참고하세요.2016/08/08 - Particles in Curved Space [본문으로]
  2. 이 설명은 잠열이 없는 상전이, 즉 2차 상전이에 해당하는 설명입니다. 잠열이 있는 1차 상전이에서는 잠열이 작은 변화를 완충해주는 역할을 하기 때문에 이 경우에 해당하지 않습니다. 주로 임계현상(critical phenomena)의 연구가 2차 상전이에 집중되어 있는 것도 이런 이유에서이죠. [본문으로]

댓글을 달아 주세요

수업시간에 마주한 Frobenius' theorem이 특수상대론의 유명한 문제인 '회전하는 원반의 둘레는 얼마인가?'와 연결된다는 것을 깨닫고 작성을 시작한 노트. 별 내용도 없는데 생각보다 작성하는데 시간이 오래 걸렸다. 특수상대론을 다루는 부분은 작업 시작한 날 3시간만에 전부 정리했는데 나머지 부분에서 제대로 된 설명을 만드느라 헤매서....


처음 쓰기 시작했을 때는 '오 이거 재미있다!'란 생각으로 타자를 쳤는데 다 치고 나니까 '뭐야 이거 당연한 소리였잖아...'란 느낌만 든다. 안 그런 일이 드물기는 하지만...


Frobenius Theorem in General Relativity.pdf


'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

(필명으로 운영하는 이 블로그 말고) 나중에 제대로 된 개인 홈페이지를 만들었을 때 올려놓아도 괜찮겠다 싶어서 학생 세미나도 준비할 겸 작성한 텍. 쓰다보니 너무 길어졌다.

Notion of Particles in Curved Space public.pdf


Unruh effect를 다루기 위해 넣은 Unruh-DeWitt detector는 진짜 열적 분포를 갖는 결과가 나오도록 하고 싶었는데 계산을 간단히 하려고 1+1차원에 갇혀있었던 것이 문제가 된 듯. 노트의 각주에 달아놓기는 했지만 3+1차원에서 계산하면 열적 분포가 제대로 나온다. 조금 신경쓰이는 부분은 $1/E$에 비례하는 항 때문에 구한 response function이 E에 대해 우함수가 아니라는 것인데, 이건 전이 확률이 에너지 준위차에만 의존하지 않고 에너지가 높은 쪽으로 전이하는 확률과 낮은 쪽으로 전이하는 확률이 서로 다르다는 것을 의미해서 그렇다. 여태 본 계산 중에는 이런 계가 없었던 것으로 기억하는데 무언가 잘못한 것이 있는 것은 아닌가 싶어서.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

  1. 옹야  댓글주소  수정/삭제  댓글쓰기

    블로그 잘 보고 갑니다^-^
    저도 블로거님처럼 이쁜 만들어보고 싶네요ㅠ.
    저 혹시 괜찮으시다면 초대장 받을 수 있을까요.
    향후 블로그 운영 계획은 클라우드와 임베디디 시스템 관련 프로그래밍 가이드를 주로 다룰 계획입니다. 여러 개발자들이 제 블로그를 보고 개발에 박차를 가 할 수 있도록 함께 공유해 나갈 계획입니다.
    제 이메일은 kim6kim@nate.com입니다.
    좋은 하루 되세요ㅎ

    2016.09.09 23:06 신고

간단한 어록 정리

Physics 2015.12.20 23:51

관심글(요즘엔 마음으로 바뀌었지요)당 좋아하는 대사나 구절을 써보자는 태그에 올렸던 글들을 모아봤습니다. 조금 시간이 지난 것 같지만 뭐 어때요?


1.

"If I have seen further, it is by standing on the shoulders of giants."


보통 뉴턴의 겸손함을 나타내는 표현으로 주로 인용되지만, 라이벌이었던 훅( $F=-kx$의 Hooke)을 디스(...)하기 위해서 날린 멘트라는 말이 있습니다. 다만 이 표현을 편지에 적었을 때 당시에는 훅과 아직 좋은 관계를 유지하던 시절이기 때문에 그럴 가능성은 낮다고 하는군요.


2.

시드니 콜만의 253a 양자장론 렉처노트에 인용되어 있습니다. 이 파인만 알고리즘에 대한 정리 페이지도 있네요. 둘이 워낙 사이가 안 좋기로 유명한지라 약간의 경외를 담아 비꼬는 느낌이라고 생각하면 맞을 것이라 생각합니다. 부고 말고도 둘이 견원지간이었다는 사례로는 겔만이 파인만이 제시한 원자핵의 파톤(parton) 모형을 갖고 희랍어랑 라틴어 어원을 짬뽕시킨 잡탕 이름이라며 깠다는 일화도 알려져 있죠.


3.

대규모 어그로를 끄는 발언을 해 놓고 그 발언에 뒤통수를 맞은 사례라 많은 사람들이 좋아하더군요(...) 러더포드는 천운이 따랐던 물리학자로도 알려져 있습니다. 뉴질랜드에서 가족을 도와 농사를 하다가 케임브리지에서 공부할 장학금을 받았다는 소식을 들으면서 "이것이 내가 파는 마지막 감자다!"라고 외쳤다는 일화도 있고, 여튼 재미있는 사람입니다.


4.

교수님이 양자물리 시간에 언급하신 3대(?) 양자역학 해석 중 당당히 한 기둥을 차지하는, "Shut up and calculate!"입니다. 3번이 물리학과 희망편이라면, 4번은 물리학과 절망편(...)이 되겠지요. 실제로 파인만이 이 말을 했느냐고 물으신다면 아닐 가능성이 높아요. 다만 아직도 널리 사용되는 것을 보면 분명히 유효한 접근법 중 하나라고 할 수 있겠죠.


5.

통계를 빡세게 다루시는 분들에게 듣기로는 정보 엔트로피는 확률 분포를 다루면 자연스럽게 언급하게 되는 단어라는군요. 처음 접한 곳은 Petz의 Quantum Information Theory and Quantum Statistics이지만 wikiquote에도 실려 있습니다. 정말 적절한(?) 조언이었다는 생각이 드는 것이, 엔트로피는 공부할수록 더 모르겠더라구요(...)


6.

Not even wrong. 피터 보잇이 끈이론을 까려고 쓴 책의 제목이기도 합니다. 어떤 면에서는 4번과 완전히 반대되는 말이기도 합니다. 예전에 교수님께 직접 '의미 없는 기호 놀음은 하지 마라'란 말을 들은 적이 있다 보니 마음에 들었는지도 모르겠네요.


7.

믈로디노프의 Feynman's rainbow에 실린 일화입니다. 어째 제 전공을 디스하는(...) 말만 연속으로 가져왔는데, 현실에 발 붙이는 것은 중요하다는 자기 다짐 정도로 생각해 주시면 좋겠습니다.


8.

You're crazy. 일부러 어감이 세도록 번역한 느낌이 있긴 하지만, Lancaster&Blundell의 Quantum Field Theory for the Gifted Amateur에 실린 일화입니다. 파인만의 박사학위가 경로적분이었는데, 그 박사학위를 보면 경로적분을 개발한 이유가 '전자기장을 무한 개의 조화진동자로 보지 않고 계산할 방법을 찾기 위한 시도 중 하나'라는게 나옵니다. 한 입자가 거울에 반사된 자신의 거울상과 상호작용하는 모형이 등장하죠.


9.

2014 World Science Festival에서 열린 양자역학에 대한 토론에서 한 말입니다. 물리 하시는 분들이라면 꽤 재미있게 들을 수 있는 토론이니 한 번 정도 들어보시는 것도 나쁘지 않을겁니다. 이 토론에서는 코펜하겐 해석, QBism, 에버렛해석(Everettian interpretation), 그리고 봄 역학(Bohmian mechanics) 네 관점의 차이를 설명합니다. 개인적으로 봄 역학은 별로 선호하지 않는데, 양자장론에서 입자를 다루는 방식과 너무 차이가 벌어지기 때문에 그렇습니다.


10.

페르미의 역설은 잘 알려진 편이니 제가 더할 말이 없군요. 만난 기억이 없는 이유가 검은 양복의 사람들이 아니라면 다른 가능성으로는 우리가 바로 젤나가이기 때문일수도 있겠지요(...)


11.

아인슈타인은 평생 양자역학을 못마땅해 했다고 하죠. 양자역학을 못마땅해 한 이유는 환원론을 근본적으로 거부했기 때문이라는 말도 있습니다. 양자적 얽힘이란 A와 B가 있을 때 그 둘을 동시에 봐야지 A 따로 B 따로 본 뒤 그 결과를 합치는 것으로 전체를 절대로 알 수 없다는 것을 의미하니까요.


12.

P 대칭이란 거울상 대칭을 말합니다. 어떤 물리 과정을 그냥 찍은 것과 거울을 통해 찍은 것을 구분할 수 있다는 것을 의미합니다. 여기서 중성미자 P 대칭 깨짐 실험이란 코발트 60 베타붕괴 실험을 말합니다. 많은 사람들이 전혀 예측하지 못했던 결과였고, 파울리는 돈을 걸었다면 많은 돈을 잃었을 것이라 평했다고 합니다.


13.

Crease&Mann의 The Second Creation에 실린 일화입니다. 실제로 파울리가 숙청(?)하고 다닌 유명한 이론물리학자 중에는 양-밀스 이론의 양전닝(C. N. Yang)도 있습니다. '질량이 어디로 갔냐'는 질문이었지요.


14.

물리학자중에는 바람둥이(...)로 이름을 날린 사람이 꽤 되다 보니 핀포인트로 찝어내기가 힘들군요.(...)


15.

디락은 말이 없기로 유명했지요. 밥상에서 완벽한 불어를 구사하기를 강요했던 아버지 때문이라고 합니다. 나중에 성인이 되어서는 불어를 할 수 있어도 불어를 쓰는 일은 없었다고 하네요.


16.

연속으로 소개하는 일화 말고도 디락의 지나친 논리성(?)을 보여주는 또 다른 일화가 있습니다. 하이젠베르크와 일본으로 가는 크루즈 위에 올라탔을 때의 일화로, 하이젠베르크가 여자들과 춤을 추면서 '좋은 여자들과 있다는 것은 즐거운 일이야'라고 말하자 거기에 '어떻게 미리 좋은 여자들인지 아는거지?'라고 답했다고 합니다.(...)


17.

비슷한 말을 수학자도 했다고 알고 있는데, 레퍼런스는 확실하지 않네요. 다른 기억나는 구절로는 '수학은 규칙놀이이다'도 있었는데, 이건 누가 했는지 전혀 모르겠습니다. 여튼, 수학 어려워요...


18.

무언가 아스트랄한데 반박할 수 없는 옳은 말이라는 점에서 좋아합니다(...) 카다피의 해당 멘트는 "It is absolutely impossible to be straight in a world that is crooked"이며, 일단은 여기에서 확인하실 수 있습니다. 참고로 도로변 하수구에서 발견된 그 독재자가 맞아요.


19.

약간의 비하인드 스토리가 있는데, 이 말을 하신 교수님의 전공이 끈이론입니다. 전 이 교수님께 여러 가지 의미로 영향을 받았죠(...).


20.

이것도 Crease&Mann의 The Second Creation에 실린 일화입니다. 실험하시는 분들 존경합니다(...)


21.

파인만 계산이론 강의록 부록에 실린 일화입니다. 여기서 말하는 다이어그램이란 파인만 도형을 말합니다. 파인만과의 나쁜 사이를 자랑했던 겔만은 파인만 도형이라는 이름 대신 슈튀켈버그 도형(Stueckelberg diagram)이라 불렀다고 하죠(...).


22.

상당히 많은 책에서 소개하고 있는 일화인데, Gleick의 Genius: The LIfe and Science of Richard Feynman에도 실려있고 Cropper의 Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking에도 실려있습니다. 정작 제 자신은 이 두 책을 읽어본 적이 없다는 것이 무언가 부조리하군요.(..)



