'Physics/Concepts'에 해당되는 글 24건

  1. 2016.09.29 Frobenius Theorem in General Relativity
  2. 2016.08.08 Particles in Curved Space (1)
  3. 2014.12.24 Fermi-Walker transport (2)
  4. 2014.06.23 Computation and Heat (2)
  5. 2013.12.15 Dirac Equation(1) (4)
  6. 2013.09.20 볼츠만 분포
  7. 2010.11.22 열역학 제 2 법칙과 엔트로피 증가의 법칙 (3)
  8. 2010.08.03 엔트로피 - 고전적인 정의 (7)
  9. 2010.07.14 Hamiltonian formulation(1) (4)
  10. 2010.02.28 Contravariant/Covariant/Metric tensor와 Kronecker delta (2)
  11. 2010.01.01 자기 단극자, Dirac String, 기타 등등
  12. 2009.05.06 Lagrangian formulation(1) (2)
  13. 2009.03.07 물리학이란 학문에 대해서 (19)
  14. 2009.02.10 하늘에 떠다니는 물에 의한 빛의 굴절과 산란에 대하여(1) (6)
  15. 2008.08.08 힘과 운동
  16. 2008.08.08 우주의 균일함과 중심력
  17. 2008.05.27 에너지, 일-에너지 정리와 열역학 제 1법칙
  18. 2008.04.03 K_f 구하기(어는점내림 상수)
  19. 2008.04.03 Freezing point depression
  20. 2008.01.15 물리 개념 정리

수업시간에 마주한 Frobenius' theorem이 특수상대론의 유명한 문제인 '회전하는 원반의 둘레는 얼마인가?'와 연결된다는 것을 깨닫고 작성을 시작한 노트. 별 내용도 없는데 생각보다 작성하는데 시간이 오래 걸렸다. 특수상대론을 다루는 부분은 작업 시작한 날 3시간만에 전부 정리했는데 나머지 부분에서 제대로 된 설명을 만드느라 헤매서....


처음 쓰기 시작했을 때는 '오 이거 재미있다!'란 생각으로 타자를 쳤는데 다 치고 나니까 '뭐야 이거 당연한 소리였잖아...'란 느낌만 든다. 안 그런 일이 드물기는 하지만...


Frobenius Theorem in General Relativity.pdf


'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

(필명으로 운영하는 이 블로그 말고) 나중에 제대로 된 개인 홈페이지를 만들었을 때 올려놓아도 괜찮겠다 싶어서 학생 세미나도 준비할 겸 작성한 텍. 쓰다보니 너무 길어졌다.

Notion of Particles in Curved Space public.pdf


Unruh effect를 다루기 위해 넣은 Unruh-DeWitt detector는 진짜 열적 분포를 갖는 결과가 나오도록 하고 싶었는데 계산을 간단히 하려고 1+1차원에 갇혀있었던 것이 문제가 된 듯. 노트의 각주에 달아놓기는 했지만 3+1차원에서 계산하면 열적 분포가 제대로 나온다. 조금 신경쓰이는 부분은 $1/E$에 비례하는 항 때문에 구한 response function이 E에 대해 우함수가 아니라는 것인데, 이건 전이 확률이 에너지 준위차에만 의존하지 않고 에너지가 높은 쪽으로 전이하는 확률과 낮은 쪽으로 전이하는 확률이 서로 다르다는 것을 의미해서 그렇다. 여태 본 계산 중에는 이런 계가 없었던 것으로 기억하는데 무언가 잘못한 것이 있는 것은 아닌가 싶어서.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

  1. 옹야  댓글주소  수정/삭제  댓글쓰기

    블로그 잘 보고 갑니다^-^
    저도 블로거님처럼 이쁜 만들어보고 싶네요ㅠ.
    저 혹시 괜찮으시다면 초대장 받을 수 있을까요.
    향후 블로그 운영 계획은 클라우드와 임베디디 시스템 관련 프로그래밍 가이드를 주로 다룰 계획입니다. 여러 개발자들이 제 블로그를 보고 개발에 박차를 가 할 수 있도록 함께 공유해 나갈 계획입니다.
    제 이메일은 kim6kim@nate.com입니다.
    좋은 하루 되세요ㅎ

    2016.09.09 23:06 신고

Lense-Thirring effect가 과제로 나와서 이책 저책을 찾아보다가 Fermi-Walker transport란걸 알게 되었다. 검색을 조금 돌려보니까 이런 논문도 나오는데, 이 논문까지 읽을 필요는 없을듯. Fermi-Walker transport의 식은 다음과 같이 주어진다.

\[\frac{D_F A^{\mu}}{Ds}=(w^{\mu} u_{\nu}-u^{\mu}w_{\nu})A^{\nu}\] \[\bold{u}=\frac{d}{ds}, \bold{w}=\nabla_{\bold{u}}\bold{u}\] \[s \text{ is (natural) parametrisation of the curve; }\bold{u}\cdot\bold{u}=1\]


notation이 이것저것 섞여있긴 한데 알아들을 분들은 다 알아들으리라 믿고(...)


그래서 이게 뭐냐? 위키백과 항목에는 '평행이동(parallel transport)의 일반화'라고 서술되어 있지만 그 말은 별로 옳지 않아 보인다. 그림으로 보는게 가장 이해하기 편할 듯.



평행이동을 곡면좌표계(curvilinear coordinates)에서 유도하는 과정을 보면 위의 그림이 된다.



그리고 이게 Fermi-Walker transport. 이동시킬 곡선에 평행한 성분은 계속 평행하고 수직한 성분은 계속 수직하게 이동시키는 과정. 따라서 이동시키는 곡선이 '직선'(혹은 측지선-geodesic)인 경우 Fermi-Walker transport는 평행이동과 같아진다. Fermi-Walker transport의 식 유도는 벡터 $\bold{A}$를 가져다가 곡선의 접선(tangent)인 $\bold{u}$에 평행한 성분과 수직한 성분으로 나눈 뒤 수직한 성분의 변화율을 $\bold{u}\cdot\bold{A_\perp}=0$을 미분해서 얻으면 된다. 감이 안 잡히면 LPPT Problem book in Relativity and Gravitation의 문제 11.7에서 풀어주고 있으니 그 책을 확인해보는 것도 좋을듯. 이 책은 어둠의 경로가 아니더라도 http://www.nrbook.com/relativity/에서 볼 수 있다.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    첫번째 그림에서 주어진 곡선은 그냥 아무 곡선이고, geodesic이 아닌 건가요?

    2014.12.26 21:44 신고

과제로 제출했던 논문 리뷰(?)입니다. TeX으로 치느라 살짝 고생하긴 했는데 이쁘게 찍히는 것 보면 고생한 보람은 있네요. (졸업논문 손봐야 하는데 놀고 있냐)


주된 내용은 Landauer의 1961년 논문인 "Irreversibility and Heat Generation in the Computing Process"로 촉발된 계산의 에너지 소모와 이후 Bennett의 논문으로 밝혀진 '계산 자체는 에너지를 소모하지 않는다 - 정보의 삭제가 에너지 소모의 원인이다'를 다룹니다. 원래 과제는 첫 논문만 보면 되는 거였는데 수랏길에 들어서 버렸...=_=;;


처음부터 영문으로 작성했던거라 개인정보만 조금 고쳐서 올립니다.


Computation and Heat - Public.pdf


p.s. '계산의 최소 에너지 소모'를 생각해봤으면 '계산능력의 한계'에 대해서도 생각해볼 수 있겠죠. 위키백과의 '계산 한계' 항목을 참고하세요. '브레머만 한계'는 양자역학적으로 얻은 '단위질량의 계산기가 행할 수 있는 최고 계산 속도'인데, 재미있게도 비슷한 크기의 제한조건을 '베켄슈타인 한계'와 '정보의 최대 전파 속도'인 광속 c로부터 구할 수 있습니다.(문제를 만들라는 과제도 있었는데 거기에 낸 문제입니다.) 정보를 최대한으로 꾹꾹 눌러 담으면 블랙홀이 됩니다. 그리고 그 정보를 한번에 처리하는데 들어가는 시간(즉 단일 clock 시간이죠)은 빛이 블랙홀의 지름을 통과하는데 걸리는 시간보다 짧을 수 없죠. 상수에 대한 dependence를 구해보면 대충 \frac{c^2}{\hbar} 이 되어야 한다는 것을 알 수 있습니다. 순수하게 고전적인(블랙홀 엔트로피가 고전적인지는 모르겠군요 쿨럭;;) 논의입니다.


p.s.2. 베켄슈타인 한계를 베켄슈타인 본인이 정리한 항목이 있어서 링크 걸어둡니다.

'Physics > Concepts' 카테고리의 다른 글

Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22

댓글을 달아 주세요

  1. sentinel_2  댓글주소  수정/삭제  댓글쓰기

    학점은 잘 받으셨나요? ㅋ; -동료 수강생

    2014.07.11 23:22 신고

디락방정식을 기억만으로 재구성해보는 작업을 하고 있는데, 그 와중에 조금 정리할 필요가 있다 생각되어 쓰는 글.


디락방정식의 도입 동기는 매우 간단하다. 그 이전까지 제시된 방정식들에 문제가 있었기 때문. 슈뢰딩거 방정식은 시간과 공간을 같게 다루지 않으며(공간에 대해서는 이계미분, 시간에 대해서는 일계미분), 클라인-고든 방정식은 시간에 대해 일계가 아니라는 문제가 있다. 시간에 대해 일계가 아니면 갖는 문제는 초기조건을 충분히 주지 못하기 때문에 문제가 된다. 시간에 대한 미분은 위상의 변화와 관련이 있는데, 위상의 차이는 측정할 수 있어도 위상이 변하는 속도는 측정할 방법이 없기 때문.


\text{Schroedinger equation: derivatives on time and} \\\text{space are not treated on a equal footing.} \\i\hbar\frac{\partial}{\partial t}\Psi=\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x) \right ]\Psi \\\\\text{Klein-Gordon equation: the equation treats time} \\\text{as a second order derivative.} \\\left[\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial x^2}+m^2 \right ]\Psi=0\text{ (natural units)}


디락이 생각한 해는 상당히 간단하다. 클라인-고든 방정식에 제곱근을 취하는 것.


\text{Dirac's solution: take the root!} \\\^H=i\frac{\partial}{\partial t}\;,\;\^p=-i\frac{\partial}{\partial x} \\\\\left[-\frac{\partial^2}{\partial x^2}+m^2 \right ]\Psi=-\frac{\partial^2}{\partial t^2}\Psi\text{ (natural units)} \\(\^p^2+m^2)\Psi=\^H^2\Psi \\\\\Rightarrow(\alpha\cdot\^p+\beta m)\Psi=\^H\Psi


이러면 \alpha\beta에 대해 다음과 같은 10개의 관계식을 얻는다.


\begin{matrix} \alpha_i\alpha_j+\alpha_j\alpha_i=2\delta_{ij} & \cdots\text{ 6 equations}\\ \alpha_i\beta+\beta\alpha_i=0 & \cdots\text{ 3 equations}\\ \beta^2=1 & \cdots\text{ 1 equation} \end{matrix}


일단 \alpha\beta는 우리가 일반적으로 보는 숫자가 아닌 것은 확실하다. 제곱해서 1이 되며 다른 숫자와 곱했을 때 0이 되는 복소수는 없기 때문. 따라서 이 녀석들은 행렬로 보는 것이 타당하다. 제곱을 할 수 있으므로 행렬 중 정사각행렬이 되어야 하는데, 그렇다면 정사각행렬 중 몇 짜리 정사각행렬을 써야 할까? n\times n 행렬은 모두 n^2개의 자유도를 갖는다. 그런데 위에서 최소한 10개의 조건이 필요하다는 결론을 얻었으므로, 최소한 4\times4행렬이 필요하다는 것을 알 수 있다. 이렇게 되면 6개의 자유도가 남는데, 이 자유도는 어디에 쓸 수 있을까? 다시 원래의 디락방정식으로 돌아와 보자.(틀린 설명입니다.) 미분은 좌표계를 바꾸면 변하게 되어 있으나 정지질량은 변하지 않는다. 따라서 식을 좀 더 깔끔하게 쓰려면 다음과 같이 정리하는 편이 낫다.


