2014. 12. 24. 20:56 Physics/Concepts
Fermi-Walker transport
Lense-Thirring effect가 과제로 나와서 이책 저책을 찾아보다가 Fermi-Walker transport란걸 알게 되었다. 검색을 조금 돌려보니까 이런 논문도 나오는데, 이 논문까지 읽을 필요는 없을듯. Fermi-Walker transport의 식은 다음과 같이 주어진다.
\[\frac{D_F A^{\mu}}{Ds}=(w^{\mu} u_{\nu}-u^{\mu}w_{\nu})A^{\nu}\] \[\mathbf{u}=\frac{d}{ds}, \mathbf{w}=\nabla_{\mathbf{u}}\mathbf{u}\] \[s \text{ is (natural) parametrisation of the curve; }\mathbf{u}\cdot\mathbf{u}=1\]
notation이 이것저것 섞여있긴 한데 알아들을 분들은 다 알아들으리라 믿고(...)
그래서 이게 뭐냐? 위키백과 항목에는 '평행이동(parallel transport)의 일반화'라고 서술되어 있지만 그 말은 별로 옳지 않아 보인다. 그림으로 보는게 가장 이해하기 편할 듯.
평행이동을 곡면좌표계(curvilinear coordinates)에서 유도하는 과정을 보면 위의 그림이 된다.
그리고 이게 Fermi-Walker transport. 이동시킬 곡선에 평행한 성분은 계속 평행하고 수직한 성분은 계속 수직하게 이동시키는 과정. 따라서 이동시키는 곡선이 '직선'(혹은 측지선-geodesic)인 경우 Fermi-Walker transport는 평행이동과 같아진다. Fermi-Walker transport의 식 유도는 벡터 $\mathbf{A}$를 가져다가 곡선의 접선(tangent)인 $\mathbf{u}$에 평행한 성분과 수직한 성분으로 나눈 뒤 수직한 성분의 변화율을 $\mathbf{u}\cdot\mathbf{A_\perp}=0$을 미분해서 얻으면 된다. 감이 안 잡히면 LPPT Problem book in Relativity and Gravitation의 문제 11.7에서 풀어주고 있으니 그 책을 확인해보는 것도 좋을듯. 이 책은 어둠의 경로가 아니더라도 http://www.nrbook.com/relativity/에서 볼 수 있다.
'Physics > Concepts' 카테고리의 다른 글
Frobenius Theorem in General Relativity (0) | 2016.09.29 |
---|---|
Particles in Curved Space (1) | 2016.08.08 |
Computation and Heat (2) | 2014.06.23 |
Dirac Equation(1) (4) | 2013.12.15 |
볼츠만 분포 (0) | 2013.09.20 |