다음은 수학쪽 어록. 오랜만에 태그가 부활했길레 분위기를 바꿔 보았는데, 새로운 글로 뽑아내기엔 너무 적고 누락시키기엔 아까워서 접어둡니다.


수학 어록


더 양을 늘리는 것은 무리인 관계로 태그가 붙어있는 트윗은 삭제처리 하겠습니다(...)

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
불확정성 원리와 상대성이론  (2) 2014.12.22
네 귀중한 교훈들 - 스티븐 와인버그  (6) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28

댓글을 달아 주세요

오늘 아카이브에 들어가봤다가 의외의 글을 발견했다.


http://arxiv.org/abs/1508.05607


de Sitter 공간에서 타키온을 올려놓은 문제인데, 사실 '어 이게 글로 나올 만한 문제였던가?'가 솔직한 감상. 고전적인 타키온 입자는 유한한 시간 동안만 생존한다는게 주요 내용인데(양자적인 경우는 조금 다르게 취급), '유한한 시간 동안 생존한다'는 해석을 빼면 전혀 새로울 것이 없었는지라. 다만 이런 느낌은 내가 타키온을 해석하는 방법 때문인지도 모르겠다.


우선 예전 글들 링크.

2015/01/09 - 일반상대론에서의 쌍둥이 역설

2014/01/11 - Poincare Half Plane 푸앙카레 반평면 (1)

2014/05/25 - Poincare Half Plane 푸앙카레 반평면 (2)


지금 보니 블로그에서 직접적으로 언급한 적이 없다는 것이 살짝 의외인데, de Sitter(이하 dS) 공간과 Anti-de Sitter(이하 AdS) 공간은 사실상 똑같은 공간이다. 푸앙카레 반평면 (1)글에서 마지막에 살짝 언급하고 넘어갔듯, 푸앙카레 반평면 (2)글에서 t와 z의 해석을 뒤바꿔주면 AdS 공간이 dS 공간으로 변한다. 이 말은 AdS 공간에 사는 질량이 있는 물질, 타디온(tardyon)들이 dS 공간의 질량 제곱이 음수인 물질, 타키온들과 똑같이 움직인다는 것을 의미한다. 그 반대로 dS 공간의 타디온들이 AdS 공간의 타키온들처럼 행동한다는 해석 또한 가능하고.


다만 우리가 일반적으로 생각하는 시공간에서는 시간 차원이 하나밖에 존재하지 않아서 완전히 동일하지는 않다. AdS/CFT에서와 같이 일반적으로 AdS 공간을 생각할 경우 한 차원 높은 민코프스키 공간에서 초쌍곡면을 그대로 가져다가 AdS 공간으로 잡지 않고 그 universal cover를 이용하곤 한다. 이 짓을 안 하면 closed timelike trajectory가 나와서 인과율에 문제가 생기기 때문이다. 이건 시간 방향이 1차원이라서 $S^1$의 위상을 갖기 때문에 가능한 일인데, 만약 시간 방향이 2차원이거나 보다 높은 차원을 가질 경우에는 $S^n$의 위상을 갖게 되고, $S^n$은 자기 자신이 universal cover이기 때문에 universal cover를 취해서 closed timelike trajectory를 없애는 것이 불가능해진다. n+1차원의 dS 공간에서 움직이는 타키온을 무작정 측지텐서의 부호를 뒤집어서 AdS 공간에서 움직이는 타디온으로 바꾸어 해석하려면 조심해야 할 필요가 있다는 소리.


여기까지는 주의사항이었으니 타키온에 물리적인 의미를 줄 수 있는 방법을 생각해보자. 일반상대론에서의 쌍둥이 역설에서 설명했듯, 양의 질량 제곱을 가진 물체가 관성운동을 하면서 재는 고유시간은 그 물체가 만든 직선(일반상대론에서 관성운동하는 물체가 그리는 경로는 직선이다)의 길이를 의미한다. 같은 해석을 타키온에 적용하면, 타키온이 관성운동을 하면서 재는 고유시간(tachyonic proper time이라고 부를 수 있을 것이다)은 타키온이 그린 경로의 길이, 혹은 타키온이 지난 경로를 온전히 포함하는 time slice 위에서의 spatial distance에 해당한다.[각주:1]


이 결론을 임의의 n+1 dS 공간에서 움직이는 타키온들에 적용해보면 재미있는 사실을 몇 가지 알 수 있다. 우선 AdS와 dS의 대칭을 이용하면 임의의 점에서 각기 방향으로[각주:2] 쏘아보낸 타키온들은 모두 한 점에서 만난다는 사실을 알 수 있다.[각주:3] FLRW flat 형태의 dS 공간 metric에만 익숙한 분들이라면 약간 놀라울 수 있는 사실. 모든 타키온들이 만나는 점은 타키온을 처음 쏘아보낸 점의 대척점(antipodal point)에 해당한다.


이번에는 좌표를 새로 잡아보도록 하자. 각 방향으로 쏘아보내는 타키온들 중 임의로 하나씩 골라 그 타키온들의 시공간상의 경로가 만들어내는 초평면을 time slice로 하는 좌표계를 만들어보는 것이다.[각주:4]이렇게 좌표계를 건설하는 것은 dS 공간은 등방적이기 때문에 처음에 쏘아보내는 타키온들의 운동량 분포만 충분히 매끄럽게 만들면 얼마든지 가능하다. 정의상 이 좌표계에서 시간에 해당하는 좌표 t가 상수인 초평면 위를 움직이는 타키온들은 한 점에서 만난다.


이렇게 건설한 좌표계에서 t=0인 초평면을 잡고 운동량의 시간 성분이 0인 타키온을 A라고 이름붙인 뒤 쏘아보내기로 하자. 이 타키온은 언젠가는 모든 타키온들이 만나는 점, 대척점에 도달할 것이다. 대척점에 도달한 뒤에도 이 타키온이 그릴 경로를 이어그려 보자. 가장 쉬운 방법은 타키온 A를 쏘아보낼 때 같이 쏘아보낸 타키온 중 대척점에서 A와 정 반대의 운동량을 갖는 타키온 B를 골라낸 뒤, 타키온 A의 경로를 연장해가면 타키온 B의 경로를 거슬러올라가게 된다고 생각하는 것이다. 어차피 t=0인 초평면 위에 모든 운동이 제한되어 있고, 모든 타키온의 경로는 직선이니, 직선의 접선에 대한 정보만 있으면 그 직선을 완전히 기술할 수 있을테니 말이다. 이 두 해석을 조합하면 관성운동하는 타키온은 처음 운동을 시작한 점으로 다시 돌아오게 된다는 결론을 내릴 수 있다. 어떻게 생각해 보면 당연한 결과이다. AdS 공간에서 universal cover를 취하지 않을 경우엔 closed timelike geodesic이 만들어지니, dS 공간에서는 closed spacelike geodesic이 만들어지는 것을 예상할 수 있었어야 한다.


결론적으로, 해당 arXiv 글의 결과는 'dS 공간은 모든 spacelike geodesic은 loop를 만든다'는 기하학적인 명제를 다르게 해석한 것이라고 할 수 있다. 타키온이 만드는 경로가 bound되어 있으니 무한한 시간동안 살아남지 못하는 것은 당연한 결과인 셈이다.

  1. 이 time slice가 시간에 해당하는 좌표가 상수인 초평면일 경우 해당 좌표계에서 타키온의 시간 성분 운동량은 0이다. [본문으로]
  2. 각기 방향으로 쏘아보낸다는 것은 임의의 운동량으로 쏘아보낸다는 의미이다. [본문으로]
  3. n이 1이 아닐 때 성립하는 것은 타키온들의 움직임을 1+1차원 평면 위에 한정시켜 이 평면 위의 모든 타키온들이 같은 타키온 고유 시간에 만난다는 것을 보인 후 이 곡면을 돌려서 나머지 차원 방향에 대해서도 성립한다는 것을 보이면 된다. [본문으로]
  4. 이건 타디온들을 이용해 synchronous frame을 만드는 과정과 거의 동일하다. [본문으로]

댓글을 달아 주세요

수업 들어가기 전 양자정보 전공하는 친구가 던져준 문제.


자연수 $m$으로 나열한 연산자(operator)들 $M_m$들이 다음 두 조건을 만족한다.

1. $\sum M_m^\dagger M_m = I$

2. $M_m^\dagger M_m = M_m $


이 때, 연산자 $M_m$들이 사영연산자(projection operator) $P_m$임을 증명하라. 사영연산자들은 다음 조건을 만족한다.

1. $\sum P_m = I$

2. $P_mP_n = P_m\delta_{mn}$

3. $P_m^\dagger = P_m$


연산자들이 작용하는 벡터 공간이 유한 차원이라면 쉽게 증명하겠는데, 무한 차원에서는 잘 모르겠다. 유한 차원이 쉬운 이유는 고유벡터(eigenvector)가 항상 하나라도 존재해야 하기 때문. 무한차원에서는 이게 안 되는데, 좋은 예로 harmonic oscillator의 creation operator가 있다. number state를 기저로 잡는 Fock basis에서 계산해보면 영벡터가 사실상 유일한 creation operator의 고유벡터가 된다(...)


먼저 2번 조건에 Hermitian adjoint를 취해 $M_n^\dagger=M_m$이란 조건을 얻는다. 사영연산자의 3번 조건 해결. 이 조건은 모든 $M_m$이 대각화 가능하다는 것을 의미하기도 한다.


위에서 구한 식을 이용해 2번 조건을 정리하면 $M_mM_m=M_m$이란 관계식을 얻는다. 연산자 $M_m$의 고유값(eigenvalue)이 0이거나 1이라는 소리. 따라서 임의의 벡터 $\left|v\right>$에 대해 $\left< v \middle| M_m \middle| v\right> \geq 0$가 성립.


마찬가지로 1번 조건을 정리하면 $\sum M_m=I$란 조건을 얻는다. 이 조건에 $M_m$의 고유벡터 $v_m$을 가져다가 양변에 취하면 $n\neq m,\left< v_n \middle| M_m \middle| v_n \right> = 0$이란 조건(이 조건을 a라 부르자)을 얻는다(위 조건 참조).


이제부터는 간단하다. 모든 $M_m$이 대각화되어 있고 대각선의 값이 1 아니면 0인 기저를 구하는 것. 우선 $M_1$을 가져다가 고유벡터(들)을 구한다. 고유벡터가 하나가 아닐 경우 Gram-Schmidt 과정을 거쳐서 직교하는 고유벡터(들)로 나눈다. 이 벡터(들)을 기저벡터 1(혹은 갯수에 따라 2, 3, 등등)로 잡는다.


다음엔 $M_2$를 가져온다. $M_m$의 고유벡터를 $\left| v_2 \right>$라고 할 때, $\left| v_2 \right>$를 $M_1$의 고유벡터 성분 $\alpha\left| v_1 \right>$과 $M_1$의 고유벡터에 수직한 성분 $\beta \left| w \right>$(이 성분의 $M_1$에 대한 고유값은 0이다)으로 나눈다. 크기가 1일 것이란 조건에서 $|\alpha|^2+|\beta|^2=1$이란 조건을, 조건 a에서 $|\alpha|^2=0$이란 조건을 얻으므로 $\left| v_2 \right>$는 $M_1$의 고유벡터들과 수직하다는 사실을 알 수 있다. 다음은 $M_1$에서와 마찬가지로 $M_2$의 고유벡터들을 기저에 포함시키면 끝. 이 과정을 계속 반복하면 모든 $M_m$이 diagonal인 orthonormal basis를 구성할 수 있고, 이 basis에서 각 $M_m$의 대각선 성분은 1 아니면 0이며, 서로 다른 $M_m$은 대각선 성분 중 1을 공유하지 않는다는 사실을 알 수 있다.