\text{Dirac equation} \\(-i\alpha\cdot\nabla+\beta m)\Psi=i\frac{\partial}{\partial t} \Psi \\\beta m \Psi=i\left[\frac{\partial}{\partial t}+\alpha\cdot\nabla \right ]\Psi \\=i\left[\frac{\partial}{\partial x_0}+\alpha_1\frac{\partial}{\partial x_1}+\alpha_2\frac{\partial}{\partial x_2}+\alpha_3\frac{\partial}{\partial x_3} \right ]\Psi


약간의 불만사항: 질량은 변하지 않는데 쌩뚱맞은 \beta가 붙어 있다. 양 변에 \beta를 곱해서 좀 더 보기 쉽게 만들어주고, 남는 6개의 자유도를 이용해(틀린 표현입니다) 이 숫자들에게 추가적인 제한조건을 걸어주도록 하자. 이 제한조건은 '로렌츠 변환을 만족할 것'. 로렌츠 변환은 결국 4차원에서의 회전에 해당하기 때문에 4C2=6개의 제한조건을 의미한다. 남은 6개의 자유도를 완벽하게 구속할 수 있다는 의미이다.


\text{Multiply each side by }\beta \\m \Psi=i\left[\beta\frac{\partial}{\partial x_0}+\beta\alpha_1\frac{\partial}{\partial x_1}+\beta\alpha_2\frac{\partial}{\partial x_2}+\beta\alpha_3\frac{\partial}{\partial x_3} \right ]\Psi \\\\\text{Redefine the numbers: Introduce the }\gamma^\mu\text{ matrices.} \\\gamma^0\equiv\beta,\;\gamma^i\equiv\beta\alpha_i \\\Rightarrow\gamma^\mu\gamma^\nu+\gamma^\nu\gamma^\mu=2g^{\mu\nu} \\\\\text{Introduce more restrictions (six) to impose} \\\text{covariance under Lorentz transforms.} \\L^\mu_{\;\nu}\equiv\frac{\partial x'^\mu}{\partial x^\nu},\;L^{\;\;\mu}_{\nu}\equiv (L^\nu_{\;\mu})^{-1}=\frac{\partial x^\mu}{\partial x'^\nu} \\\\x^\mu\to x'^\mu=L^\mu_{\;\nu} x^\nu,\;\partial_\mu\to\partial'_\mu=L^{\;\;\nu}_{\mu}\partial_\nu \\\gamma^\mu\to\gamma'^\mu=L^\mu_{\;\nu}\gamma^\nu \\\\\Rightarrow \gamma^\mu\partial_\mu\to\gamma'^\mu\partial'_\mu=L^\mu_{\;\nu}L^{\;\;\nu}_{\mu}\gamma^\nu\partial_\nu=\gamma^\mu\partial_\mu


이렇게 로렌츠 불변 형식의 디락방정식이 완성된다.


\text{Thus, the Dirac equation in its final form} \\\text{nicely incorporates Lorentz covariance.} \\\\m\Psi=i\gamma^\mu\partial_\mu\Psi\Rightarrow(i\gamma^\mu\partial_\mu-m)\Psi=0 \\\\(i\gamma^\mu\partial_\mu-m)\Psi=(i\gamma'^\mu\partial'_\mu-m)\Psi





나중에는 디락방정식의 감마행렬에 대해 클리포드 대수란 말이 나오게 되는데(기본적으로는 anticommute하는 숫자들에 대한 대수를 의미한다. n-form이 한 사례) 아직은 그렇게 복잡하게 생각할 필요는 없다고 생각해서 정리해봤다. 조금만 더 만지작만지작 거리면 spin이 자기모멘트를 나타낸다는 것과 g-factor가 2가 된다는 것도 보일 수 있는데(처음의 \alpha\beta를 쓰는 형식에서 운동량을 canonical momentum으로 바꾼 뒤 제곱해서 정리하면 자기장과 내적한 꼴의 에너지 항을 얻는다) 그것까지 하기는 귀찮다. 언젠가 (2)를 쓰게 되면 그때나...


사실 목적은 기억만으로 수소원자를 푸는 것이었는데(디락방정식을 이용해서 수소원자 모형을 풀면 답에 자연스럽게 fine structure까지 포함된다) 어디선가 헤매고 있다. 일단은 디락 양자역학 책을 열어봐야 하나.


공부합시다!




수정(24 Dec 2013)

감마행렬이 4X4 행렬이라는 논리전개과정이 매우 불분명해서 제외. 대수학을 좀 더 공부해야 할 필요가 있습니다 엉엉 ㅠㅠ

'Physics > Concepts' 카테고리의 다른 글

Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22
엔트로피 - 고전적인 정의  (7) 2010.08.03

댓글을 달아 주세요

  1. Favicon of http://chronowalker.tistory.com BlogIcon chronowalker  댓글주소  수정/삭제  댓글쓰기

    Psi 의 해석을 가만히 둔 상태로 Schrodinger equation 을 relativistic 한 형태로 바꾸고 싶으신 건가요? 그렇게는 단순히 수학적인 논리만으로 감마행렬의 크기가 4 임을 밝힐 수는 없을 것 같습니다만...

    2013.12.29 21:11 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2013.12.29 21:15 신고  댓글주소  수정/삭제

      안되더라구요(...) 정확히는 anticommute하고 제곱이 1인 행렬 넷은 4x4이상에서나 찾을 수 있다는 것을 보여야 하는데, 여태 참고한 책들 다들 대충 '2x2는 안되고 3x3도 안되니까 4x4로 한다'라는 식으로 설명해서 다른 설명은 없나 찾아보던 중이었습니다.

  2. Favicon of http://chronowalker.tistory.com BlogIcon chronowalker  댓글주소  수정/삭제  댓글쓰기

    저도 궁금해서 좀 찾아 봤는데, 제가 약간 착각을 한 듯합니다. 이론하는 사람이 아닌지라, 명백한 결론을 내릴 때까지 시간을 쏟을 수 없지만 어느정도 가능해 보이는군요. 일단 클리포드 대수의 기본조건을 만족하는 행렬들이 작용할 수 있는 공간의 차원은 2^[d/2] 라고 합니다. [ ] 는 최대정수함수를 의미하구요. 실제로 응집물리에서는 저차원에서의 디락 방정식을 이용하기도 하니까 (이를테면 그래핀의 전자는 1+2 dimension 에서의 디락 페르미온으로 기술 가능하다던가...) 1+3 dimension 의 표현공간에 작용하는 클리포드 대수의 행렬표현의 크기가 4가 되어야 한다는 증명을 해볼 수 있을 것 같습니다.

    http://en.wikipedia.org/wiki/Higher-dimensional_gamma_matrices 그리고
    http://www.physicsforums.com/showthread.php?t=364399 또
    http://arxiv.org/pdf/hep-th/9811101v1.pdf 의 1장을 참고하였습니다.

    2013.12.29 23:33 신고

수업시간에 교수님이 하신 설명이 마음에 안 들어서(...) 처음부터 재구성. canonical ensemble을 이용한다. 다른 말로 계와 주변부(environment) 사이에 에너지 교환만 일어난다는 의미.


계와 주변부의 에너지가 특정 비율로 분배될 확률은 그 분배법이 얼마나 많은 가능한 상태의 수를 갖는가에 직접적으로 비례한다. 사실, 그 확률은 이 상태의 수에만 비례한다는 것이 통계역학의 기본 공리중 하나이다(postulate of equal a priori probability). 총 에너지를 E, 계의 에너지를 \varepsilon이라 하면 그 상태에 있을 확률은 다음과 같이 쓸 수 있다.


P(\varepsilon)\propto \Omega_{e}(E-\varepsilon)\Omega_{s}(\varepsilon)


여기서 \Omega_s는 에너지에 따른 계의 경우의 수, \Omega_e는 주변부의 경우의 수. 그런데 이 식은 쓰기 매우 불편하다. 실제로 다루는 물리량이 \Omega가 아니기 때문. 열역학에서 다루는 물리량은 보통 두가지로 나뉘는데,[각주:1]


1. 강성적 성질(intensive property): 계의 크기와는 독립적인 물리량. 압력, 온도, 밀도 따위. 계의 질량과는 독립적인 성질이라고도 설명한다.[각주:2]


2. 종량적 성질(extensive property): 계의 크기에 직접적으로 비례하는 물리량. 부피, 엔트로피 따위. 계의 질량에 직접적으로 비례하는 성질이라고도 설명한다.


\Omega는 이 둘 중 어느 하나에도 속하지 않는다. 계의 크기가 두배가 되면 \Omega는 제곱이 되기 때문. 따라서 좀 더 사용하기 용이한 물리량은 \Omega의 로그값이 된다.[각주:3] 물리적으로는 다음 식이 더 유용하다는 것.


\ln P(\varepsilon) = \ln\Omega_{e}(E-\varepsilon)+\ln\Omega_{s}(\varepsilon)+c


그런데 이러면 사용하기 너무 복잡하다는 문제가 있다. 이 때 이용하는 것이 주변부의 크기는 매우 크기 때문에 선형으로 근사해도 별 문제가 없다는 사실이다. 로그를 테일러 전개를 사용해 1차식으로 만들어주는 것이다. 그리고 이 과정에서 등장하는 미분량은 우리가 잘 알고 있다. 바로 \beta


\\\ln P(\varepsilon) = \ln\Omega_{e}(E-\varepsilon)+\ln\Omega_{s}(\varepsilon)+c\\=\ln\Omega_{e}(E)-\frac{\partial\ln\Omega_e(E)}{\partial E}\varepsilon+\ln\Omega_{s}(\varepsilon)+c\\=\ln\Omega_{e}(E)-\beta\varepsilon+\ln\Omega_{s}(\varepsilon)+c


따라서 원래대로 확률을 구하기 위해 지수를 취해주면


\therefore P(\varepsilon)=\exp(\ln\Omega_{e}(E)-\beta\varepsilon+\ln\Omega_{s}(\varepsilon)+c)


또는


P(\varepsilon)\propto\Omega_s(\varepsilon)\exp(-\beta\varepsilon)


를 얻는다. 바로 심심하면 보이는 볼츠만 분포.

  1. 노승탁, 『공업열역학』, 4판, 문운당 을 참고하고 내용 추가. [본문으로]
  2. 이 설명으로부터 뉴턴의 세계관에서는 질량이 어떤 의미를 갖는지 유추할 수 있다. '질량은 계의 현신'이랄까. [본문으로]
  3. Reif책이 이런 방식으로 서술한다고 기억하는 중. 어쨌든 재미있는 논증이다. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22
엔트로피 - 고전적인 정의  (7) 2010.08.03
Hamiltonian formulation(1)  (4) 2010.07.14

댓글을 달아 주세요


이제 어째서 제 2 법칙이 엔트로피가 생성된다는 법칙으로 이어지는지 살펴보자. 우선 전 글에서 우리가 확인한 두 가지 사항은 다음과 같다.

1. 카르노 기관을 뛰어넘는 효율을 갖는 기관은 없다.

2. 이상적인 과정만 존재하는 경우에는 

\oint\left(\frac{\delta Q}T\right)_{\textup{ideal}}=0

이 성립하고, 그 값을 엔트로피의 변화량이라 정의할 수 있다.

이제 우리가 증명해야 할 것은 위의 두 가지 중간결론만 가지고 다음 결론을 이끌어내어야 한다는 것이다.

dS\ge\frac{\delta Q}{T}

이 말은 이렇게도 해석할 수 있다.