문제의 $M_m$은 '측정'을 의미한다고 추정하고 있다.[각주:1] $\left| v \right>$란 벡터에 해당하는 상태에 있는 계에 대해 측정을 행했더니 $m$번째 가능한 결과값이 튀어나왔을 때 $\left| v \right>$ 벡터는 $ M_m \left| v \right>=\left| M_m v \right>$란 상태로 변했다는 것을 의미. 2번 조건은 $m$번째 측정값이 나올 확률 $\left< M_m v \middle| M_m v \right>/\left< v \middle| v \right>$이 $M_m$의 기댓값 $\left< v \middle| M_m \middle| v \right>/\left< v \middle| v \right>$와 같을 것을 요구하는 것이고, 1번 조건은 측정값이 나올 확률들을 다 더하면 1이 될 것 혹은 측정하게 되면 어떤 측정값이든 하나는 얻어질 것을 의미한다. 측정에 해당하는 연산자 $M_m$들은 unitary할 수 없다(projection operator는 당연히 unitary하지 않다)는 것을 보여주는 것이 목적인 모양.


2번 조건을 보이기 위해서는 벡터공간의 임의의 벡터 $\left| v \right>$에 대해 연산자 $A$의 기댓값이 $\left< v \middle| A \middle| v \right>=0$란 조건을 만족할 경우 항등적으로 $A=0$이란 것을 증명하면 된다. 이건 유한 차원에서는 매우 쉬운데, Schur decomposition을 통해 $A$를 upper triangular로 만드는 orthonormal basis를 잡을 수 있고, upper triangular로 바꾸었을 때 대각 성분이 전부 0임은 자명하며, 이로부터 (1,2)성분, (1,3)성분, (2,3)성분 등등이 0이어야 한다는 것을 계산을 통해 보일 수 있기 때문이다(그렇지 않다면 기댓값이 0이 아닌 벡터 $\left| v \right>$를 찾을 수 있다).

  1. 측정과 관련된 내용을 읽고 있다고 했고, 던져준 문제에 M이 들어가있는게 딱 measurement란 삘이 와서. 이 문제가 나온 책을 읽어본 것은 아니다. [본문으로]

댓글을 달아 주세요

지구가 둥글다는 것을 알았던 옛 사람들은 태양이 지구를 도는 것에서 낮과 밤이 생기는 이유를 찾았습니다. 이를 천동설이라고 합니다. 갈릴레오 갈릴레이가 "그래도 지구는 돈다"라고 말했을 때는 '지구의 태양에 대한 회전'과 '태양의 지구에 대한 회전'이 서로 충돌하던 시절이었죠. '회전과 우주의 구조'라고 말했으니 이 대립을 생각하시는 분들도 많을 것입니다. 하지만 이 글에서는 조금 다른 이야기를 해 보려고 합니다.




회전을 정의하기


우선은 다루기 쉽게 회전을 수학적으로 정의해 보도록 하겠습니다. 중학생 수준을 넘는 수식은 쓰지 않을 예정이니 수학이라는 단어에 겁을 먹지 않으셔도 됩니다. 다만 얼마 전까지만 해도 고등학교 정규교육과정에 포함되어 있던 행렬 이야기는 할 예정이니 '행렬이 무엇인가' 정도는 알고 계셔야겠군요.


가장 먼저 필요한 것은 '공간을 수학으로[각주:1] 나타낼 방법'입니다. 이걸 '좌표'라고 부르죠. 어떤 물건의 위치를 문자(여기서는 숫자와 문자를 구분하지 않겠습니다)로 나타내는 규칙입니다. 토런트같은 P2P에서 파일의 위치를 나타내는 주소나 인터넷 페이지의 DNS 주소를 구할 때 "좌표 찍어줘"라고 말하는 것을 생각하시면 되겠습니다.


우리가 사는 공간에서는 세 숫자면 공간상의 모든 점을 표현할 수 있습니다. 예컨데 '내가 앉은 위치에서 동쪽으로 세 칸, 북쪽으로 두 칸, 위로 네 칸'으로 한 위치를 특정지을 수 있지요. 이를 두고 '우리는 3차원 공간에 산다'라고 말합니다. 한 물건의 크기를 적을 때 높이x너비x깊이 이 세 숫자로 크기를 적을 수 있는 것은 같은 이유에서입니다. (변위)벡터는 이 세 쌍의 숫자를 말합니다. 많은 경우 벡터를 시각화하기 좋도록 원점(내가 앉은 위치)에서 목표점(특정지을 위치)까지 이은 화살표로 생각하는데, 벡터의 크기는 이 화살표의 길이가 되지요.


이제 수학적으로 회전을 정의할 수 있겠네요. 회전이란 3차원 공간상의 벡터들을 1. 벡터의 크기를 보존하고 2. 벡터간 각도를 보존하는 3. 선형변환 입니다.[각주:2] 선형은 다른 의미가 아니고 $a$를 $f(a)$로 보내는 변환 $f$에 $a+b$를 집어넣으면 $f(a+b)=f(a)+f(b)$를 만족한다는 뜻입니다. 직선의 방정식처럼 결과가 단순하게 더해진다는 뜻이지요.


'선형'이라는 말이 나오는 순간부터(무한차원이 아닌 한) 우리는 행렬을 생각해야 합니다. 모든 선형변환은 행렬로 나타낼 수 있기 때문입니다. 여기서는 세 숫자를 세 숫자로 보내는 행렬이 되어야 하므로 우리가 생각해야 할 행렬은 3x3 행렬이며, 위에서 말한 세 조건들을 만족하는 회전을 나타내는 행렬들의 집합에는 O(3)라는 이름이 붙어 있습니다. 이 집합에는 거울상 변환에 해당하는 행렬도 들어있는데, 거울상 변환이란 거울에 비추었을 때 상이 뒤집어지는 것처럼 왼손을 오른손으로 보내는 변환들을 말합니다. 일반적으로는 이를 제거한 행렬들의 집합인 SO(3)를 주로 고려합니다. 어떻게 회전하든 오른손이 왼손과 포개어지지는 않으니까요.


SO(3) 집합이라는 표현할 대상을 찾았으면 표현할 방법을 구상해야겠지요. 이 집합의 한 원소(회전을 나타내는 어떤 행렬이 되겠죠)를 나타내는 한 가지 방법은 위도와 경도를 이용해 지구 위 위치를 나타내듯 두 각도를 이용해 회전의 중심으로 잡을 축을 찾고 그 축에 대한 회전각도를 적어주는 것입니다. 여기에는 숫자 셋이 필요하죠(위도, 경도, 회전각). 중요한 것은 숫자 셋이면 충분하다는 것입니다.


더 보기 쉽게 SO(3) 집합의 한 원소를 나타내는 방법은 오일러 각입니다. 오일러 각은 축 세 개를 지정하면 각 축에 대한 회전만으로 모든 회전을 구현할 수 있다는 것에서 출발합니다. 마찬가지로 숫자 셋(회전각 세 개)으로 모든 회전을 나타낼 수 있지요. 흔히 보는 자이로스코프에 회전축이 단 세 개만 존재하는 것과도 관련이 있습니다.


http://en.wikipedia.org/wiki/File:Gimbal_3_axes_rotation.gif


학부 2학년 역학 시간이나 동역학 시간에는 보통 zxz 오일러 각을 배웁니다. z축을 중심으로 전체를 한번 돌린 뒤 x축을 중심으로 한번 더 돌리고 다시 z축에 대해서 돌리는 것이죠. 보통은 팽이의 움직임이나 인공위성의 자세를 묘사하기 위해서 사용합니다. 반면 항공동역학 시간에는 xyz 오일러 각을 배웁니다. z축을 중심으로 돌린 뒤 y축으로 돌리고 다시 x축으로 돌리는 방법이죠. 다른 각을 쓰는 이유는 이 조합이 항공기의 세 횡운동(yaw, pitch, roll)을 나타내는데 더 편해서입니다.


오일러 각의 문제점은 특이점이 존재한다는 것입니다. 회전 전체의 집합 SO(3)에 대해서 우리는 '비슷한 회전'이란 것을 생각해 볼 수 있겠죠. 대부분의 회전에 대해서는 비슷한 회전으로 바뀔 때 오일러 각이 연속적으로 변합니다. 하지만 특정 회전에 대해서는 오일러 각이 불연속적으로 변합니다. 이를 두고 Gimbal lock이라 부릅니다. 이 문제가 생기면 제어 프로그램이 맛이 가기 때문에 이 문제를 피하는 것이 중요합니다.


문제가 있으면 해결하는 방법도 있어야겠죠. 이 문제를 해결하는 한 방법은 위에서 처음 제시한 (위도, 경도, 회전각) 조합을 이용하는 것입니다. 이 방법을 택할 경우 3x3 행렬들의 곱셈, 즉 아홉 숫자의 곱을 계산해야 합니다.


다른 방법은 사원수(quaternion)를 이용하는 것입니다. 이 방법은 단 네 숫자의 곱셈만을 이용합니다.




회전을 나타내는 다른 방법: 사원수


사원수는 간단하게 말하자면 복소수의 확장입니다.[각주:3] 복소수에 단위허수 두개를 더해서 숫자'처럼' 만든 물건이죠. 숫자'처럼'이라고 하는 이유는 행렬처럼 교환법칙( $ab=ba$)이 성립하지 않기 때문입니다.(다만 실수에 대해서는 교환법칙이 성립) 해밀턴 경이 아일랜드 왕립학회에 가다 떠올렸는데 마땅한 적을 곳이 없어서 지나가던 다리 위에다 사원수의 기본 아이디어를 새겼다는 일화가 전해지죠.


다리 위에 새긴 공식은 $i^2 = j^2 = k^2 = ijk = −1$ 으로, 단위허수 $i,j,k$ 간의 관계식입니다. 이 관계식으로부터 단위허수 사이의 관계식을 얻을 수 있는데, 가령 $ijk=-1$의 양 변 좌측에 $-i$를 곱하면

\[jk=(-ii)jk=(-i)(ijk)=(-1)(-i)=i\]


를 얻습니다.비슷한 과정을 반복하면 $ij=-ji=k, ki=-ik=j, jk=-kj=i$라는 관계식을 얻습니다.[각주:4]


사원수의 크기와 역수에 대해서


회전은 크기가 1인 사원수(단위 사원수라 부릅니다)를 이용해 나타낼 수 있습니다.[각주:5] 벡터 $(e,f,g)$를 사원수 $v=ei+fj+gk$로 나타내면 단위 사원수 $q$를 이용해 회전된 벡터 $(e',f',g')$를 $e'i+f'j+g'k=qvq^{-1}$로 나타낼 수 있습니다.[각주:6] 구체적인 방법은 http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation를 참조하시는 편이 낫겠네요.


여기에 재미있는 점이 하나 있는데, 크기가 1인 사원수의 집합은 4차원 공간에서 원점으로부터 거리가 1인 구면, 그러니까 3차원 구면이 됩니다( $a^2+b^2+c^2+d^2=1$. 3차원 구면은 $S^3$란 기호를 써서 나타냅니다.) 따라서 우리는 회전의 집합 SO(3)가 3차원 구면 $S^3$의 구조를 가지리라고 예상할 수 있습니다. 정말로 그럴까요?


애석하지만 조금 다른 구조를 갖습니다. 왜냐하면 $q$를 이용한 회전과 $-q$를 이용한 회전이 같거든요. '3차원 구면의 대척점 쌍'에 대해 하나의 회전이 정의된 것이죠. 이는 다음 식으로부터 알 수 있습니다.

\[(-q)v(-q)^{-1}=(-1)qv(-1)q^{-1}=(-1)^2 qvq^{-1}=qvq^{-1}\]


SO(3)란 집합은 '3차원 구면의 대척점 쌍'을 원소로 갖는 것이죠. 이런 공간을 사영공간(projective space) $RP^3$로 부릅니다. $RP^3$는 '4차원 공간의 원점에서 직선을 쏘는 방법'들의 공간이기도 합니다.