0=\oint dS\ge\oint\frac{\delta Q}{T} \\0\ge\oint\frac{\delta Q}{T}

이 결론을 확인하기 위해 임의의 실제과정 사이클을 생각하고, 그 사이클에서 흡열과정과 출열과정을 나누어보자. 편의상 흡열과정은 완전히 이상적이지만 출열과정이 실제과정이라고 하자. 그렇다면 열기관의 효율은 이상과정의 효율을 넘을 수 없으므로

\eta_\text{real}=1-\frac{Q_{l_\text{real}}}{Q_h}\le\eta_\text{ideal}=1-\frac{Q_{l_\text{ideal}}}{Q_h} \\\therefore Q_{l_\text{real}}\ge Q_{l_\text{ideal}}

라는 결론을 얻는다. 즉, 출열과정에서는 

\int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}

이 성립한다는 것이다.[각주:1] 물론 아래에 T라는 함수가 붙기 때문에 저 적분이 항상 옳은가는 엄밀하게 증명되지 않았다. 하지만 적분경로를 나누어 각각 T가 일정하다고 볼 수 있는 미세한 구간으로 분할하면

\int\delta Q_\text{real/exo}\le\int\delta Q_\text{ideal/exo}\leftrightarrow \frac1T\int\delta Q_\text{real/exo}\le\frac1T\int\delta Q_\text{ideal/exo}\\\leftrightarrow \int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}

이므로, 이 부등식은 어떤 적분경로를 택하더라도 성립한다고 할 수 있다. 비슷한 논의를 이용해 흡열과정에서도 같은 부등호가 성립함을 보일 수 있다.

eq=\eta_\text{real}=1-\frac{Q_l}{Q_{h_\text{real}}}\le\eta_\text{ideal}=1-\frac{Q_l}{Q_{h_\text{real}}} \\\therefore Q_{h_\text{real}}\le Q_{h_\text{ideal}} \\\therefore\int\left(\frac{\delta Q}{T}\right)_\text{real/endo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/endo}

그러므로 일반적으로

\int\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\int\left(\frac{\delta Q}{T}\right)_\text{real}

혹은 어떤 적분경로를 택하더라도 위의 부등식이 성립해야 하기 때문에

\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\left(\frac{\delta Q}{T}\right)_\text{real}

이 성립한다. 맨 처음에 증명하고자 했던 식의 우변은 이상적인 과정과 실제 과정을 전부 포함하므로 이렇게 증명은 완료되었다.

dS\ge\frac{\delta Q}{T}






훈련소에서 없는 기억을 되살려가며 해낸 증명인데[각주:2], 배울 때에는 조금 다르게 배웠었던 것으로 기억한다. 나중에 기회가 되면 다시 찾아봐야지 뭐.
  1. 적분에서는 출열과정의 열이 음수로 계산된다. 효율을 따질 때에는 방출된 열의 절대값만을 따졌으므로 부등호가 반전된다. [본문으로]
  2. 첫 주인 가입교 기간 동안에는 할 일이 없다. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22
엔트로피 - 고전적인 정의  (7) 2010.08.03
Hamiltonian formulation(1)  (4) 2010.07.14
Contravariant/Covariant/Metric tensor와 Kronecker delta  (2) 2010.02.28

댓글을 달아 주세요

  1. lunefey  댓글주소  수정/삭제  댓글쓰기

    헉 어떻게 컴퓨터를?

    2010.11.27 16:36 신고
  2. ㅠㅠ  댓글주소  수정/삭제  댓글쓰기

    수식이 안나오네요

    2011.08.13 20:23 신고

2008/12/21 - 제레미 리프킨, 엔트로피

무질서도로 번역되는 엔트로피(Entropy)란 개념은 열역학 제 2법칙과 밀접한 관계를 갖습니다. 제 2법칙이 엔트로피 증가의 법칙으로 통용되는 것만 보아도 그것을 쉽게 알 수 있겠지요.

엔트로피에 대한 접근은 크게 두가지로 볼 수 있습니다.(정보 이론에서도 다룬다고 하는데 이건 무시.. 세스 로이드의 『프로그래밍 유니버스』란 책에서 간략하게 다루고 있는데 그걸 참고하셔도 좋을 듯 합니다.) 하나는 완전한 고전역학적인 접근이고 다른 하나는 완전한 통계역학적인 접근입니다. 고전역학적인 접근은 우리가 어느 물체에 대해 평균적인 값으로 측정하는 물리량(압력이나 부피, 밀도 등)을 기반으로 엔트로피를 정립해 나가는 것이고 통계역학적인 접근은 분자들의 상태의 수를 이용해서 엔트로피를 정립해 나가는 방식입니다. 보통은 통계역학적인 접근, 혹은 미시적인 접근을 주로 사용하지만 좀 독특한(일반적인 접근인 미시적인 접근과는 반대되는 접근이라는 점에서) 접근방식인 고전역학적인 접근을 써 보려고 합니다.[각주:1]

먼저 카르노 기관(순환Cycle)을 짚고 넘어가야 합니다. 카르노 기관은 엔트로피라는 개념이 정립되기 전부터 등장해서 엔트로피를 고전적으로 정의하는데 커다란 버팀목이 되었던 가상적인 엔진입니다. 이 엔진의 특징은 '모든 과정이 역으로 진행 가능하다'입니다.

카르노 기관(Carnot engine/cycle)

모든 과정이 역행 가능한 기관. 네 단계로 구성된다.

1. 등온팽창. 엔진과 같은 온도를 가진 열 공급원에서 에너지를 흡수한다. 같은 온도를 갖기 때문에 이 과정은 역으로 동일하게 진행될 수 있다.
2. 단열팽창. 엔진은 외부와 열 교환을 할 수 없다. 이때 팽창은 준정적Quasi-static으로 일어난다. 준정적이란 말은 평형상태와 유사하게라는 뜻으로, 이 경우에는 기체(또는 유체working fluid)의 팽창이 내부의 압력과 외부의 압력이 동일한 상태에서 일어나는 것이다. 이렇게 준정적인 과정으로 기체가 팽창할 경우 과정은 역으로 진행될 수 있다.
3. 등온압축. 엔진과 같은 온도를 가진 열 흡수원에 에너지를 방출한다. 등온팽창과 마찬가지의 이유로 역으로 동일하게 진행될 수 있다.
4. 단열압축. 단열팽창과 마찬가지로 열 교환을 할 수 없으며, 마찬가지의 조건과 이유로 과정은 역으로 진행할 수 있다.

그리고 열역학 제 2법칙의 공리가 등장합니다. 두 가지 공리가 있습니다.[각주:2]

Clausius Statement
열은 자연적으로 저온부에서 고온부로 전달될 수 없다.[각주:3]

Kelvin-Plank Statement
단일열원에서 열을 얻어 모두 일로 바꾸는 것은 불가능하다.

살펴보겠지만, 두 공리는 서로 동등한 관계를 지닙니다. 둘 중 하나만 부정되어도 다른 하나마저 부정되어야 하지요. 먼저 첫 서술을 부정해 보겠습니다. 열이 자동적으로 저온에서 고온으로 이동하는 겁니다. 그러면 어떤 순환이 두 열원 사이에서 작동하면서 저온부에 버리는 열이 고온으로 이동하면 외부에서 보기에는 고온에서 얻은 열을 전부 일로 바꾼 것으로 보이게 됩니다. 둘 째 서술이 부정되는 것이지요.

둘 째 서술을 부정해 볼까요? 단일열원에서 열을 얻어 모두 일로 바꾸는 기관을 냉동기에 연결합니다. 그러면 저온부에서 고온부로 스스로 이동하는 현상이 일어나게 됩니다. 첫 서술이 부정되는 겁니다. 결국 서로 동치라고 볼 수 있겠지요.

뭐 어찌되었든, 이를 이용하면 카르노 기관이 최고의 효율을 가진 기관이라는 것을 보일 수 있습니다. 카르노 기관은 기본적으로 외부에 영향을 미치지 않는 기관입니다. 모든 과정을 그대로 역으로 진행할 수 있기 때문이지요. 하지만 이 기관보다 효율이 좋은 기관을 도입한다면? 이런 이상적인 기관에서 일을 얻어서 카르노 기관을 역으로 진행시키는 데 사용한다면 열이 역류하는 현상이 일어납니다. 이는 Clausius의 서술에 위배되기 때문에 결국 그런 기관은 존재할 수 없다는 것이지요.

그리고 동일한 열원 사이에서 작동하는 카르노 기관들은 전부 같은 효율을 지닙니다. 하나가 다른 하나보다 더 효율이 좋으면, 하나를 냉동기로 사용하고 하나를 냉동기를 작동시키는 엔진으로 사용하면 열이 역류하는 현상을 볼 수 있겠지요. 이 역시 Clausius의 서술과 반대되기 때문에 존재할 수 없습니다.

그러면 같은 열원이란 무엇일까요? 동일한 온도를 가진 열원을 같은 열원이라고 말합니다. 그리고 카르노 기관의 효율은 그 기관이 작동하는 두 열원의 온도의 함수로 주어집니다. 이는 고온부와 저온부 그리고 그 사이에 중간단계의 열원이 존재함을 가정하고 고온부와 저온부 사이에서 작동하는 기관 하나, 고온부와 중간단계 사이에서 작용하는 기관 하나, 중간단계와 저온부 사이에서 작동하는 기관 하나를 놓은 다음 고온부에서 바로 저온부로 연결된 기관과 중간단계를 걸처 작동하는 기관 둘의 합이 같은 효율을 가져야 한다는 것을 이용해서 보일 수 있습니다.[각주:4] 고온부의 온도를 t_h, 저온부의 온도를 t_l, 중간 단계의 온도를 t_m이라고 한다면 저온부와 고온부 사이 그러니까 t_h와 t_l 사이에서 작동하는 카르노 기관의 효율은 이런 꼴로 나타날 것입니다.

\eta_{hl}=F(t_h,t_l)=1-\frac{Q_l}{Q_h}

Q는 카르노 기관에서 들어오거나 나가는 열의 양을 말하고, 첨자는 그 온도를 말합니다. 앞으로는 편의상 열을 주고받는 비율에 초점을 맞추겠습니다. 이 열을 주고받는 비율은 다음과 같이 식의 형태로 쓸 수 있지요.

\frac{Q_l}{Q_h}=f(t_h,t_l)

중간 단계에 걸쳐있는 나머지 두 카르노 기관에 대해서도 같은 식을 써 볼 수 있습니다.

\frac{Q_h}{Q_m}=f(t_h,t_m) \\\frac{Q_m}{Q_h}=f(t_m,t_l)

그리고 효율이 같다는 것에서 다음 식을 유도할 수 있습니다.

\eta_{hl}=1-\frac{Q_l}{Q_h}=\eta_{h|m|l}=1-\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\frac{Q_l}{Q_h}=\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\therefore f(t_h,t_l)=f(t_h,t_m)f(t_m,t_l)

마지막 식을 다음과 같이 정리할 수 있는데

\frac{f(t_h,t_l)}{f(t_m,t_l)}=f(t_h,t_m)

이렇게 되면 좌변에서만 t_l이 등장하므로, f는 변수분리가 가능한 함수가 됨을 알 수 있습니다. t_l만 변화했을 때 값이 변해서는 안 되기 때문에 분모인 함수가 t_l에 의해 받는 영향만큼 분자의 함수가 영향받아야 되기 때문이죠. 그러면 일단 함수를 나눈 다음 생각해 봅시다. 함수 f를 대충 분리해서

f(t_1,t_2)=\phi(t_1)\theta(t_2)

라고 둔다면

f(t_h,t_m)=\frac{\phi(t_h)}{\phi(t_m)}

을 얻게 되지요. 그런데 우리는 온도의 측정에 제한을 둔 적이 없기 때문에 함수 \phi를 온도를 정의하는데 사용할 수도 있습니다. 이를 열역학적 온도라고 부릅니다.