회전을 나타내는 사원소들의 집합과(3차원 구면 $S^3$의 구조) 실제 회전을 나타내는 행렬의 집합 SO(3)는(사영공간 $RP^3$의 구조) 구조상 미묘한 차이를 보이는 것이지요. 놀랍게도 이 차이는 우리가 보는 세상이 우리가 보는대로 구성되는 것과도 관련이 있습니다.




회전의 미묘한 차이와 우주의 구조


지금까지 회전을 나타내는 두 가지 방법(오일러 각/사원수)이 있으며, 이 중 사원수를 이용한 방법은 오일러 각을 이용한 방법보다 실제로는 더 많은 경우의 수를 가지고 있다는 것을 보여드렸습니다. 재미있게도 이 차이는 물리학에서 입자를 구분하는 방식, 그리고 우주의 모습이 지금 이 모습인 것과 관련이 있습니다.


우선은 회전의 집합을 제대로 규정해야겠지요. 먼저 말씀드렸다시피 3차원 공간에서 회전의 집합은 SO(3)가 됩니다. 하지만 실제 회전에 대응되는 사원수가 나타내는 집합은 SU(2)라고 부릅니다. SU(2)는 3차원 구면 $S^3$의 구조를 가지며, '일반적인 회전 집합' SO(3)에 대해 SU(2)의 두 원소가 SO(3)의 한 원소에 대응되겠죠(사원수 $q$와 $-q$가 같은 회전이므로). 어떤 면에서는 SU(2)라는 집합이 SO(3)라는 집합을 '두 번 덮는다'고 표현할 수 있습니다. 이런 경우를 두고 'SU(2)가 SO(3)의 덮개공간(covering space)이다'라 합니다.


SU(2) 집합은 무엇인가


이런 수학적인 장난(?)을 하는 이유는 보통은 느끼기 힘들지만 회전은 분명 흔적을 남기기 때문입니다. 이 흔적은 다음과 같은 실험으로 확인할 수 있습니다. (머플러나 리본처럼) 면을 가진 끈을 준비해 책에 한 끝을 붙이고 다른 끝을 공중 어딘가에 고정합니다. 책을 바닥에 평평하게 두고 한 바퀴 돌리게 되면 끈은 꼬이겠지요. 하지만 '같은' 방향으로 한번 더 돌리면 끈이 풀립니다. 이를 Balinese plate trick이라고 부릅니다. 다음 동영상에서 컵이 계속 위쪽으로 향하도록 한 뒤 회전시킬 때 한 번 회전하면 팔이 꼬이지만 두 번 회전하면 팔이 다시 풀리는 것으로 확인할 수 있죠.



SU(2)와 SO(3)의 2대 1 대응은 '이 차이를 보는가/보지 못하는가'를 나타낸다고 생각하시면 됩니다. 홀수 번 회전과 짝수 번 회전을 구분할 수 있으면 SU(2), 구분하지 못하면 SO(3)가 되는 것이지요.


전자나 양성자와 같은 페르미 입자(fermion)는 홀수 번 회전과 짝수 번 회전을 구분하는 입자들입니다. 이 입자들은 한 바퀴 회전할 때 마다 -1이란 부호를 획득합니다. 광자나 중력자(아직 관찰되지 않았습니다)와 같은 보즈 입자(boson)는 둘을 구분하지 못합니다. 이 차이는 상당히 중요한 결과를 가져옵니다. 두 입자의 자리바꿈과 두 입자의 회전이 동등하기 때문에 페르미 입자의 '회전을 구분하는 특징'은 파울리 배타원리로 나타나게 됩니다. 파울리 배타원리는 '구분할 수 없는 페르미 입자가 같은 상태에 존재하는 것'을 금지합니다. 구분할 수 없는 페르미 입자 두 개가 자리를 바꾸면서 얻는 -1이란 부호가 파동함수의 상쇄간섭을 일으키기 때문입니다.[각주:7] 반면 보즈 입자에 대해서는 파울리 배타원리가 적용되지 않기 때문에 '구분할 수 없는 보즈 입자가 같은 상태에 존재하는 것'이 얼마든지 가능합니다. 극단적인 경우에는 모든 구분이 불가능한 보즈 입자들이 한 상태에 밀집하며, 이를 보즈-아인슈타인 응축이라 부릅니다.


파울리 배타원리의 가장 중요한 결과는 주기율표입니다. 다른 종류의 원자가 서로 다른 화학적 성질을 갖는 이유는 전자가 페르미 입자라서 같은 상태에 두 입자가 존재할 수 없기 때문에 서로 다른 궤도를 갖고 원자핵을 돌기(물론 엄밀하게 말할 때 '도는 것'은 아닙니다만 다른 궤도를 갖고 있다는 것이 중요합니다) 때문입니다. 만약 전자가 보즈 입자였다면 전자는 모두 가장 낮은 에너지를 갖는 궤도에 안착할 것이고(파울리 배타원리가 이런 '붕괴'를 막습니다) 모두 같은 궤도에 있기 때문에 화학 반응이 일어나지 않겠지요.


또 다른 중요한 결과는 항성 핵과 중성자별의 존재입니다. 연소가 끝난 항성 핵은 가장 안정적인 철 원자로 구성되어 있고 철 원자의 전자들은 페르미 입자이기 때문에 '열운동에 의한 압력' 및 '파울리 배타원리의 효과'를 받아 중력으로 붕괴하지 않습니다. 중성자별은 연소가 끝난 별들의 원자핵이 페르미 입자인 중성자로 변해 마찬가지의 원리로 붕괴하지 않지요. 만약 파울리 배타원리의 효과를 받지 않는다면 이 천체들은 연속적으로 붕괴하여 블랙홀이 됩니다.


우리 모두는 별의 잔해에서 태어났습니다. 우리 몸을 구성하는 탄소나 산소와 같은 원소들은 별들의 핵에서 생성되었으니까요. 파울리 배타원리의 효과로 천체들이 불연속적으로 붕괴하는 것이 중요한 이유는 별들이 불연속적으로 붕괴하면서 핵에서 만들어진 원소들을 우주 공간으로 날려보내고, 이로부터 생명이 시작되기 때문입니다. 철 원자로 이루어진 항성의 핵을 지탱해주는 파울리 배타원리의 효과가 중력을 이겨내지 못하는 순간 항성의 핵의 철 원자 핵은 전자를 흡수하며 중성자가 되고, 이 과정에서 부피가 줄어들기 때문에 항성 핵은 붕괴하기 시작합니다. 하지만 중성자도 부피를 갖기 때문에 무한히 붕괴하지는 않지요. 원자 핵 밖에서 항성의 중심으로 낙하하던 물질들은 새롭게 만들어진 중성자 핵이라는 벽에 부딪치고 별 밖으로 튕겨나가게 됩니다. 이 과정을 초신성이라 부릅니다. 항성이 연속적으로 붕괴했다면 일어나지 않았을 일들이지요.


우리가 보는 세상이 우리가 보는 모습대로 있는 이유는, 그리고 우리가 존재할 수 있는 이유는 얼핏 보면 드러나지 않는 회전의 미묘한 차이를 구분할 수 있는 소립자들의 존재 때문인 셈입니다.





트위터에 날린 융단폭격을 조금 정리해봤습니다. 융단폭격의 우두머리(?)는 다음 세 트윗:


https://twitter.com/AstralDexter/status/568795182709125120

https://twitter.com/AstralDexter/status/568802072251887616

https://twitter.com/AstralDexter/status/568809524733222912


자이로스코프 이야기를 하려다 하려던 자이로스코프 이야기는 안 하고 샛길로 새어버렸네요 -_-;; 해당 내용을 추가하기는 늦은 듯 해서 다음에 기회가 생기면 이야기하기로 했습니다.

  1. 정확히는 숫자입니다. 앞으로 각주를 달 내용은 글의 내용과 관련만 있고 흐름과는 상관없는 내용들만 쓸 예정이므로 읽지 않으셔도 좋습니다. 어느 정도 배경지식이 있는 사람들을 위한 이야기라서요. 접어둔 내용은 글을 이해하시는 데 필요할 수 있는 정보들입니다. [본문으로]
  2. 3은 사실 연속성(비슷한 벡터는 비슷한 벡터로)과 같이 생각해야 하는 조건입니다. 연속성이란 조건을 날려버리면 '구 하나를 쪼개고 잘 합쳐 둘로 만드는' 것도 가능합니다. Banach-Tarski 역설을 참조: http://en.wikipedia.org/wiki/Banach-Tarski_paradox [본문으로]
  3. 복소수에서 사원수로 확장하는 과정을 이용해서 수 체계를 계속 확장하는 것이 가능합니다. http://en.wikipedia.org/wiki/Cayley-Dickson_construction [본문으로]
  4. 사원수의 경우 Gibbs가 벡터 연산을 개발하기 전까지 물리학의 기본 언어로 쓰일 정도로 물리에 영향을 많이 미쳤습니다. 이후 사원수와 같은 방향으로 나아간 것에는 geometric algebra란게 있는 모양입니다만 공부해보진 않았네요. 참고로 xyz 단위벡터를 쓸 때 ijk를 쓰는 것은 사원수의 흔적입니다. [본문으로]
  5. 바로 다음 파트에서 다룰 예정이지만, 단위 사원수의 집합은 SU(2)와 동일합니다. [본문으로]
  6. 앞선 각주를 읽으셨고 게이지 장론을 공부하셨다면 회전을 나타내는 방법 중 SO(3)는 fundamental representation에, SU(2)는 adjoint representation에 해당한다는 것을 확인할 수 있습니다. [본문으로]
  7. 공간이 2차원이 되면 한 바퀴 회전할 때 얻는 부호가 1 또는 -1로 제한될 필요가 없습니다. Anyon이 이런 경우를 다룹니다. [본문으로]

댓글을 달아 주세요

페이스북 타임라인에 쌍둥이 역설과 관련이 깊은 질문들이 올라와서 이런저런 생각을 해봤다. 이 글은 대충대충 쓸거라 일반상대론에 대한 지식이 어느 정도 있어야 읽을 수 있다는 것을 미리 알려드리며.




쌍둥이 역설이야 다들 아실테니 설명을 제끼기로 하자. 그렇다면 쌍둥이 역설의 기하적인 의미는 무엇일까? (약간의 비약을 넣어) 기하적으로 접근하면 '평면에서는 두 직선을[각주:1] 두 번 교차시킬 수 없다'는 것을 의미한다.


두 직선을 두번 교차하게 만드는 방법은 공간을 휘는 것이다. 예컨데 구에서 서로 다른 직선 둘을 그리면 두 점에서 교차하게 된다. 일반상대론에서는 중력이 공간을 휘어주는 역할을 하고, 직선은 중력을 따라 자유낙하하는 물체의 궤적이다. 일반상대론에서 직선의 길이는 자유낙하하는 물체의 고유시간이다.


이제 휘어진 공간에서 두 직선의 길이를 비교해 보자. 가장 간단하게 생각해볼 수 있는 방법은 지구를 이용해 공간을 휜 뒤 A는 지구의 원궤도에, B는 머리 위로 똑바로 던져서 다시 받는 궤도에[각주:2] 놓되 조건을 잘 맞추어서 같은 시간 같은 점에서 출발한 A와 B가 조금 뒤 같은 점에서 다시 만나도록 하는 것이다. 같은 시공간상의 점에서 출발한 두 직선-A와 B가 만드는 시공간상의 궤적-이 다시 한 점에서 만났을 때, 두 직선의 길이는 과연 같을 것인가? (계산을 해보지는 않았지만) 일반적으로 다르리라고 예상할 수 있다. 쌍둥이 역설일까? 물론 아니다. A가 그린 직선과 B가 그린 직선은 분명히 다르기 때문에[각주:3] A가 그린 직선의 길이와 B가 그린 직선의 길이가 다른 것이 문제가 될 이유는 없다.