T=\phi(t)

이제 열역학적 온도를 이용해 카르노 기관의 열효율을 정의할 수 있게 됩니다.

\eta_{hl}=1-\frac{T_l}{T_h}=1-\frac{Q_l}{Q_h}

물론 이를 이용해 기준온도를 두고[각주:5] 다른 열역학적 온도를 측정하는 것도 가능하지요. 위의 식에서 흡수/방출하는 열이 온도와 정확히 비례하기 때문입니다.

T_2=\frac{Q_2}{Q_1}~T_1

이제 엔트로피를 도입할 수 있게 됩니다. 먼저 다음 값을 한번의 카르노 순환(cycle)에 대해서 계산해 봅시다.

\oint \frac{\delta Q}T

이때 Q는 계 안으로 흘러들어오는 열로 정의합니다. 단열과정에서는 열이 전혀 흐르지 않기 때문에 등온과정만 생각하면 되는데, 등온과정에서 T는 일정하므로 적분은 다음과 같습니다.

\oint \frac{\delta Q}T=\frac{Q_h}{T_h}+\frac{-Q_l}{T_l}

(두번째 항에 음의 부호가 붙어있는 이유는 저온부로 열이 방출되기 때문입니다.) 그런데 위에서 카르노 기관의 등온과정에서 흡수하거나 방출하는 열은 온도에 비례한다고 정의내렸었죠.[각주:6] 따라서 저 값은 영이 됩니다.

Q\propto T \\\therefore\oint \frac{\delta Q}T=\frac{Q_h}{T_h}-\frac{Q_l}{T_l}=0

더군다나 어떤 열역학적인 기구라고 하더라도 이상적으로만 작동하고 원래대로 돌아오는 주기운동을 하는 경우라면 수많은 작은 카르노 기관을 모아 만들 수 있습니다. 그러므로 이상적인 경우만 존재한다면 다음 결론을 얻습니다.

\oint\left(\frac{\delta Q}T\right)_{\text{ideal}}=0

다른 뜻으로는, 위 미분값이 완전미분이라는 것이지요. 완전미분량이기 때문에 위 미분을 어떤 스칼라 함수의 미분으로 볼 수 있다는 것입니다. 스칼라 함수라면 상태에 의존하는 값이라는 의미고, 그러므로 상태에만 의존하는 이 스칼라 함수를 하나의 물리량으로 볼 수 있다는 뜻입니다. 이 물리량이 바로 엔트로피입니다. 대신 엔트로피의 차이만 정의되지 엔트로피의 절대값은 정의되지 않습니다. 위치에너지와 비슷하지요.[각주:7]

\left(\frac{\delta Q}T\right)_{\text{ideal}}= dS \\\therefore\oint dS=0

통계역학 이전의 열물리에서 엔트로피라는 물리량이 어떻게 얻어졌는지를 보이는 것은 끝났고, 열역학 제 2법칙의 또 다른 버젼인 '엔트로피는 계속 생성된다'는 다음에 다루어 보도록 하죠. 스포일러: 이건 어떤 순환이라고 하더라도 이상적인 경우보다 효율이 떨어진다는 사실을 이용해 증명합니다.



많이 오래 전에 쓰다 만 글이라 문체가 조금 다릅니다. 별로 상관없지만...-.-;;
  1. 열역학 제 1법칙에 대한 확실한 이해가 필요할 수 있습니다. 제 1법칙은 에너지 보존의 법칙과 동치입니다. [본문으로]
  2. 공리는 '증명 불가능한 가정'입니다. 수학에서도 공리를 필요로 하는 것처럼, 물리학에서도 공리를 필요로 합니다. 뉴턴역학에서는 뉴턴의 세 법칙으로 공리가 나타났지요. 양자물리에서는 슈레딩거 방정식이 공리로 이용됩니다. [본문으로]
  3. 확률적으로 가능성이 낮은 것이지 불가능한 것은 아닙니다. 열역학 제 2 법칙은 사실 진리라기보다는 확률적으로 어쩔 수 없이 성립하는 결과라는 것이 대체적인 입장이구요. [본문으로]
  4. 시험문제에 나오더군요 OTL. 노승탁, 『최신 공업열역학』4판, 문운당, p.103~105 [본문으로]
  5. 기준온도는 물의 삼중점으로 273.16K입니다. [본문으로]
  6. 보인 것이 아니라 정의한 것입니다. 열역학적 온도를 정의하면서 따라온 부가적인 정리에 가까우니까요. [본문으로]
  7. 일반상대론이 등장하면서 '절대값'이 중요해졌다는 것도 통계역학적으로 열역학을 다루기 시작하면서 엔트로피의 절대값이 중요해졌다는 것과 닮았습니다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://cjackal.tistory.com BlogIcon jackal_anu  댓글주소  수정/삭제  댓글쓰기

    우어어 ㅠ_ 열역학과 통계역학의 안좋은 추억이;;

    2010.08.06 00:45 신고
  2. Favicon of http://hbar.tistory.com BlogIcon h-bar  댓글주소  수정/삭제  댓글쓰기

    우어어 이거 과학독서발표대회때 읽었던 안좋은 추억이;;

    2010.08.09 22:00 신고
  3. Favicon of http://inpresity.tistory.com BlogIcon presii  댓글주소  수정/삭제  댓글쓰기

    세상에...우어어...;;;

    2010.08.11 07:22 신고
  4. lunefey  댓글주소  수정/삭제  댓글쓰기

    못쓰는 에너지죠? 그러니까 여러개 설명되던데.

    2010.08.17 02:08 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2010.10.23 01:43 신고  댓글주소  수정/삭제

      제레미 리프킨이 '못 쓰는 에너지'라는 정의로 사용하기는 했는데, 엄밀히 말하면 틀린 말이죠. 엔트로피는 에너지와 아예 다른 차원을 갖습니다. 물론 온도를 무차원량이라고 정의한다면 같은 종류의 것이 되기는 하지만, 일반적으로 단위가 붙어 있으면 그것을 하나의 차원으로 생각하거든요.

      고전 열역학에서의 엔트로피는 고전역학에서의 위치에너지 개념처럼 에너지와 온도를 이용한 식을 이리저리 돌려보다 보니 쓸만한 값을 찾아내 정의한 것으로 보아야 합니다. 반대로 통계역학에서는 엔트로피와 에너지가 먼저 정의되고 그 다음에 온도가 정의되지요.

  5. lunefey  댓글주소  수정/삭제  댓글쓰기

    물론 엔트로피가 에너지는 아니죠. T 를 곱해줘야 비로소 에너지가 되는데 그게 못쓰는 에너지가 되는게 아닌가 해서요. 엑서지 계산할 때도 다 빼주잖아요 ㅋ

    2010.10.26 21:22 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2010.12.18 11:51 신고  댓글주소  수정/삭제

      엑서지(exergy)는 전혀 다른 방법으로 계산하지 않던가요? 기억이 가물가물하네...

      여튼 깁스 자유에너지였나 헬렘홀츠 에너지였나 거기서는 엔트로피가 나왔던 것 같긴 한데 기억은 잘 안나네요... 그런데 그건 수학적 편의를 위해 도입했다고 보는게 옳다고 생각하는지라...

2009/05/06 - Lagrangian formulation(1)

Electromagnetism in Schrodinger Eqn.이라는 글을 쓰다가 생각해보니 쓸데없는 식이 들어와 글을나누었다. 그러면 일단, 시작해보자.

Lagrangian을 사용하는 역학을 조금만 비틀어주면 Hamiltonian을 사용하는 정석적(?)인 Hamilton역학을 얻는다. 먼저 Lagrangian의 정의는 운동에너지와 위치에너지의 차이이다. 이 내용을 수식으로 쓴다면

L(q_i,\dot{q_i},t)=T-V=\frac12mv^2-V

이다. 그리고 Lagrangian을 이용한 운동방정식(Euler-Lagrange equation이라고 부른다)은 각 일반화된 좌표(generalized coordinates) q_i마다 다음과 같다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 일반화된 속도 벡터.(좌표의 시간변화율을 말한다.) 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {q_i}}

이 값을 conjugate momentum이라고 부른다. 이제 Legendre 변환을 취한다.

H(q_i,p_i,t)= \sum_i p_i\dot{q_i}-L(q_i,\dot{q_i},t)

독립변수가 변하는 것에 주목할 것.(일반적으로 우변의 항은 일반좌표의 시간변화율 d(q_i)/dt가 남아있기 때문에 Hamiltonian으로 쓰려면 모두 p_i로 바꾸어야 한다.) 좌표를 일반적인 직교좌표계로 두고 계산해보자.

p_i=\frac{\partial L}{\partial\dot{x_i}}=m\dot{x_i}\\H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+V\\H=\sum_i\frac{{p_i}^2}{2m}+V

얼레. 에너지다.(독립변수인 p_i로 쓴 점에 유의) 이래서 보통 Hamiltonian을 에너지라고 해석하기도 한다(양자역학을 배울 때 Hamiltonian을 에너지라고 가르치기도 하는데 그 이유가 여기있다). 그렇다면 운동방정식은 어떻게 될까? 우선 Lagrangian을 쓸 때 운동방정식은 이것이었다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

Hamiltonian은 일반좌표의 성분이 전부 Lagrangian에서 나오기 때문에(Hamiltonian은 Lagrangian의 일반좌표 q_i와 일반좌표의 시간변화율 d(q_i)/dt 두 독립변수 중 시간변화율을 conjugate momentum으로 바꾼 것이다. 따라서 앞쪽의 p_i는 일반좌표 q_i와 독립적인 변수가 되고, 따라서 편미분하면 0이 된다.)[각주:1] 위의 식을 이렇게 바꿀 수 있다.

\frac{\partial L}{\partial q_i}=-\frac{\partial H}{\partial q_i}=\frac d{dt}\frac{\partial L}{\partial \dot{q_i}}=\dot {p_i}\\\frac{\partial H}{\partial q_i}=-\dot{p_i}

하나의 운동방정식을 구했다. 이제 두 번째 운동방정식을 구할 차례다.(Lagrangian의 운동방정식이 N차원 변수 x의 값과 그 시간변화율에 대한 2계도함수라면 Hamiltonian의 운동방정식은 N차원 변수 x와 N차원 변수 p에 대한 1계도함수이다. 따라서 하나씩 더 필요.) 우선 Lagrangian과 Hamiltonian의 완전미분을 생각해보자.

dH= \sum_i (\dot{q_i}~dp_i + p_i~d\dot{q_i})-dL \\dL=\sum_i\left(\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}+\frac{\partial L}{\partial{q_i}}~dq_i\right)+\frac{\partial L}{\partial t}dt

식을 정리하면 다음처럼 된다.(p_i의 정의를 이용)

dH= \sum_i \left(\dot{q_i}~dp_i + p_i~d\dot{q_i}-\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}-\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt \\dH= \sum_i \left(\dot{q_i}~dp_i -\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt

그런데 Hamiltonian은 conjugate momentum과 일반화된 좌표, 시간에 대한 종속변수이므로

dH= \sum_i\left(\frac{\partial H}{\partial{p_i}}~dp_i+\frac{\partial H}{\partial{q_i}}~dq_i\right)+\frac{\partial H}{\partial t}dt

가 되어여만 한다.(완전미분의 정의를 생각해보자.) 언제 어디서나 어떤 경우에도 바로 위의 식과 그 위의 식이 일치해야 하므로, 우리가 내릴 수 있는 결론은

\frac{\partial H}{\partial{p_i}}=\dot{q_i}~,~\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}

이다. 그리고 Hamiltonian을 시간에 대해 완전 미분한 결과는

\frac{dH}{dt}=\sum_i\left(\frac{\partial H}{\partial{p_i}}~\dot{p_i}+\frac{\partial H}{\partial{q_i}}~\dot{q_i}\right)+\frac{\partial H}{\partial t} \\=\sum_i\left(-\frac{\partial H}{\partial{p_i}}\frac{\partial H}{\partial{q_i}}+\frac{\partial H}{\partial{q_i}}\frac{\partial H}{\partial{p_i}}\right)+\frac{\partial H}{\partial t} \\=\frac{\partial H}{\partial t}

이라 Hamiltonian이 시간에 대한 explicit dependence가 없을 경우 일정한 값을 갖는다.

Lagrangian을 쓸 때와 Hamiltonian을 쓸 때의 차이점은 Lagrangian이 N개의 차원을 갖는 일반화된 좌표공간에서의 움직임을 2계도함수로 풀 때(Euler-Lagrange 방정식이 2계도함수이다) Hamiltonian은 2N차원의 일반화된 좌표-운동량공간(위상공간-phase space-으로 부른다)에서의 움직임을 1계도함수로 푼다는 것이다. 작아 보이는 차이지만 좌표와 좌표의 시간변화율은 완전히 독립이 아니기 때문에 perturbation[각주:2] 다룰 경우 Hamiltonian이 유리하다고 한다.(좌표와 운동량은 독립된 변수로 취급한다.)

다음번에는 Classical Dynamics of Particles and Systems 5판 7.11에 Hamilton's principle을 꼬아서 운동방정식을 유도하는 특이한 방법이 있어서 그걸 다뤄볼 생각이다. 아직 Lagrangian formulation(2)도 쓰지 않은 판에 이걸 쓸 지는 의문이기는 하지만. 이 방법이 Feynman의 경로적분(path integral)과 밀접한 관련이 있어보이는데 그것까지 할 지는 모르겠다.


ps. 고전역학에서 양자역학으로 넘어가는 데에는 위에 나온 미분방정식들보다는 푸아송 괄호(Poisson bracket)가 더 큰 역할을 했다. Shankar책에서 고전적인 계가 어떻게 양자역학적으로 바뀌는지에 대한 부분이 나오는데(아마 quantization이라고 하면서 푸아송 괄호를 commutator로 바꾸고 값에 ih-bar를 붙였던 것 같다) 참조하면 좋을 것이다.
  1. 그런데 그냥 변수가 다르니 편미분하면 0이라고 생각하는게 쉬울지도... [본문으로]
  2. Perturbation theory란 정확한 값을 구할 수 없기 때문에 근사값을 점차 좁혀가는 방법을 말한다. 원주율을 유리수의 합으로 계산하는 것과 비슷하다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://cjackal.tistory.com BlogIcon jackal_anu  댓글주소  수정/삭제  댓글쓰기

    언제나 느끼는 거지만, 같은 수식인데도 수학의 수식과 물리의 수식은 느낌이 완전 다르네요 _-;;

    특히 양자역학은 _-;

    2010.07.14 20:42 신고
  2. lunefey  댓글주소  수정/삭제  댓글쓰기

    텐서에서 좌절 중 OTL

    2010.07.17 12:13 신고

요즘은 양자를 하기 전에 고전적인 장론에 대해 좀 더 알아야 할 것 같아서 이 책을 보고있다.

The Classical Theory of Fields (4 Revised, Paperback)
Landau, L. D./Butterworth-Heinemann
고급 전자기학과 일반상대론을 다룬다.

여태 역학의 관점에서만 상대론을 공부해서 나한테만 새로운건지는 모르겠는데, 시공간상의 거리(Spacetime interval; 직역하면 시공간 간극이 맞겠지만)로부터 논리를 세우는 과정은 인상적이었다. 그런데 친구한테 듣기로는 요즘 상대론 책은 전부 그렇다고 한다. 내가 구세대라니 OTL

그런데 첫 챕터부터 읽는데[각주:1] 틀린 것 같은 부분이 있어서 확인해봤다. 결과는 옳기는 하더라도, 과정상 틀린 부분이 있다는 기분이 들었던 것. 바로 metric tensor와 관련된 부분이다. 책에서는 Kronecker delta 텐서를 indice lowering/raising하는 것으로 metric tensor가 얻어지는 것처럼 서술했는데, 원래는 둘은 서로 독립적인 존재이다.

metric tensor는 공간의 특성, 즉 거리의 측정법을 규정한다. 두 점 사이의 변위를 d{\bold x}^i로 쓸 때, 두 점 사이의 거리는 다음으로 정의한다.(표기는 Einstein summation notation을 따른다)

ds^2=g_{ij}d\bold x^id\bold x^j

여기서 g_{ij}가 metric tensor이다.[각주:2] 일반적인 유클리드 공간이라면 metric tensor는 Kronecker delta가 된다. 그리고 일반적으로 말하는 평평한 시공간(flat spacetime)에서는 (정의하기 나름이지만) 0번째 항이 1이고 나머지 항은 -1인 대각행렬(diagonal matrix)이 된다. 만약 시공간이 꼬여있으면 그건 일반상대론한테 물어보도록. 리만(Riemann)을 찾아가도 되겠지만 일반상대론보다 일반적이지는 않을 거다.[각주:3]

metric tensor의 원래 정의는 위와 같지만, contravariant의 indice를 내려주는 역할을 하기도 한다. 사실 covariant를 dual 벡터로 정의하기 때문에 생기는 특성이기는 하지만 말이다.

\bold A_i=g_{ij}\bold A^j

그렇다면 covariant의 indice를 올려주고 싶다면 어떻게 하면 될까? 그건 metric tensor의 dual을 이용한다.

\bold A^i=g^{ij}\bold A_j

그렇다면 dual은 어떻게 구할까? 위의 두 과정을 합쳐보자.

\bold A^i=g^{ij}g_{jk}\bold A^k=\delta^i_k\bold A^k

어차피 벡터 A는 무엇이 되어도 상관없기 때문에 떼어버리면(아래 식의 우변은 metric tensor의 대칭성을 이용한 것이다.)

g^{ij}g_{jk}=\delta^i_k=g_{kj}g^{ji}

신비롭게도 행렬로 쓴다면 둘은 서로 역행렬 관계이다. 결론을 제대로 서술하자면, metric tensor와 Kronecker delta는 무관하고, metric의 dual이 Kronecker delta를 이용해 구해진다는 것이다.

오늘의 태클은 여기까지.
  1. 공부의 정석은 정독이다. [본문으로]
  2. 단, symmetric tensor가 되어야 한다. [본문으로]
  3. 일반상대론에서는 유사리만공간(pseudo-Riemannian manifold)을 이용하고 내적이 좀 더 복잡하다. 자기 자신과의 내적이 음이 될수도 있도록 일반화된 공간이 유사리만공간이다. [본문으로]

댓글을 달아 주세요

  1.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2010.02.28 08:05

1. Aharanov-Bohm 효과(AB효과)
AB효과는 자기장이 무시할 만큼 작은 공간에서도 자기장의 Potential함수 때문에 입자의 위상이 변화하는 것을 말한다. 물리적으로는 자기장보다는 그 자기장의 원함수(Potential)가 실제 영향을 미친다는 것을 의미한다. 여기까지는 학부 수준의 양자역학에서 배우는 내용이다. 보통은 무한솔레노이드 주변에서 이 효과를 증명하는데, 무한솔레노이드의 한 방향을 따라 움직였을때 위상과 반대 방향으로 움직였을때 위상차이는 솔레노이드 안에 흐르는(?) 자속(Magnetic flux)에 비례한다.

2. Dirac String
재미있는 것은, 무한솔레노이드에서 AB효과가 존재하더라도 솔레노이드가 특정값의 자속을 갖는다면 그 위상차이가 정확히 한바퀴(2pi)가 되어서 알 수 없다는 것이다. 이런 경우를 두고 솔레노이드가 투명하다고 할 수 있다. 만약 이 솔레노이드의 자속을 일정하게 유지시키는 대신 반지름을 0으로 무한히 줄인다면 솔레노이드의 양 끝은 자기 단극자(Magnetic monopole)처럼 보일 것이다(그 사이를 잇는 솔레노이드는 투명하니까). 이것을 Dirac String 이라고 부른다. 이것을 이용해 Dirac은 자기단극자가 만약 존재한다면 전하의 양자화는 당연하다는 것을 보였다.(역사적인 순서는 반대였던것 같다.)

3. 문제
그렇다면 문제를 뒤로 돌려서, 처음부터 자기 단극자가 존재한다고 가정하면 어떻게 될까? 위에서 얻어진 결과물은 본래 자기 단극자가 존재하지 않는다는 가정에서 출발한 것이다. 이 경우에도 위와 같은 결과물을 얻을 수 있을까(물론 얻어야만 한다. AB효과는 실험적으로 검증되었다.)?

가장 큰 문제점은 양자역학이 전기장과 자기장으로 쓰여있지 않다는 것이다. 전자기에서 Hamiltonian은 전기장과 자기장의 원함수로 쓰여진다. 결국 처음부터 자기 단극자가 존재한다고 가정하려면 당장 Hamiltonian을 구하는 것이 급선무인 셈이다. 그런데 자기 단극자가 존재한다고 가정했을 때 과연 전기장과 자기장의 원함수를 구할 수 있을까?

1학년 때 수업을 들으면서 요즘은 특이점이 있는 경우를 주로 연구한다고 들었던 것 같다. 자기장의 원함수를 scalar 함수로 쓰는 경우도 있었는데, 이 경우 특이점이 문제가 되었던 것으로 기억한다. 자기장이 어떤 scalar potential을 원함수로 가지므로 어떤 loop를 따라 적분하든지 0이 되어야만 하는데, 잘 알다시피 Ampere의 법칙은 이 조건을 무참히 부셔버린다. 이 경우 특이점은 전류가 흐르는 도선이다. 이런 특이점을 어떻게 해쳐 나가야 할 것인지가 문제인 셈이다.

결론은 결국 위상수학도 보아야 하는건가(...)

댓글을 달아 주세요

고전역학은 크게 두 흐름으로 나누어 볼 수 있습니다. 첫째는 가장 잘 알려진 힘을 이용한 뉴턴역학이고 나머지 하나는 에너지를 주로 이용하는 해밀토니안 역학입니다. 양자역학에서는 힘이란 개념을 쓰기 어렵기 때문에 해밀토니안 역학이 특별하게 발달한 것을 양자역학으로 보아도 좋겠지요.(물론 기본이 되는 가정은 하늘땅 차이입니다만...)

보통 라그랑지안 역학을 얻는 방법은 두가지가 있습니다. 하나는 변분법이라고 해서 어느 값의 적분이 최소가 되도록 하는 방법이고, 나머지 하나는 가상일(virtual work)을 이용하는 것입니다. 가상일은 어떤 계가 평형상태에 있을 때, 각 위치좌표가 조금씩 변하더라도 힘의 합력은 0이므로 에너지가 변하지 않는다는 것을 이용하는 것이지요.

해밀토니안 역학은 라그랑지안 역학에서 얻어집니다. 보통의 경우 해밀토니안은 총에너지에 해당하기 때문에 해밀토니안을 에너지와 동등하게 취급하기도 합니다. 양자역학의 경우도 해밀토니안을 에너지와 등가로 취급하고 있지요.

이번 글에서는 간단하게 라그랑지안 식을 유도해 보려고 합니다. 첫 방법은 변분법을 이용하는 방법입니다. 먼저 해밀톤의 원리를 보아야겠네요.

Hamilton's Principle

물체는 시간 t_1와 t_2 사이를 운동할 때 운동에너지와 위치에너지의 차이가 최대 혹은 최소가 되도록 운동한다.[각주:1]

식으로 쓰면

\LARGE\!\delta\int_{t_1}^{t_2}(T-U)dt=0

가 됩니다. 여기서 저 차이를 라그랑지안 L로 정의합니다. 따라서 식은 다음처럼 변하지요.