문제를 더 꼬아보자. A가 그린 직선과 B가 그린 직선을 구분할 수 없다면? 그런 종류의 공간으로 더 시터르 공간(de Sitter space: dS)와 반-더 시터르 공간(anti-de Sitter space: AdS)이 있다.[각주:4] 이 공간들 위에서 두 물체 A와 B가 직선을 그리며 운동할 때 A가 그리는 직선과 B가 그리는 직선은 근본적으로 구분이 불가능하다. 따라서 쌍둥이 역설이 생기지 않으려면 (1) A가 그리는 직선과 B가 그리는 직선은 절대로 만나지 않던가(dS공간이 여기에 해당한다) (2) A가 그리는 직선과 B가 그리는 직선이 만났을 때 두 직선의 거리는 똑같아야 한다(AdS공간이 여기에 해당한다).


재미있는 점은 (2)의 경우 A와 B의 상대속도에 무관하게 같은 고유시간 뒤에 다시 만나게 된다는 부분. 이건 다음과 같이 증명할 수 있다. 우리는 A 위에 앉아있다고 하고, B와 C를 준비한다. 이제 B와 C를 (A에 대해) 같은 속력으로 날리되 방향은 다르게 한다. 그리고 공간은 대칭적이므로 B와 C는 동시에 A에 도착하게 된다. 그런데 B와 C 모두 관성운동을 했으므로, 우리는 B나 C 위에 앉아서 이 과정을 구경해도 된다. C에서 이 과정을 볼 경우 A와 B는 일반적으로 다른 속력을 가지고 관성운동을 하므로, 임의의 상대속력을 갖고 출발한 두 관성운동은 항상 같은 고유시간 뒤에 다시 만나게 된다.[각주:5]




결론: 일반상대론에서의 쌍둥이 역설으로부터 'AdS 공간에서의 한 점에서 출발하는 모든 timelike geodesic은 다른 한 점으로 수렴하며, 그 고유길이(고유시간)은 모두 같다'는 결론을 내릴 수 있다.




P.S. 고전역학에서는 harmonic oscillator가 정확히 똑같은 현상을 보인다. 우주상수를 넣고 아인슈타인 방정식의 구면대칭적인 해를 찾을 때 나오는 답의 $g_{00}$항이 1(또는 convention에 따라 -1)에서 벗어나는 정도를 Newtonian potential로 해석할 수 있는데, 이 potential 항이 harmonic oscillator의 potential을 갖는다는 것과 연결지어 생각할 수 있다.

  1. 상대론에서 '중력(0일 수도 있다)만을 받으며 운동'하는 점입자의 궤적은 직선(geodesic - 정확히는 time-like geodesic)이다. 단지 3차원에서 사는 사람의 눈에는 직선으로 보이지 않는 것일 뿐. [본문으로]
  2. purely radial motion이라고 생각하면 된다 [본문으로]
  3. 예를 들어 A와 B는 각각 자유낙하를 하면서 공간의 리만 곡률텐서의 값을 읽어볼 수 있다. A가 읽는 곡률은 일정하겠지만 B가 읽는 곡률은 위치에 따라 달라진다. [본문으로]
  4. 관성운동(본문의 직선을 그리는 운동)을 하는 모든 입자가 자신이 정지한 좌표계에서 똑같은 공간을 보려면 시공간의 곡률을 만들어주는 stress-energy tensor가 metric tensor의 상수배여야 한다. maximal symmetry를 가정하면 Lorentz boost에 해당하는 임의의 좌표변환을 하더라도 모양이 변하지 않는게 metric밖에 없기 때문. [본문으로]
  5. 정확한 증명(a.k.a. 수학적 증명)을 하려면 (v의 속력에서 시작했을 때/c=1) 상대속도 0에서 상대속도 2v/(1+v)까지의 모든 운동이 같은 고유시간에 도착한다는 것을 보인 뒤(각도 문제다), 이걸 반복하면 임의의 u<1도 포함된다는 것을 보이면 된다. [본문으로]

댓글을 달아 주세요

Lense-Thirring effect가 과제로 나와서 이책 저책을 찾아보다가 Fermi-Walker transport란걸 알게 되었다. 검색을 조금 돌려보니까 이런 논문도 나오는데, 이 논문까지 읽을 필요는 없을듯. Fermi-Walker transport의 식은 다음과 같이 주어진다.

\[\frac{D_F A^{\mu}}{Ds}=(w^{\mu} u_{\nu}-u^{\mu}w_{\nu})A^{\nu}\] \[\bold{u}=\frac{d}{ds}, \bold{w}=\nabla_{\bold{u}}\bold{u}\] \[s \text{ is (natural) parametrisation of the curve; }\bold{u}\cdot\bold{u}=1\]


notation이 이것저것 섞여있긴 한데 알아들을 분들은 다 알아들으리라 믿고(...)


그래서 이게 뭐냐? 위키백과 항목에는 '평행이동(parallel transport)의 일반화'라고 서술되어 있지만 그 말은 별로 옳지 않아 보인다. 그림으로 보는게 가장 이해하기 편할 듯.



평행이동을 곡면좌표계(curvilinear coordinates)에서 유도하는 과정을 보면 위의 그림이 된다.



그리고 이게 Fermi-Walker transport. 이동시킬 곡선에 평행한 성분은 계속 평행하고 수직한 성분은 계속 수직하게 이동시키는 과정. 따라서 이동시키는 곡선이 '직선'(혹은 측지선-geodesic)인 경우 Fermi-Walker transport는 평행이동과 같아진다. Fermi-Walker transport의 식 유도는 벡터 $\bold{A}$를 가져다가 곡선의 접선(tangent)인 $\bold{u}$에 평행한 성분과 수직한 성분으로 나눈 뒤 수직한 성분의 변화율을 $\bold{u}\cdot\bold{A_\perp}=0$을 미분해서 얻으면 된다. 감이 안 잡히면 LPPT Problem book in Relativity and Gravitation의 문제 11.7에서 풀어주고 있으니 그 책을 확인해보는 것도 좋을듯. 이 책은 어둠의 경로가 아니더라도 http://www.nrbook.com/relativity/에서 볼 수 있다.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    첫번째 그림에서 주어진 곡선은 그냥 아무 곡선이고, geodesic이 아닌 건가요?

    2014.12.26 21:44 신고

일반물리학2 기말고사에서 양자역학과 (특수)상대론을 다루는 것을 보고 멘붕했는데(전 왜 배운 기억이 없을까요 =_=;;)[각주:1] 채점을 맡은 문제에서 틀린 사람이 너무 많아서 해설지를 써보았습니다. 스캔 상태가 엉망인 것과 악필인 것은 감안하시고...



sol.pdf





4.(a) 폭이 $L$인 1차원 무한 포텐셜 우물의 내부( $0<x<L$)에서 자유로이 움직일 수 있는 양자입자가 있다. 양자입자의 바닥상태 에너지가 0이 될 수 없음을 불확정성 원리를 이용해서 간단히 설명하라.


이 문제는 하이젠베르크의 불확정성 원리에 대한 이해를 물어보는 문제였습니다. 표준적인 방법은 위치-운동량 불확정성 원리를 이용하는 것인데, 사람에 따라서는 시간-에너지 불확정성을 이용하더군요. 문제는 시간-에너지 불확정성은 위치-운동량 불확정성과는 전혀 다르게 해설한다는 것이지만요(그래서 전부 오답처리).




8. (a) 철수가 광속에 가까운 속력 $v$로 일정하게 달리는 우주선을 타고 먼 별을 향해 여행을 떠난다. 지상에 남아 있는 영희는 철수에게 일정한 간격 $T$로 빛신호를 보내 안부를 전한다. 우주선에 타고 있는 철수는 빛 신호를 얼마의 간격으로 받고 있을까?


평범한 상대성이론 문제입니다. 상대론 문제를 풀 때 가장 중요한 건 "내가 누구 관점에서 문제를 풀고 있더라?"를 끝까지 기억하는거죠. 이게 엉켜버리면 난리가 나고요. 여러가지 방법으로 답을 구하는 방법을 적어보았습니다.


사실 마지막 '기하학적 풀이'에는 4-벡터를 이용한 해도 적어볼까 했지만 처음부터 설명하는건 무리라고 판단해서 생략. 사실 4-벡터를 내적해서 값을 구하는 짓을 하게 되면 불변량들을 가지고 숫자놀음을 하게 되기 때문에 식이 절대로 엉키지 않습니다. Landau 2권에서 retarded potential을 구할 때 이 방법을 쓰는 것으로 기억하고 있는데, 가장 논리를 따라가기 힘들었던 파트중 하나였죠.

  1. 물론 제가 들은건 1학년 상대로 4-벡터를 가르치던 고급물리였습니다만(다같이 멘붕) 양자는 한 기억이 없어요... [본문으로]

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
불확정성 원리와 상대성이론  (2) 2014.12.22
네 귀중한 교훈들 - 스티븐 와인버그  (6) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28

댓글을 달아 주세요

  1. 지나가던 사람  댓글주소  수정/삭제  댓글쓰기

    에너지-시간 불확정성 원리로 왜 해결할수 없다는게 이해가 안가는데 혹시 더 자세하게 설명해주실수 있으신가요?

    2017.08.16 22:05 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2017.08.23 23:32 신고  댓글주소  수정/삭제

      에너지-시간 불확정성은 '시스템이 특정한 에너지를 갖는 처음 상태에서 Δt만큼의 시간 동안 외부의 영향을 받아 나중 상태로 변화했을 때 나중 상태들이 갖는 에너지의 분포가 ΔE만큼 퍼져있을 경우 ΔtΔE~h의 관계가 성립한다'로 해석해야 합니다. 시간에 따른 시스템의 변화에 방점이 찍혀있기 때문에 시간과는 무관한 바닥상태의 에너지와는 관련이 없습니다.

다음 연작 트윗에 대한 보충설명.



일단 susceptibility라는 뭉뚱그려진 표현(?)은 '하나의 제한조건(에너지가 일정할 것 등)이 걸려있을 때 두 상태함수의 변화비'로부터 유도되는 값들을 말한다. 정압비열은 '압력이 일정할 때 온도의 변화에 대한 엔트로피의 변화비'에 온도를 곱한 값이 되고, 쓰로틀링(throttling)에 등장하는 줄-톰슨 계수(Joule-Thomson coefficient)는 '엔탈피가 일정할 때 압력의 변화에 대한 온도의 변화비'가 된다.


C_p\equiv T\left.\frac{\partial S}{\partial T}\right|_p=\left.\frac{\delta Q}{\delta T}\right|_{\delta p=0} \\\\C_{JT}\equiv\left.\frac{\partial T}{\partial p}\right|_H


열역학에서 다루는 기체(물론 액체나 고체, 플라즈마에도 적용되지만 고체를 다룰 경우에는 자화를 다루며 자기장까지 끌려나오는 경우가 있어서 좀 애매하다. 보통 '무언가를 태우는' 열역학에서 써먹을법한 상태를 가정한다)는 '단 두개의 변수로 상태를 완전히 정의할 수 있다'는 가정이 붙는다. 이건 canonical ensemble의 partition function을 구할 때 온도 T와 부피 V만 주어지면 된다는 사실로부터도 알 수 있고, 더 쉽게는 제1법칙에서 에너지가 단 두개의 열역학적 변수로 적분이 가능하다는 사실로부터 알 수도 있다. 이렇게 '상태를 정해주기 위해 선택한 두 열역학적 값'을 열역학적 변수로 부르기로 하자.