\LARGE\!\delta\int_{t_1}^{t_2}L(q_i,\dot{q_i},t)dt=0

여기서 q_i는 일반화된 좌표들을 말합니다(i로 좌표를 구분합니다). 꼭 위치좌표일 필요는 없습니다. 부피여도 되고, 각도여도 되며, 넓이여도 상관이 없습니다. 점을 위에 붙여준 것은 그 일반화된 좌표의 시간에 대한 미분량이지요. 자, 그러면 변분법이 어떻게 이루어지는건지 먼저 알아야 하지 않을까요?

운동이 실제 경로 \normalsize\!q_i(t)를 따라 일어나고 있을 때, 위의 적분은 최소가 됩니다. 먼저 임의의 경로 \normalsize\!\bar{q_i(t)}=q_i(t)+\alpha\xi_i(t)를 생각해보도록 하겠습니다. 여기서 \normalsize\!\xi_i(t)는 실제 경로에서 벗어나는 정도를 나타내어주는 함수입니다. 하지만 t_1에서 t_2까지 이동할 때 운동을 시작하는 지점과 운동이 끝나는 지점은 같기 때문에 \normalsize\!\xi_i(t_1)=\xi_i(t_2)=0라고 놓아야겠지요. 그리고 실제 경로가 되는 \normalsize\!\alpha=0인 경우에 위의 적분은 극값을 가져야 합니다. 이를 식으로 나타내어보면 다음과 같습니다.

\LARGE\!\frac\partial{\partial\alpha}\left[\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt\right]_{\alpha=0}=0

이제 알파를 적분 안에 넣어 보겠습니다.

\LARGE\!\frac\partial{\partial\alpha}\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt=\int_{t_1}^{t_2}\frac\partial{\partial\alpha}L(\bar{q_i},\dot{\bar{q_i}},t)dt\\=\int_{t_1}^{t_2}\sum_i\left(\frac{\partial{\bar{q_i}}}{\partial\alpha}\frac{\partial{L}}{\partial{\bar{q_i}}}+\frac{\partial{\dot{\bar{q_i}}}}{\partial\alpha}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt\\=\sum_i\int_{t_1}^{t_2}\left(\xi_i(t)\frac{\partial{L}}{\partial{\bar{q_i}}}+\dot\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt

두 번째 항에서는 \normalsize\!\xi_i(t)가 시간에 대해 미분이 되어 있습니다. 보기 거슬리니까 이를 다른 놈한테 넘겨줘 봅시다. 이때는 부분적분을 이용하면 됩니다.

/\LARGE\!\int_{t_1}^{t_2}\frac{d}{dt}\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt=\left[\xi_i(t)\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right]_{t_1}^{t_2}-\int_{t_1}^{t_2}\xi_i(t)\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt\\=-\int_{t_1}^{t_2}\xi_i(t)\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}dt

이건 아까 구한 \normalsize\!\xi_i(t_1)=\xi_i(t_2)=0라는 조건에서 알 수 있지요. 그러면 식은 한결 간단해집니다.

\LARGE\!\frac\partial{\partial\alpha}\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt=\sum_i\int_{t_1}^{t_2}\xi_i(t)\left(\frac{\partial{L}}{\partial{\bar{q_i}}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{\bar{q_i}}}}\right)dt

알파가 0이면 \normalsize\!\bar{q_i(t)}=q_i(t)+\alpha\xi_i(t)에서 \normalsize\!\bar{q_i(t)}=q_i(t)임을 알 수 있습니다. 그리고 이 때 위의 적분은 항등적으로 0이 되어야 하구요.

\LARGE\!\frac\partial{\partial\alpha}\left[\int_{t_1}^{t_2}L(\bar{q_i},\dot{\bar{q_i}},t)dt\right]_{\alpha=0}\\=\sum_i\int_{t_1}^{t_2}\xi_i(t)\left(\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}\right)dt=0

그런데 \normalsize\!\xi_i(t)는 말 그대로 임의의 함수이기 때문에 항등적으로 영이 되기 위해서는 괄호 안의 값들이 무조건 영이 되어야 합니다. 따라서

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

를 얻습니다. 이는 모든 i에 대해 성립합니다.

나머지 방법인 가상일을 이용하는 방법(D'Alembert의 원리)은 다음 글에서...(다음 글을 언제 쓸지는 저도 장담을 못하겠네요...)



델랑베르 원리에서 출발하는 라그랑주는 다음 글에서 확인하세요
라그랑지 운동방정식( Lagrange Equations of motion ) (Weistern님)

델랑베르 원리를 직접 언급하지는 않았지만 유도하는 방법(사실상 썼다고 봐야하지만)
Lagrangian and Hamiltonian Mechanics

  1. Marion, Classical Dynamics of Particles and Systems, 4th Ed.에 나오는 내용을 기준으로 작성했습니다. 사실은 최대나 최소가 될 필요는 없다고 하더군요. 참고 : http://en.wikipedia.org/wiki/Lagrangian_mechanics#Hamilton.27s_principle [본문으로]

댓글을 달아 주세요

  1. Favicon of http://hbar.tistory.com BlogIcon h-bar  댓글주소  수정/삭제  댓글쓰기

    모든 수식이 깨져 있는 것은 제 컴터의 잘못인가요??

    2010.04.03 22:43 신고

사람들은 물리학 하면 일단 편견을 갖고 대합니다. 이런 우스갯소리도 있지요.

"제가 비행기를 탔을 때, 옆 자리 사람과 대화를 나누고 싶으면 저를 천문학자라고 소개합니다. 그날이 피곤하거나 하면 물리학자라고 소개하구요."

-천체물리학자

천문학자라고 하면 '오늘 양자리 운세는 어떤가요?'라는 다소 황당한 질문이라도 들려오지만, 물리학자라고 하면 말을 안 거는 상황을 빗댄 것이지요. 예, 그런 겁니다. 기계과는 하수구 막히면 뚫는거고, 전기과는 컴퓨터 에러나면 고치는거고, 영문과는 '아리까리하다'란 단어 번역해야 하는거고, 경제학과는 부동산 가격이나 예측하고 있어야 하는 거지만, 물리과는 조용히 있어 주어야 하는 겁니다.(이건 철학과도 그럴듯...)

그러고 보니 수능 준비하던 때가 생각나는군요. EBS에서 수능 점검용 문제집을 내기도 하는데(그 왜 최종점검용으로 나오는 얇고 큰 문제집 있잖아요), 물리II는 대전에 없었습니다. 당시 반짝 서울로 학원을 다니던 때라 고속터미널에서 문제집을 사 돌아오기는 했는데, 친구들 말을 들어보면 물리II 문제집은 대전 어디에도 없었다는군요. 어찌되었든 친구들은 제 문제집 복사해 가서 열심히 풀더군요. 뭐 얼마나 물리II를 신청한 사람이 없었으면 대전에 안 들어왔겠느냐는 답이 가능하겠지요. 그만큼 물리란 학문은 사람과 거리가 먼 듯 합니다(먼산..).[각주:1]

뭐 어찌되었건, 어떻게든 물리를 공부해야 하는 한 사람으로서 물리가 무엇인지에 대해 잠깐 정리해 보는 것도 좋은 경험이 되겠지요. 자, 그럼 시작합니다.

물리는 '자연을 수학으로 모형화(Modeling)하는 학문'입니다. 사람에 따라서는 물리학 법칙이 '실제 자연이 움직이는 원리이다'와 '자연을 제일 잘 서술하는 근사(Approximation)이다'[각주:2] 두 가지로 나뉩니다만, 모형화라는 부분은 공통입니다. 이 모형이 실제 자연인가 좋은 근사인가에 대한 왈가왈부일 뿐이지요. 그리고 중요한 것은 모형화한다는 것입니다. 모형화라는 것이 수학과 물리를 구분짓는 가장 큰 기준이 됩니다. 사실, 순수하게 물리적인 부분이라고 할 수 있는 부분은 모형화까지입니다. 그 이후부터는 각종 방정식을[각주:3] 풀어내는 것이 전부인데(이후 결과값을 해석하는 것은 모형화라고 보아야겠지요.), 이건 사실 수학으로 보아도 무방하지요. 뉴턴경이 위대한 물리학자이면서 유명한 수학자라는 것이 이 사실을 뒷받침합니다.[각주:4]

그러면 이런 모형화에 대해서 알아보는 것이 다음 수순이 되겠지요. 모형화는 주로 몇 가지 가정을 통해 이루어집니다. 이런 가정 중 어떤 것은 모든 모형에서 다루지만 어떤 것은 그 모형에서만 다루어져 그 모형을 특징짓기도 합니다. 모든 모형에서 다루는 대표적인 가정으로는 '우주가정'을 들 수 있습니다. 아무 것도 없는 공간에서는 위치와 방향을 가늠할 수 없다는 것이지요. 이것을 공간의 균일성(Homogeneity)과 등방성(Isotropy)이라고 부릅니다.[각주:5] 한편, 특별한 모형에서만 다루는 가정으로는 슈레딩거 방정식이나 운동량 보존 법칙이 있습니다. 슈레딩거 방정식은 사실 가정입니다. 모든 파동함수가[각주:6] 이 편미분방정식에[각주:7] 따라서 변화한다는 가정이며, 이 가정이 비상대론 영역에서 양자역학의 뼈대를 이룹니다. 운동량 보존 법칙은 각 물체를 나타내는 운동량이라는 벡터량의[각주:8] 총합이 보존된다는 가정입니다. 이 가정은 뉴턴역학의 뼈대를 이루지요.[각주:9]

자, 그러면 이제 이 가정들이 얼마나 합당한지를 살펴보아야 합니다. 이런 검증 과정은 실험으로 이루어집니다. 이것이 모형화라는 특징을 갖는 물리학이 수학과 다른 부분이지요. 물리학에서는 가정이 얼마나 합당한지를 실제 자연 현상을 관찰해서 결론내립니다. 하지만 수학의 경우에는 그런 과정이 없습니다. 요즘 한창 유명한 (초)끈이론이 아직은 물리학의 범위에 발을 들이지 못한 이유도 이것입니다. 모형을 검증할 정도로 기계장치들이 발전하지 못했다는 것이지요.[각주:10]

이제 정리하겠습니다. 물리학은 자연의 모형화를 다루는 학문입니다.[각주:11] 이 모형화는 수학적인 모형화이며,[각주:12] 이것이 물리학을 수학과 떨어뜨려 생각하기 힘들게 합니다. 또, 수학과 물리학이 다른 것은 물리학은 모형이 얼마나 적합한지를 실험으로 검증해야 하기 때문입니다. 이 정도면 깔끔한 정리라고 보여지는데, 아닌가요?

덧. 이게 바로 날려먹은 그 글입니다. 아아아아ㅏ악! 짜증나 ㅠㅠ
덧2. 크게 보면 예전 글 리뉴얼입니다. 07년에 썼으니, 상당히 오래된 글이네요.
2007/08/05 - 물리란 무엇일까?