열역학에서는 굉장히 다양한 함수를 다룬다. 에너지에 엔트로피와 온도의 곱을 뺀 헬름홀츠 에너지라던가, 에너지에 부피와 압력의 곱을 더한 엔탈피라던가. 이렇게 하나의 상태가 주어졌을 때 그 상태가 갖는 여러 물리적 성질들을 열역학적 (상태)함수라고 부르자. 우리가 열역학에서 관심갖는 대부분의 함수들은 다섯가지 변수(에너지 E, 온도 T, 엔트로피 S, 압력 p, 부피 V)로부터 정의된다. 따라서 임의의 열역학적 함수 f에 대해 이 함수의 변화량은 다음과 같이 전개할 수 있다. f의 정의로부터 미분이 가능하기 때문이다.


f=f(E,T,S,p,V) \\\delta f=\frac{\partial f}{\partial E}\delta E+\frac{\partial f}{\partial T}\delta T+\frac{\partial f}{\partial S}\delta S+\frac{\partial f}{\partial p}\delta p+\frac{\partial f}{\partial V}\delta V


여기에 어떤 장난을 치느냐? 열역학 1법칙을 이용해 변화량을 열역학적 변수 두개로 줄여버린다.


\delta E=T\delta S-p\delta V \\\delta T=\left.\frac{\partial T}{\partial S}\right|_V\delta S+\left. \frac{\partial T}{\partial V}\right|_S\delta V \\\delta p=\left.\frac{\partial p}{\partial S}\right|_V\delta S+\left. \frac{\partial p}{\partial V}\right|_S\delta V \\\therefore\delta f=\frac{\partial f}{\partial E}\delta E+\frac{\partial f}{\partial T}\delta T+\frac{\partial f}{\partial S}\delta S+\frac{\partial f}{\partial p}\delta p+\frac{\partial f}{\partial V}\delta V \\\text{ }=\left.(T\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left.\frac{\partial T}{\partial S}\right|_V+\frac{\partial f}{\partial S}+\frac{\partial f}{\partial p}\left.\frac{\partial p}{\partial S}\right|_V\right)\delta S \\\text{ }\text{ }+\left.(-p\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left. \frac{\partial T}{\partial V}\right|_S+\frac{\partial f}{\partial V}+\frac{\partial f}{\partial p}\left. \frac{\partial p}{\partial V}\right|_S\right)\delta V


참고로 Maxwell relation에 의해 맨 마지막 줄에 등장하는 편미분 넷 중 둘이 같다. 여기서 '세 susceptibility(소괄호로 강조되어 있다)로 임의의 열역학적 상태함수에 대한 편미분을 구할 수 있다'는 중간정리를 얻는다.


\left. \frac{\partial p}{\partial S}\right|_V=-\left. \frac{\partial T}{\partial V}\right|_S \\\therefore\left. \frac{\partial f}{\partial S}\right|_V=\left[T\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left(\left. \frac{\partial T}{\partial S}\right|_V\right)+\frac{\partial f}{\partial S}-\frac{\partial f}{\partial p}\left(\left. \frac{\partial T}{\partial V}\right|_S\right)\right] \\\left. \frac{\partial f}{\partial V}\right|_S=\left[-p\frac{\partial f}{\partial E}+\frac{\partial f}{\partial T}\left(\left. \frac{\partial T}{\partial V}\right|_S\right)+\frac{\partial f}{\partial V}+\frac{\partial f}{\partial p}\left(\left. \frac{\partial p}{\partial V}\right|_S\right)\right]\delta V


이제는 편미분을 임의의 함수에 대해서 쓸 차례이다. 원 증명에서는 알파베타감마를 썼는데 귀찮은 관계로 A, B, C라고 하자. 이 값들의 변화는 다음과 같이 쓸 수 있다.


\\\delta A=\left. \frac{\partial A}{\partial S}\right|_V\delta S+\left. \frac{\partial A}{\partial V}\right|_S\delta V \\\delta B=\left. \frac{\partial B}{\partial S}\right|_V\delta S+\left. \frac{\partial B}{\partial V}\right|_S\delta V \\\delta C=\left. \frac{\partial C}{\partial S}\right|_V\delta S+\left. \frac{\partial C}{\partial V}\right|_S\delta V


이것을 이용해 편미분을 계산할 수 있다. 자세한 계산과정은 간단한 산수니 생략하겠다.


\left. \frac{\partial A}{\partial B}\right|_C=\left. \frac{\delta A}{\delta B}\right|_{\delta C=0} \\\\\\=\frac{\left. \frac{\partial A}{\partial S}\right|_V\left. \frac{\partial C}{\partial V}\right|_S-\left. \frac{\partial A}{\partial V}\right|_S\left. \frac{\partial C}{\partial S}\right|_V}{\left. \frac{\partial B}{\partial S}\right|_V\left. \frac{\partial C}{\partial V}\right|_S-\left. \frac{\partial B}{\partial V}\right|_S\left. \frac{\partial C}{\partial S}\right|_V}


자, 저 계산식 안에 있는 모든 항목들은 단 세 susceptibility로 모두 계산할 수 있다. 따라서, 세 susceptibility의 값만 있으면 모든 susceptibility를 알 수 있다는 말이 된다. 증명 완료.




트위터에서도 말했다시피 이건 통계역학 문제보다는 열역학 문제에 가깝다. 편미분을 얼마나 자유롭게 사용할 수 있는지를 살펴보겠다는 문제.

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    LaTex 코드 입력하느라 고생하셨습니다 ㅋㅋ 통계역학 수업 들어보고 싶었는데 이리저리 치이느라 못듣게 되었네요. 종종 글 올려주세요ㅋ 잘 읽고 갑니다.

    2014.09.25 22:51 신고

P. A. M. 디락의 생일 기념으로 The Second Creation(Robert P. Crease, Charles C. Mann, Rutgers University Press, New Jersey, 1996)의 5장 The Man Who Listened의 발췌번역입니다. 디락의 일화를 소개하는데 무게를 두었습니다.


[..]


젊은 과학자들이 첫 논문으로 과학계를 흥분시키고 모든 박사논문이 새로운 분야를 열어젖히던 때, 가장 많은 영향을 미친 것은 디락이었습니다. 양자이론에 대한 반감을 가졌던 아인슈타인이 마지막 고전물리학자라면, P. A. M. 디락(그는 항상 이렇게 서명했지요)은 첫 완전한 현대물리학자였습니다. 1984년 디락의 죽음 직전에 물리학자 실판 슈베버(Silvan Schweber)는 이렇게 평가했습니다. "디락은 양자역학의 주요 저자 중 하나일 뿐 아니라 양자전기역학의 개척자이며 양자장론의 주된 설계가이기도 합니다. 삼사십년대의 양자장론의 중요한 발전은 모두 디락의 작업에서 출발하고 있습니다"


환경은 그가 지독히 내성적이고 과묵하게 자라나도록 짜인 것처럼 보입니다. 디락은 1902년 8월 2일 영국 브리스톨(Bristol)에서 스위스 출신의 아버지 밑에 태어났습니다. 그의 아버지는 반사회적이라고 할 수 있을 정도로 활동이 없었습니다; 디락의 가족은 손님이 없었고, 놀러 나가지도 않았습니다. 자리가 부족했기 때문에 다른 가족들은 부엌에서 식사할 동안 디락은 아버지와 함께 식사했습니다. 아버지는 그가 불어를 배우기 좋을 것이라 생각해 자신과 불어로만 대화하도록 규칙을 만들었는데, 불어로는 자신을 표현할 방법을 못 찾아 조용했다고 디락은 회상했습니다. 대부분의 시간을 야외에서 홀로 산책하며 보냈던 디락은 질서와 대칭을 좋아했습니다. "내 대부분의 작업은 그냥 공식을 가지고 논 뒤 어떤 결과가 나오는지 본 것입니다. 다른 물리학자들도 같다고 생각하지는 않습니다; 물리적으로 전혀 의미가 없을지도 모르는 공식을 가지고 놀며 어떤 아름다운 수학적 관계가 있는지를 살피는 것은 제 특성인듯 합니다. 가끔은 물리적 의미가 있기도 합니다"


디락의 아버지는 사회성의 중요성을 무시했지만 좋은 교육의 필요성은 인식했고, 디락의 수학적 재능을 장려했습니다. 역사의 우연으로 이 재능은 더욱 클 수 있었습니다: 나이에 비해 이르게 전쟁으로 징집되어 텅 빈 고등반에 진학했거든요.[각주:1] 디락은 브리스톨 공과대학과 일부를 공유했던 머천트 벤처러 학교(Merchant Venturer's School)을 좋아했습니다. 부분적으로는 그가 거의 평생 이해할 수 없었던 철학과 미학을 중요히 여기지 않았기 때문이지요. 디락은 대학에 진학하면서 수학으로는 직업을 가질 수 없으리라 생각해 공학을 전공하기로 했습니다. 그는 좋은 학생이었으나 분야의 이론적인 부분에만 관심을 가졌습니다. 실무 훈련은 최악이었죠.


1921년 가을 공학 학위를 끝낸 디락은 직업을 구할 수 없었습니다. 재능있는 수학자가 공학과정을 밟는다는 것에 낙담했던 브리스톨 대학의 수학과 교수들은 수업료를 면제해주겠다고 제안했습니다. 달리 할 일이 없었던 디락은 그러기로 했지요. 명예 수학과정을 밟던 다른 유일한 학생은 물리에 사용될 수 있는 응용수학을 공부하기로 단단히 결심한 여학생이었습니다. 딱히 확신이 없었던 디락은 그녀의 목표를 따라갔고, 세기의 대 물리학자중 하나는 이렇게 활동을 시작했습니다.[각주:2]


디락은 물리를 무계획적으로 시작했던 때부터 말년까지 수학이 물리 발전의 열쇠라고 보았습니다. 그의 마지막 연설들 중 하나에서 그 신조가 드러납니다. "사람은 수학이 이끄는 방향을 따라야 합니다. [...] 사람은 그 끝에서 시작한 것과 전혀 다른 곳에 도착하더라도 수학적인 착상을 좇아야 합니다. [...] 수학은 물리적인 생각만 따라갔을 때 택하지 않았을 길도 갈 수 있게 해 줍니다"


디락은 브리스톨에서 상대론을 배웠고 매료되었습니다. 이학사를 취득한 후 1925년 케임브리지의 성 요한 대학(Saint John's College)에 진학하였고, 1927년 25세가 되었을 때의 양자역학에 대한 기여로 그가 세계에서 가장 중요한 물리학자중 하나라는 것이 확실해졌습니다.[각주:3]


명성은 그를 크게 변화시키진 못했습니다; 계속 과묵했던 디락을 만난 사람들은 자주 무례하다고 생각했습니다. 디락은 케임브리지 물리학 그룹의 명예회원이었으나 적은 학생을 키웠고, 학풍을 세우지도 않았으며, 실험가들과 드물게 대화했습니다. 1930년대 말을 실험실에서 보낸 새뮤엘 데본스(Samuel Devons)는 우리에게 말했습니다. "캐번디시 물리학회 모임이란 준격식적인 모임이 격주로 있었어요. 한 강연자가 들어오면 디락은 첫 줄에 앉아 듣곤 했죠. 그는 매우 드물게 입을 열었어요. 가끔 러더포드가 '그래서 이론하는 사람들은 어떻게 생각하나?'라고 찔러보곤 했죠. 러더포드는 이론이 일종의 사색에 불과하고 진짜는 실험에 있다고 믿었죠.[각주:4] 그리고 디락은 앉아 아무 말도 안 했습니다."


디락은 매우 정확하고 조심스럽게 말했기 때문에 매우 난해했습니다.[각주:5] 양자역학을 강의할 때 그는 강연대 뒤에 서서 그가 쓴 책을 읽어주었는데, 책에 더 이상 명료할 수 없게 적었다고 믿었기 때문입니다.1928년 라이덴(Leiden)에서 몇 개의 강연을 했을 때 폴 에렌페스트는 디락의 태도에 질려버렸습니다. 그 자리에는 H. B. G. 캐시미어도 있었는데, 회상하길 "(각 강연은) 완벽했습니다. 디락은 버릇대로 누군가 이해하지 못한다면 별 다른 설명을 하는 대신 매우 침착하게 정확히 동일한 내용을 반복했습니다. 보통은 충분했지만, 에렌페스트가 선호하는 방법은 아니었죠." 에렌페스트는 항상 사람이 어떻게 작업하는지를 보고 싶어했습니다. 캐시미어는 이어서 말했습니다. "한번은 에렌페스트가 디락에게 질문했고, 디락은 곧바로 답이 떠오르지 않았습니다. 그래서 디락은 칠판에 풀어보기 시작했죠. 그는 온 칠판을 자그마한 글씨로 채웠고, 에렌페스트는 그의 바로 뒤에 서서 무엇을 하고 있는지 보며 외쳤습니다. '애들아, 애들아-이걸 봐라! 이제 그가 뭘 하는지 알겠네!'[각주:6]"


[...]




이 이후는 디락의 작업에 대한 이야기입니다. 하이젠베르크가 발견한 불확정성 원리를 고전역학의 푸아송 괄호와 연결지어 해석하는 것과(더 보편적인 결과입니다) 양자전기역학의 발견, 디락방정식의 발견을 다루고 있고 디락방정식의 중요한 예측인 반전자의 존재에 대해 다루고 있습니다. 디락은 처음엔 디락방정식의 음에너지 해를 보고 양성자(당시만 해도 양전하를 가진 입자는 양성자 뿐이었습니다. 심지어 중성자도 발견되지 않았을 시기죠.)라고 생각했다고 하죠. 그리고 당시만 해도 미국은 예일대의 조시아 깁스[각주:7]를 제외하면 유럽에 비해 급이 떨어졌다고 하네요.

  1. 역주) 시기상으로는 일차대전인데, 이 당시만 해도 전쟁에 참여하는 것에 대한 낭만(?)같은 것이 있던 시절이라 학생들이 적었을 수도 있겠다는 생각이 드네요. [본문으로]
  2. 역주) 하고 싶은걸 하는게 아니라 할 수 있는걸 하는게 중요하다는 교수님의 일갈이 생각나는군요. 하... [본문으로]
  3. 역주) 디락은 1926년 봄 박사학위를 취득했습니다. 1년만에 박사라니... [본문으로]
  4. 역주) 책의 다른 부분을 보면 러더포드는 '간단하면서 본질적인 속성을 드러내는 실험'을 중요시했다고 나옵니다. 러더포드 산란 실험은 대표적인 '간단하고 본질적인 속성을 드러내는 실험'이죠. [본문으로]
  5. Dirac spoke so precisely and carefully that he approached the Delphic; (번역이 힘드네요) [본문으로]
  6. Kinder, Kinder! Schaut jetzt zu! Jetzt kann man sehen, wie er es macht! [본문으로]
  7. 사원수 대신 벡터미적분학을 도입했고 통계역학을 완성했다고 보시면 됩니다. [본문으로]

댓글을 달아 주세요

과제로 제출했던 논문 리뷰(?)입니다. TeX으로 치느라 살짝 고생하긴 했는데 이쁘게 찍히는 것 보면 고생한 보람은 있네요. (졸업논문 손봐야 하는데 놀고 있냐)


주된 내용은 Landauer의 1961년 논문인 "Irreversibility and Heat Generation in the Computing Process"로 촉발된 계산의 에너지 소모와 이후 Bennett의 논문으로 밝혀진 '계산 자체는 에너지를 소모하지 않는다 - 정보의 삭제가 에너지 소모의 원인이다'를 다룹니다. 원래 과제는 첫 논문만 보면 되는 거였는데 수랏길에 들어서 버렸...=_=;;


처음부터 영문으로 작성했던거라 개인정보만 조금 고쳐서 올립니다.


Computation and Heat - Public.pdf


p.s. '계산의 최소 에너지 소모'를 생각해봤으면 '계산능력의 한계'에 대해서도 생각해볼 수 있겠죠. 위키백과의 '계산 한계' 항목을 참고하세요. '브레머만 한계'는 양자역학적으로 얻은 '단위질량의 계산기가 행할 수 있는 최고 계산 속도'인데, 재미있게도 비슷한 크기의 제한조건을 '베켄슈타인 한계'와 '정보의 최대 전파 속도'인 광속 c로부터 구할 수 있습니다.(문제를 만들라는 과제도 있었는데 거기에 낸 문제입니다.) 정보를 최대한으로 꾹꾹 눌러 담으면 블랙홀이 됩니다. 그리고 그 정보를 한번에 처리하는데 들어가는 시간(즉 단일 clock 시간이죠)은 빛이 블랙홀의 지름을 통과하는데 걸리는 시간보다 짧을 수 없죠. 상수에 대한 dependence를 구해보면 대충 \frac{c^2}{\hbar} 이 되어야 한다는 것을 알 수 있습니다. 순수하게 고전적인(블랙홀 엔트로피가 고전적인지는 모르겠군요 쿨럭;;) 논의입니다.


p.s.2. 베켄슈타인 한계를 베켄슈타인 본인이 정리한 항목이 있어서 링크 걸어둡니다.

'Physics > Concepts' 카테고리의 다른 글

Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    학점은 잘 받으셨나요? ㅋ; -동료 수강생

    2014.07.11 23:22 신고

양자역학에서 가장 유명한 commutator를 뽑으라면 누구나 하이젠베르크의 불확정성 원리를 꼽을 것이다. 아무래도 제일 먼저 발견된 교환이 불가능한 물리량이니까.


[x,p]=xp-px=i\hbar


그런데 왜 i가 붙을까? 고민해본 사람? 문제는 의외로 쉽게 풀린다. 두 측정가능한 물리량 A와 B를 가정하자. 따라서 A와 B는 에르미트(Hermitian) 연산자이다. 적당한 양자책을 잘 공부했다면 이를 설명할 필요는 없을 터(간단하게 말하자면 고유값(eigenvalue)이 실수가 나와야 해서). 한번 유도해보자.


\text{For observables }A,B\\A^\dagger=A, B^\dagger=B \\\\\therefore [A,B]^\dagger=(AB-BA)^\dagger\\=B^\dagger A^\dagger-A^\dagger B^\dagger=BA-AB \\\\\therefore [A,B]^\dagger=-[A,B] \\\\\text{or, equivalently;} \\\exists C(C^\dagger=C),\,\,[A,B]=iC


측정 가능한 물리량의 commutator는 항상 반에르미트(anti-Hermitian) 연산자여야 한다는 결론을 얻는다. 반에르미트 연산자는 단위허수 i를 곱하거나 나눠서 에르미트 연산자로 만들어줄 수 있으니 이제 그 미스테리한 i가 어디에서 튀어나왔는지 알 수 있다.


이제 조금 더 재미있는 명제를 도출해보자.


\text{Assume observables }A,B\text{ and an eigenstate of }A\\\\A\left|a \right \rangle=a\left|a \right \rangle \\\\\text{Then, we get the expectation value of the commutator}\\\\ \left\langle a|[A,B]|a \right\rangle=\left\langle a|AB-BA|a \right\rangle = (a^\ast - a)\left\langle a|B|a \right\rangle=0 \\\\\text{or, equivalently;} \\\\ C \equiv \frac1i [A,B],\;A\left|a \right \rangle=a\left|a \right\rangle \Rightarrow\left\langle a|C|a \right\rangle=0 \\\\\text{for any observables }A, B


아직 이상한 점을 눈치 못챘는가? A에 x를, B에 p를 넣어보자.


[x,p]=i\hbar\\\\\therefore \left\langle x\middle|\frac1i[x,p]\middle|x \right\rangle=\hbar\left\langle x|x \right\rangle=0\\\left\langle p\middle|\frac1i[x,p]\middle|p \right\rangle=\hbar\left\langle p|p \right\rangle=0


?!?!


이 비정합성은 commutator가 identity의 배수이기 때문에 나타난다. 다르게 말한다면, 어떤 한 측정량이 다른 측정량과 만드는 commutator가 identity의 배수로 나온다면 그 측정량의 고유상태(eigenstate)는 그다지 예쁜 성질을 갖지 않으며(예컨데 위치 x의 고유상태나 운동량 p의 고유상태는 L2(Square-integrable)공간에 속하지 않는다), 따라서 주의를 기울여 다루어야 한다고 결론지을 수 있다.


참고로 가장 간단(?)한 양자화 방법은 고전역학에서의 Poisson bracket을 양자역학의 commutator로 해석하는 것이기 때문에(Dirac quantisation 혹은 canonical quantisation) 양자역학의 미래가 골치아프다는 것은 확실해졌다. 양자장론이 괜히 머리 뽀개지는게 아니라니까...

댓글을 달아 주세요

  1. Favicon of http://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    0 \times delta(0) = ? 문제랑 비슷하군요.

    2014.05.23 00:05 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.05.23 00:52 신고  댓글주소  수정/삭제

      함수 x\delta(x)로 읽어서 순간 당황했네요. 이 함수는 0이었죠(...)

    • Favicon of http://kipid.tistory.com BlogIcon kipid 2014.05.23 15:58 신고  댓글주소  수정/삭제

      아하 그런문제도. 더 간단하게는 0 * 무한대(infinity) 문제랑 비슷하겠네요 =ㅇ=;;ㅋ
      (a-a)*<a|B|a> 에서 이게 0이라고 넘어갈때 이런문제가... <a|B|a>가 L2 (Square-integrable) basis 를 쓰는 경우가 아니라면 무한대도 될 수 있어서.
      아무튼 생각지 못했던 부분이네요. 그런데 이게 "commutator가 identity의 배수이기 때문"이 맞나요? 그냥 state가 L2로 표기 안되어서 그런것도 같은데... 저것 때문이라고 단순히 말하면 필요/충분조건 요런거에서 헷갈리는 말인거 같아요. 양쪽 state가 L2로만 표현되면 그냥 숫자로 바꿀수 있긴 할테니까요.

    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.05.23 19:24 신고  댓글주소  수정/삭제

      양쪽의 state가 L2공간에 속한다고 하면 더 문제가 되겠죠. 우변이 0이니까 좌변 또한 0이어야 한다는 결론이 나오는건데, square-integrable하면 우변이 0*(유한한 숫자)가 되어서 빼도박도 못하는 0이 되어버리니까요. 관측가능량의 commutator로 identity가 나오는 순간 관련 고유상태의 규격화(normalisation)에 문제가 생긴다고 보는 편이 맞는 것 같습니다.

    • Favicon of http://kipid.tistory.com BlogIcon kipid 2014.05.24 04:31 신고  댓글주소  수정/삭제

      처음부터 A, B에 x,p를 넣고 전개해보면...
      Then, we get the expectation value of the commutator
      <x|[x,p]|x> = (x^* - x) <x|p|x> = ? (0 곱하기 무한대 형태라 결론을 못내림.)
      여기서 ?가 '0' 이란 결론을 못내릴거란 이야기였는데...

      그렇기 때문에
      C \equiv [x,p]/i 라고 해도 => <x|C|x> = ? (위의 물음표와 같은 놈.)
      란 결론까지 밖에 안되지 않나요? 뭔가 다른 이야기인가;;;;

      x가 L2였다면야 <x|p|x>가 유한할테니 ?=0이라고 결론 내릴 수 있고. (있나??? p의 eigenvalue 중에 무한대가 있으면 이렇게 결론 내릴 수 없을수도 있는건가 =ㅇ=;;)
      [x,p]가 identity의 배수라고 할지라도 (\equiv c) => <x|c|x>=0 이란 결론이?
      아 이게 문제였구나;;; 제 이해가 뭔가 꼬였었네요.