  1. 그러고 보니 당시(08수능)에 있었던 물리II 복수정답 스캔들(?)이 생각나는군요. 기체의 자유도에 대한 문제였던 것으로 기억하는데, 전 사실 그 문제제기는 적당하지 않다고 생각합니다. 물론 물리학의 관점에서 보면 옳은 소리이긴 하지만, 교과과정을 봐야지요. 언어공부 제대로 했으면 고등학교 과정에서는 자유도가 3 이상인 이상기체는 다루지 않는다는 것을 알 것이고, 그러면 정답이라고 보기 힘들다는 것도 아실텐데 말이지요. 물론, 저도 고민하다가 원 정답을 찍기는 했습니다. [본문으로]
  2. 파동함수(나중에 설명)를 어떻게 해석할 것인지에 대한 입장 중에서 리처드 파인만은 '닥치고 계산'이라는 입장을 고수했다고 알려집니다. 물리 법칙을 근사로 이해하는 것의 연장선상에 이 입장을 놓을 수 있겠지요. [본문으로]
  3. 방정식은 '수들 사이의 관계'라고 할 수 있습니다. 이 방정식을 이용하여 아는 수들을 이용해 모르는 수를 알아내는 것을 '방정식을 푼다'라고 합니다. [본문으로]
  4. 뉴턴역학으로 유명하신 우리의(?) 뉴턴경은 라이프니츠와 함께 미적분학의 발견자로 명성을 떨치셨습니다. 이 일로 둘이 피터지게 싸웠다는 후문이... [본문으로]
  5. 예전 글에 이에 대해서 조금 설명해 두었습니다. 용어 선택은 조금 다르긴 하지만, 내용상 큰 차이는 없으니 참고 바랍니다. http://dexterstory.tistory.com/247 [본문으로]
  6. 함수는 '여러 입력값에 하나의 출력값을 내보내는 것'이라고 요약할 수 있습니다. 예를 들어 z=x^2+y라는 함수의 경우 x에 2를, y에 3을 넣어주면 z에 7을 출력합니다. [본문으로]
  7. 미분은 '함수에서 입력값이 변화할때 출력값이 어떻게 변화하는가'를 나타내어 줍니다. 편미분은 입력값을 하나로 제한하는 경우에 얻어지는 결과이구요. 보통 미분은 그래프의 기울기로 나타납니다. [본문으로]
  8. 벡터란 '덧셈과 곱셈이 잘 정의된 집합의 원소'를 말합니다. 물리의 영역으로 끌어오면 한 가지 조건이 더 붙는데, 그것은 바로 '변환에서 공간상의 점과 같은 방식으로 변해야 한다'는 것입니다. 이것은 물리에서 다루는 벡터량이 측정량과 관련이 있다는 사실과, 이 측정량은 누가 어떤 기준에서 측정하더라도 동일해야 한다는 것에서 붙는 제한입니다. 이런 잡소리를 다 무시하고 간단하게 말하자면, 벡터란 '방향을 가지는 수'라고 할 수 있습니다. [본문으로]
  9. 전 슈레딩거 방정식과 운동량 보존 법칙을 가정이라고 했습니다. 왜냐하면 그것은 증명할 수 없는 것이기 때문입니다. 공리(axiom, postulate)라고 부르기도 하지만 넓게 보면 가정이라고 보아야겠지요. 논리를 출발시키려면 어딘가 단단한 기반이 있어야 합니다. 그것은 물리학도 마찬가지입니다. [본문으로]
  10. LHC가 검증할 수 있게 되기를 바라는 사람들이 많기는 하지만, 아직까지는 검증 안된 이론일 뿐... [본문으로]
  11. 주식시장 예측으로 나가는 사람들이 많은 것도 이런 이유에서일지도... 주식의 오르락내리락을 모형화하는 것이니까 모형화를 다루는 학문으로서는 유리하겠지요. [본문으로]
  12. 캘빈경도 일찍이 수학의 중요성을 강조했지요. "In physical science the first essential step in the direction of learning any subject is to find principles of numerical reckoning and practicable methods for measuring some quality connected with it. I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of Science, whatever the matter may be." [PLA, vol. 1, "Electrical Units of Measurement", 1883-05-03] - http://zapatopi.net/kelvin/quotes/ [본문으로]

댓글을 달아 주세요

  1.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2009.03.09 09:21
  2. Favicon of http://inuit.co.kr BlogIcon Inuit  댓글주소  수정/삭제  댓글쓰기

    네. 깔끔합니다.
    그런데 이 글을 날리고 다시 쓰셨다면.. 근성의 덱스터님이로군요. +_+

    2009.03.09 23:44 신고
  3. Favicon of http://chew282.wordpress.com BlogIcon Donnie  댓글주소  수정/삭제  댓글쓰기

    아 모형화 부분에 대해 좀 더 알면 재밋을 거 같네요. T^T

    2009.03.11 03:35 신고
  4.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2009.03.12 19:32
  5. Favicon of http://nigimizoddo.tistory.com BlogIcon 냉면개시  댓글주소  수정/삭제  댓글쓰기

    ,머.....머리가 터질듯합니다!!!!!

    2009.03.13 11:39 신고
  6. Favicon of http://withthink.egloos.com BlogIcon 고무풍선기린  댓글주소  수정/삭제  댓글쓰기

    Inuit Blogged에서 트랙백타고 와서 구경하다가
    덧말 남겨 봅니다.

    저도 물리를 하고 있어서, 차마 그냥 갈수가 없습니다. ^^;

    명확한 물리학의 정의 잘 봤습니다.
    초심을 잃어버리면 안되는데,
    덕분에 제가 가졌던 초심을 떠올리는 좋은
    시간 되었습니다. ^^

    2009.04.23 11:46 신고
  7. 우와 덱스터님  댓글주소  수정/삭제  댓글쓰기

    CP symmetry 깨짐 이런것은 염두에 안두시나염. 등방성과 균일성이라니염.

    2009.04.26 00:09 신고
  8. 즈뵤즈드  댓글주소  수정/삭제  댓글쓰기

    빛의 산란에 대한 정보를 찾다 어찌어찌하다 보니 덱스터님 블로그에 방문하게 되었는데요.
    물리에 대한 재미있고 유익한 내용이 많아 이렇게 또 찾아 뵙습니다.
    과거, 모두들 생물2를 선택할 때 교내 1%만이 선택한다는 물리2를 선택하여 해당 교실에서 담임께(당시 물리가르치셨음) '넌 왜 여기있니?' 라고 질문을 받았었죠.
    '물리, 그거 하나도 이해 못해도 흥미와 재미만은 갖고 있던 공부안하는 학생' 이었던 즈뵤즈드라고 해요.
    수능을 치른지 10년이 흘렀어도, 덱스터님 포스팅한 글들을 읽다 보니 역시 물리는 매력적인 학문!! 이라는 사실을 새삼 느꼈습니다. 좋은 정보 감사합니다~ 자주 들릴것 같아요.
    ㅎㅎ 이런글 흥미있어하는 일반인입니다.

    2009.10.01 12:07 신고
  9. ourbeauty  댓글주소  수정/삭제  댓글쓰기

    안녕하세요, 덱스터님.

    전공자는 아니지만, 대학에서 물리 수업을 듣고 있는 학생입니다.
    우선 좋은 글 너무 감사합니다.

    물리수업을 들으면 들을 수록, 많은 매력을 느끼게 되는 것 같습니다. 사고력 향상에도 많은 도움이 되는 것을 느끼구요. (시험에서 좋은 점수가 나오지 않은 다는것이 문제이긴 합니다.ㅋㅋ^^;;)

    지난 시험에서 고배를 마시고...ㅠ.ㅠ 물리를 잘 이해하고 싶은 욕심이 마구마구 솓아올라 여기까지 오게 되었습니다.

    항상 건강하시길 바라며, 자주 찾아 뵙겠습니다.

    2009.10.20 10:00 신고

일요일(그러니까 대보름 전날) 달무리를 보았습니다. 여태 달무리는 달 주변에 조그맣게 생기는 것인 줄 알았는데 엄청 크더군요.(쿨럭;) 뭐 초중딩때 과학 공부(특히 기상 부분 OTL) 조금 하셨다면 달무리나 해무리는 48시간 이내에 비가 온다는 것을 예보하는 기상 현상이라는 것도 아실 겁니다. 마침 나갔다 들어왔는데 이슬비가 내리더군요.

제가 눈대중으로 잰 달무리의 반경은 0.38 래디언, 즉 약 22도였습니다. 달무리를 만드는 그 각도가 어떻게 생겨나는가에 대해 고심하기 시작했지요. 덕분에 고딩때 손 놓았던 기하광학에 빠져들었습니다.


먼저 몇가지 가정을 해 보겠습니다.

1. 달빛은 평행하다.
2. 물방울은 구형이다.
3. 달무리는 물방울 내부에서 일어나는 굴절이나, 내부에서 반사 후 일어나는 굴절에 의해 생긴다.

그리고 달무리의 사진을 봅시다. 해무리도 좋습니다.(편의상 위키피디아의 Halo 항목에 있는 사진을 가져왔습니다.)

File:Bosman 09222008 002-1.JPG

안쪽이 어둡습니다.
이건 빛의 굴절이 어느 각도 이하에서는 일어나지 않는다는 의미입니다. 그러니까, 22도 이하에서는 일어나지 않던 빛의 굴절이 22도 이후부터 생겨나기 때문에 상대적으로 안이 어둡고 밖이 밝은 무리가 생긴다는 것입니다. 이건 무리가 어떻게 생기는가에 대한 탐구 방향을 제시해줍니다.


case I. 1회 굴절할 경우



델타(δ)가 물방울 안에서 반사가 일어나지 않을 때, 광선이 휘어지는 각도입니다. 이 각도는 입사각인 베타(β)와 물의 굴절률 n에 의해 영향을 받게 됩니다. 이등변삼각형의 원리와 스넬의 법칙, 그리고 기타 등등을 버무려서 계산해 보면, 다음 식을 얻게 됩니다.

\delta = 2(\beta - \arcsin ( \frac {\sin(\beta)} {n})

하지만 입사각이 전부 동등한 중요도를 갖지는 않습니다. 당연히 입사각이 똑바를수록 더 많은 입사광을 받겠지요. 그래서 중요한 것은 물방울의 중심으로부터 얼마만큼 떨어져 있으면 얼마만큼 굴절되느냐입니다. 물방울에 비치는 빛이 일정할 경우 빛의 세기는 중심에서의 거리와 무관할 테니까요.


위의 그림에서 입사각 베타와 거리 d, 그리고 반지름 R 사이에는 다음의 식이 성립하는 것을 알 수 있습니다. 편의상 거리대 반지름의 비율 d/R을 x라고 부르도록 하겠습니다. x는 0부터 1 사이에 속하는 수가 되겠지요?

\beta = \arcsin(\frac{d}{R}) \\ = \arcsin(x)

이 결과를 굴절각 델타에 넣어보면 다음 식이 얻어집니다.

\delta = 2(\arcsin(x) - \arcsin(\frac{x}{n}))

이 식을 이용해 그래프를 그려보겠습니다. 굴절률 n은 1.33을 넣었습니다.


x가 1일 때의 값은 약 1.44래디언으로, 각도로 따지면 약 82도 정도 됩니다. 이 상관 없어 보이는 숫자는 어디에 쓰이는 숫자일까요? 바로 태양이나 달이 밝히는 하늘의 범위입니다. 그러니까 태양이나 달을 중심으로 한 82도의 범위 내의 하늘은 굴절된 빛에 의해 밝게 빛난다는 뜻이지요. 이 값은 순수히 물방울에 의한 굴절만 계산했기 때문에, 반사광이나 먼지의 영향은 고려되지 않았다는 점에 유의하시길 바랍니다.



case II. 내부에서 1회 반사가 있을 경우



위의 경우입니다. 이번에도 마찬가지로 여러가지 식들과 싸우다 보면 다음의 결과를 얻게 됩니다.

\delta = \pi + 2\arcsin(x) - 4\arcsin(\frac{x}{n})

흠... 일단 그래프 먼저 그려보겠습니다...

적색은 case I이고, 이번에 그려진 그래프는 녹색입니다.

원하던 형태의 그래프입니다. 어느 각도 이하에서는 빛이 더 이상 굴절되지 못하지요. 해무리와 달무리처럼 말입니다. 그런데 문제는, 값이 π 근처에만 존재하는 것을 볼 수 있습니다. 최소값은 약 2.40래디언으로, 각도로 바꾸어주면 138도입니다. 180도에서 42도 모자란 셈이지요. 바로 무지개의 각도입니다. 결국 무언가 틀렸다는 말이 되는데, 무엇이 문제였을까요?

가정으로 돌아가 보겠습니다.

1. 달빛은 평행하다.
2. 물방울은 구형이다.
3. 달무리는 물방울 내부에서 일어나는 굴절이나, 내부에서 반사 후 일어나는 굴절에 의해 생긴다.