      결론적으론 L2 Hermitian operator A,B의 commutator [A,B]는 indentity의 배수가 될 수 없다가 되겠네요. 신기하넹 -ㅇ-;;; (지금 제가 이해한것도 듬성듬성 논리가 뚫려있어서 천천히 다시 생각해보긴 해야겠네요.)

방학이 끝나감에 따라 멘탈이 허약해지고 있어서 멘탈 강화를 위해 소소하지만 결과가 있는 일을 해보았습니다. 멘탈이 가루가 되어갈 때에는 이렇게 작은 일을 해 보면서 물을 뿌려 단단히 다지는 것도 필요한 일이라서요.


가끔 교수님들이 링크로 걸어놓곤 하시는 스티븐 와인버그의 글을 옮겨보았습니다. '과학자로서 첫 발을 내딛는 학생들을 위한 조언'이라는 말이 붙어있는데, 이건 번역을 안 했네요.


번역에 대한 신조(?)는 '최대한 자연스럽게'라서 의역을 기본으로 채택했습니다. 가령 첫 문단의 중간 쯤 나오는 '익사하거나 이겨내거나'는 'sink or swim'의 번역인데, 도저히 가라앉음과 수영으로는 두음 운율을 맞출 수가 없어서 '이겨내다'란 의역을 사용했습니다.


글로벌 스탠다드(?)에 맞추어 pdf로도 만들어 올립니다.


네 귀중한 교훈들.pdf





수정 - 27 Feb 2014


아래 댓글에서 어떤 분이 지적해주셨다시피, "역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다"는 "The least important reason for this is that the history may actually be of some use to you in your own scientific work"의 번역문입니다. 직역하면 "역사가 당신의 연구에 도움이 될 수도 있는 것은 가장 덜 중요한 이유입니다"이고 의미상으로는 "역사가 당신의 연구에 도움이 될 수도 있겠지만, 중요한 이유들 중 가장 중요도가 낮은 이유입니다"가 됩니다. 그런데 한국어에서는 이런 표현을 쓰지 않죠(...) 그래서 어떻게든 자연스럽게 만드려다 보니 문장이 꼬여버렸네요. 해당 문장은 보다 자연스럽고 의미가 통하는 문장으로 수정하였습니다.




네 귀중한 교훈들(Four golden lessons)

스티븐 와인버그(Steven Weinberg)


제가 학부 졸업장을 받았을 때 - 백 년은 전이었던 것 같은데 - 물리학은 구석구석까지 살펴본 뒤에야 나만의 연구를 시작할 수 있는 드넓은 미지의 대양같았습니다. 어떻게 남들이 했던 일을 모르고서 무언가를 할 수 있을까? 운 좋게도 대학원 첫 해에 만난 선배 물리학자들께서는 일단 연구를 시작하고 그 과정에서 내가 알아야 할 것들을 익히라고 조언해 주셨습니다. 익사하거나 이겨내거나였지요. 그리고 놀랍게도 이 방법이 먹힌다는 것을 알게 되었습니다. 저는 빠른 박사학위를 받을 수 있었습니다 - 제가 물리에 대해 아는 것이 거의 없었는데도 말이지요. 하지만 저는 한 가지 중요한 것을 알게 되었습니다: 아무도 모든 것을 알지는 못하고, 그럴 필요도 없다는 것을요.


다른 교훈을 바다에 빗대어 말해보자면, 익사하지 않고 파도를 이겨내고 있는 한 더욱 거친 파도를 향해 나아가야 한다는 것입니다. 제가 1960년대 후반에 매사추세츠 공과대학(Massachusetts Institute of Technology; MIT)에서 교직을 맡고 있을 때 한 학생이 제 전공인 기본입자(elementary particle physics)보다는 일반상대론(general relativity)을 공부하고 싶다고 말했습니다. 일반상대론이 매우 잘 정립된 학문인 반면에 다른 하나는 엉망진창으로 보인다는 이유에서였지요. 제게는 반대로 행동해야 할 아주 좋은 이유였습니다. 입자물리는 아직 창조적인 작업을 할 수 있는 분야였습니다. 1960년대에는 정말 엉망진창이었지만 그 후 많은 이론물리학자와 실험물리학자들은 입자들을 분류하고 모든 것을 (뭐, 거의 모든 것을) 표준모형이라는 아름다운 이론으로 정리하는데 성공하였습니다. 제 조언은 난장판인 곳으로 가라는 것입니다 - 할 것이 있는 곳이니까요.


제 세번째 조언은 아마 가장 받아들이기 힘들 것입니다. 자신이 시간을 낭비하는 것을 용서하십시오. 교수들은 학생들에게 풀 수 있다고 아는 문제들(매우 심술궂은 경우가 아니라면)만 줍니다. 또한, 그 문제들이 과학적으로 중요한가는 상관없습니다 - 수업을 통과하기 위해서 푸는 것이니까요. 하지만 실세계에서 어떤 문제가 중요한지 알기는 매우 어렵고, 지금 이 순간 그 문제를 풀 수 있는지는 절대 알 수 없습니다. 20세기 초 로렌츠(Lorentz)와 아브라함(Abraham)을 포함한 많은 유명한 물리학자들은 전자에 대한 이론을 세우려 하였습니다. 왜 사람들이 지구가 에테르(Ether)를 통과하면서 일어나는 효과를 감지하는데 실패했는지 이해하기 위한 시도이기도 했죠. 모두 알듯이, 사람들은 잘못된 문제에 매달리고 있었습니다. 양자역학이 발견되지 않았던 시절이었기에 아무도 전자에 대한 성공적인 이론을 세울 수 없었지요. 1905년, 알베르트 아인슈타인(Albert Einstein)은 탁월하게도 운동이 시간과 공간의 측정에 주는 영향이 풀어야 할 올바른 문제임을 알아차렸고, 이 발견은 특수상대성이론으로 이어집니다. 무엇이 노력해야 할 올바른 문제인지 확신할 수 있는 사람은 아무도 없기 때문에 실험실이나 책상 위에서 보내는 대부분의 시간은 낭비됩니다. 창의적이고 싶다면, 대부분의 시간을 창의적이지 않은 채 보내는 데, 혹은 지식의 대양에서 정체하는 데 익숙해져야만 합니다.


마지막으로, 조금이라도 과학사에 대해, 최소한 몸담고 있는 과학 분과의 역사에 대해 배우십시오. 역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다 사실 중요한 이유는 다른 곳에 있습니다.[각주:1] 예컨대, 프랜시스 베이컨(Francis Bacon)에서 시작해 토마스 쿤(Thomas Kuhn)과 칼 포퍼(Karl Popper)와 같은 철학자들이 제시한 과학에 대한 과하게 단순화된 모형들은 이따금 그 모형을 믿는 과학자들을 방해하곤 합니다. 과학철학에 대한 가장 좋은 해독제는 과학사에 대한 지식입니다.


더 중요한 이유는 과학사를 익혀 자신이 하는 일을 더 가치있게 느낄 수 있기 때문입니다. 과학자가 되어 부자가 되기는 어렵습니다. 친구들과 친척들은 보통 하고 있는 일을 이해하지 못할테고요. 더군다나 기본입자물리학과 같은 분야에서 일하게 된다면 당장 유용한 일을 한다는 보람조차 없습니다. 하지만 하고 있는 일이 역사의 일부가 된다는 사실을 아는 것으로 충분히 만족할 수 있습니다.


100년 전인 1903년을 되돌아봅시다. 1903년 대영제국의 국무총리가 누구였는지, 혹은 미합중국의 대통령이 누구였는지가 지금 얼마나 중요합니까? 정말 중요한 일은 맥길 대학교(McGill University)에서 에른스트 러더포드(Ernest Rutherford)와 프레더릭 소디(Frederick Soddy)가 방사능을 연구하고 있었다는 것입니다. 이 연구는 (당연하게도!) 실용적으로 응용할 수 있었지만 더욱 중요했던 것은 이 연구가 가진 문화적인 함의였습니다. 방사능에 대해 이해하게 되면서 물리학자들은 어떻게 태양과 지구의 핵이 수백만 년이 지난 후에도 뜨겁게 유지되는지 설명할 수 있게 되었습니다. 이렇게 많은 지질학자와 고생물학자들이 지구와 태양의 긴 나이에 대한 과학적인 반론이라고 여겼던 주장이 사라졌지요. 이후 기독교인과 유대인들은 성경을 문자 그대로의 진실로 믿는 것을 포기하거나 지적 무책임함으로 물러나야만 했습니다. 그리고 이 작업은 갈릴레오(Galileo)와 뉴턴(Newton), 다윈(Darwin)이 내딛고 지금까지 이어지는 종교 독단주의(religious dogmatism)의 약화라는 여정의 한 발걸음이 되었지요. 아무 신문이나 하나 집어서 읽어보면 이 작업은 아직 끝나지 않았음을 알 수 있습니다. 하지만 과학자들이 자부심을 느낄 만한 세련된(civilizing) 작업입니다.

  1. 오역이라는 의견이 있어 수정하였습니다 [본문으로]

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
불확정성 원리와 상대성이론  (2) 2014.12.22
네 귀중한 교훈들 - 스티븐 와인버그  (6) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    이수종교수님 홈페이지에서 자주 보았던 글이네요ㅋㅋ 개인적으로는 제목으로 '네 가지 황금률'이나 '네 가지 귀중한 교훈들' 이 좋은 것 같아요. 네 라고 하니 [your]의 번역 같은 느낌이라...

    2014.02.24 21:45 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.02.26 01:28 신고  댓글주소  수정/삭제

      저도 '네가지' 대신 '네'라고 번역하면서 그런 느낌이 있는 부분이 마음에 걸렸었는데, '세가지 교훈들'보다는 '세 교훈들'이 좀 더 간결한 느낌이 들어 네를 택했습니다 :)

      저도 이수종교수님 홈페이지에서 처음 봤던 것으로 기억하는데 최근에 찾아보려고 이수종교수님 홈페이지 들어갔더니 링크가 사라져서 한동안 기억을 의심했었네요 ㅠㅠ

  2. 헐퀴  댓글주소  수정/삭제  댓글쓰기

    오역이 있습니다.

    > 역사가 당신의 연구에 도움이 될 수도 있기는 하지만 전혀 중요하지 않은 이유입니다.

    원문은 The least important reason for this is that the history may actually be of some use to you in your own scientific work. 이거더군요.

    이건 역사가 가진 많은 중요한 이유중 [가장 하찮은 이유정도 되는 것] 이 [당신의 연구에 직접 도움이 된다] 정도로 이해하시면 될 겁니다. [최소한, 네가 연구하는 분과의 역사에 대해서 알고 있다면 그게 앞으로의 연구에도 도움이 되겠지.] 정도로 바꿔 쓸 수 있겠네요.

    2014.02.26 12:17 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.02.27 01:54 신고  댓글주소  수정/삭제

      그 내용을 최대한 자연스럽게 한국어로 만드려다 보니 의도치 않게 오역이 발생했네요. 지적 감사합니다. 더 자연스러운 문장은 뭐가 있을지 고민을 해봐야겠네요...

  3. BlogIcon 함마  댓글주소  수정/삭제  댓글쓰기

    아아 물리가 좋아 물리학과를 지망했지만
    좀민들어가도 어려운게 물리네요.
    덱스터님은 물리를 전공의 계기가 뭐었냐요?

    2014.10.18 12:04 신고

1 2 3 4 

글 보관함

카운터

Total : 629,820 / Today : 181 / Yesterday : 79
get rsstistory!