가정 1은 합당한 가정입니다. 달의 거리가 얼마나 먼데요...
가정 2가 문제입니다. 무리는 상공에 얼음이 떠 있을 때 만들어집니다. 얼음의 경우에는 결정이 구형이 아니라 육각형입니다. 그래서 이런 오류가 생기는 것이지요. 결국 구형 물체가 아닌 다른 물체를 가정해야 한다는 것이지요.(전 이 가정에서 이틀동안 헤매다가 결국 찾아보고 말았습니다.)


나머지는 포스트 2에서 찾아뵙겠습니다 -_-;;;
(포스트 하나 쓰는것도 은근히 힘들군요)

댓글을 달아 주세요

  1. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    지금은...공부시간이 되어버렸을 뿐이고~~~

    다음시간도.... 같겠죠~

    즐거운 하루 되세요^^

    2009.02.11 09:30 신고
  2. Favicon of http://babmucza.com BlogIcon 밥먹자  댓글주소  수정/삭제  댓글쓰기

    사인에 arc가 붙은 건 뭔가하고 생각하고 있었을 뿐이고.... 이번 거는 좀 어질어질합니다.
    무리가 얼음에 의해 일어나는 현상이로군요. 오호...

    2009.02.11 20:36 신고
  3. Favicon of http://reach-rich.tistory.com BlogIcon buckshot  댓글주소  수정/삭제  댓글쓰기

    덱스터님의 물리 포스트를 잘 이해하고 싶은데. 실력이 딸려서 고전 중입니다. ^^

    2009.02.11 23:12 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2009.02.12 16:10 신고  댓글주소  수정/삭제

      저 값을 구하는 중간과정과 저 값을 해석하는 중간과정을 적지 않아서 그럴 거예요 ^^;;;

      그런 자잘한 부분이 은근히 신경 많이 쓰이더라구요 -_-;;

힘과 운동

Physics/Concepts 2008.08.08 00:38

물리는 '자연 현상'을 '수학적'으로 '모델링'하고 그 모델에 따라 앞으로 있을 자연 현상을 '예측'하는 학문이다. 오늘은 간단하게 모든 물리학의 기초가 되는 뉴턴 역학에 대해서 알아보자.

힘은 무엇인가?

힘은 무언가를 변화하는데 사용되는 것이다. 일반적으로 그 무언가는 쉽게 변하지 않는 것이며, 그렇기 때문에 힘을 정의하기에 앞서 무엇이 쉽게 변하지 않는가 알아보아야 한다. 철학뿐만 아니라 여러 분야에서 두각을 나타내었던 옛 그리스 시대의 아리스토텔레스는 이 쉽게 변하지 않는 양이 '위치'라고 보았다. 하지만 '위치'라는 양은 그냥 놔두어도 쉽게 변한다. 공중에 던져진 물체의 위치는 매우 빠르게 변화한다. 쉽게 변하지 않는 양이 위치라면, 공중에 던져진 물체는 금방 멈추어야 할 것이다. 또한, 자유낙하를 설명하기 위해 도입한 자연운동이라는 개념은 일관성이 떨어진다. 무엇이 강제운동(아리스토텔레스는 힘에 의해 억지로 위치가 변하는 것을 강제운동이라고 불렀다.)이고 무엇이 자연운동인지 누가 정의한단 말인가? 천체들은 왜 자연운동을 하지 않는가? 물론 그렇기 때문에 아리스토텔레스는 천상과 지상의 법칙이 다르다는 결론에 도달했을 것이다. 천상에서는 자연운동이 원운동으로 나타나고, 지상에서는 자연운동이 낙하운동으로 나타나기 때문에 천상의 물체들(천체들)은 낙하하지 않는다는 설명은 얼핏 들으면 그럴듯하지만, 무엇이 천상의 물체이고 무엇이 지상의 물체인지 정확히 정해지지 않는다면 예외로 가득찬 법칙이 되어버릴 것임에 틀림없다.

뉴턴은 완전히 다른 관점에서 접근했다. 먼저 뉴턴은 천상의 법칙이나 지상의 법칙이나 다를 것이 없다고 생각했다. 흔히 사과가 떨어지는 것을 보고 뉴턴이 중력을 생각해 내었다고 전해진다. 하지만, 원래의 이야기는 사과가 떨어지는 것과 달이 원운동을 하는 것과 적용되는 법칙은 같다는 것을 떠올리게 된 것이라고 한다. 사과가 떨어지는 것이 만유인력 때문이다 이런류의 생각은 아니지만, 어찌 되었든 사과가 만유인력의 법칙을 떠올리는데 중요한 역할을 한 것임에는 틀림없다. 그렇다면 무엇이 쉽게 변하지 않는 것인지 알아보기로 하자.

변하지 않는 양-운동

여기서 그 유명한 갈릴레오의 관성에 대한 사고실험을 보도록 하자.

사용자 삽입 이미지

A위치에서 출발한 공은 곡면을 따라 같은 높이(B,C)까지 굴러 올라간다는 것은 경험상 모두 잘 알고 있다. 진자를 생각해 보아도 좋다. 진자가 올라가는 최대 높이는 그리 큰 차이를 보이지 않는다. 물론 갈수록 조금씩 내려가기는 하지만, 그리 큰 것은 아니다. 원래 그림으로 돌아와서, 만약 이 곡면을 무한대로 확장한다면(D) 어떻게 될까? 이 공은 같은 높이가 될 때까지 계속 굴러갈 것이라는 추론이 가능하다. 이것이 그 유명한 갈릴레오의 관성에 대한 사고실험이다.

여기서 중요한 것은 '계속' 굴러간다는 사실이다. 여기서 얻어진 아이디어가, 물체에게 있어 잘 변하지 않는 것은 바로 '운동'이라는 것이다. 이것은 현대 물리학의 '쉽게 변하지 않는 것'에 대한 관점이다.(뉴턴의 제 1 법칙: 운동하는 물체는 계속 운동한다) 이제 이렇게 쉽게 변하지 않는 것을 알아내었으면, 그것을 수학적으로 표현해주어야 한다. 운동을 무엇으로 나타내야 잘 나타낼 수 있을까?

누구나 무거운 물체에는 더 많은 힘이 들어가야만 같은 속도로 운동시킬 수 있다는 것을 알고 있다.(뉴턴의 제 2 법칙: 질량과 가속도는 반비례한다) 이처럼 운동을 대표하는 양에는 '질량', 즉 무겁고 가벼움에 대한 값이 포함되어야 한다. 마찬가지로 누구나 빠른 공은 느린 공보다 더 많은 힘을 들여야 멈출 수 있다는 것을 알고 있다. 굴러오는 총알보다 총에서 발사된 총알이 더 무서운 것과 같다. 이처럼 빠르기를 대표하는 양인 '속도'도 운동에 고려되어야 한다. 실제 실험에서는 질량과 속도는 서로 동등한 가중치를 갖기 때문에 운동을 운동량, 질량과 속도의 곱으로 표현한다.

뉴턴의 3 법칙

우리는 여태까지 뉴턴의 3가지 법칙 중 두가지 법칙(제 1, 제 2 법칙)에 대해 알아보았다. 이제 마지막 법칙인 세번째 법칙을 알아보도록 하자. 먼저 두개의 물체를 생각해 보자. 이 두개의 물체를 묶어서 보는 입장에서는 두 물체에 외부에서 아무런 힘을 주지 않더라도 두 물체의 운동량의 합은 변하지 않아야 한다. 두 물체를 질량 없는 상자로 덮어 놓는다면, 외부에서 볼 때에는 두 물체의 집합이 하나의 물체로 보일 것이고, 이 하나의 물체에 대해서는 여태 다루었던 법칙이 다 적용되어야 하기 때문이다.이것이 세번째 법칙의 골자이다.

세번째 법칙은 두 물체가 힘을 주고받는 경우, 둘은 같은 크기의 힘(짝힘이라고 부른다)을 주고받으며, 두 힘의 방향은 반대라고 말하고 있다. 운동량의 합이 변하면 안되기에, 한쪽의 운동량이 변하는 만큼(힘) 반대쪽의 운동량이 감소하는 것이다(짝힘). 변화하는 방향이 반대인 만큼(한쪽은 증가, 반대는 감소), 두 힘의 방향은 반대가 된다. 이제 세번째 법칙을 정리할 수 있다. '두 물체 사이에 힘이 작용할 경우 두 물체 사이에는 같은 크기의 힘이 작용하며, 그 힘들의 방향은 서로 반대이다.'

힘과 운동에 대한 포스트는 간단하게 이정도에서 마치도록 한다.

TAG 물리, 운동,

댓글을 달아 주세요

균일함에 대하여

우주는 균일하다고 여겨진다. 균일하다는 것은 쉽게 구분할 수 없다는 것으로, 크게 두 가지가 있는데, 하나는 방향에 대한 개념이 있고, 다른 하나는 위치에 대한 개념이 있다.

먼저, 방향적으로 균일하다는 것을 isotropic이라고 부른다. 한글로는 어떻게 번역되는지 잘 모르겠으나, 이 글에서는 편의상 "등방향성" 이라고 부르기로 하자. 우주에 등방향성이 존재한다는 것은 다음의 말과 같다. 우주 안의 한 지점에서 우주를 바라보고 있을 때, 그 점에서 어떤 방향으로 바라보고 있는지 알 수 없다는 뜻이다. 등방향성이란 바라보는 방향마다 차이가 적어 방향을 구분할 수 없을 때를 말한다. 쉽게 말해 밤하늘을 크게 확대해 놓으면 자기가 동쪽을 바라보고 있는지 남쪽을 바라보고 있는지 모르는 것이다.

다음으로, 위치적으로 균일하다는 것을 homogenous라고 부른다. 역시 한글로는 어떻게 번역되는지 잘 모르겠으나, 이 글에서는 "균일하다"라는 말을 이 개념에 배당하겠다. 이 균일성이라는 개념은, 우주 안에서 어떤 위치에 있는지는 기준점 없이는 알 수 없다는 것이다. 이처럼 균일하다는 것은 바라보는 위치가 바뀌어도 차이가 적어 위치의 차이를 구분하지 못할 때를 말한다. 쉽게 말해 서울의 밤하늘과 대전의 밤하늘은 밤하늘만 가지고서는 자기가 어디에서 하늘을 보고 있는지 구분하지 못하는 것이다.

균일함과 중심력

이제 완전히 빈 공간을 생각해 보자. 쉽게 생각하면 티끌하나 존재하지 않는 우주와 비견될 수 있을 것이다. 물론 실제의 우주에서는 양자 요동이라는 현상에 의해 불가능하지만, 아직까지는 고전적인 범위에서만 다루므로 티끌하나 존재하지 않는 완전히 비어있는 우주를 생각할 수 있다.

이제 이곳에 입자 하나를 놓자. 무엇이 되어도 상관이 없다. 그것이 사람이든, 책이든, 휴대폰이든, 시계든 상관이 없다. 하지만 이런 모든 것들은 자체적으로 방향성을 가지고 있는데다가(사람을 위에서 보는것과 아래에서 보는 것으로 구분할 수 있듯이), 분해되어 점들의 집합으로 서술될 수 있기 때문에 이상적인 상황을 논하고 있는 현재에는 그다지 합당하지 않다고 느껴진다. 따라서 이런 문제가 생기지 않도록 점 하나를 공간에 가져다 놓았다고 생각해 보자. 이제 이 점입자를 A라고 부르자.

바로 이 순간, 빈 공간에서의 균일성은 붕괴하게 된다. A라는 물질이 존재하게 되면서 A까지의 거리라는 변수에 의해 위치의 차이를 구분할 수 있게 되기 때문이다. 하지만, 아직 A의 방향성이 정해지지 않았으므로 A까지의 거리가 다른 경우에만 서로 구분할 수 있고 A까지의 거리가 같은 점들(구를 만들어낸다)끼리는 구분이 불가능하므로 균일성은 붕괴하기는 하지만 완전하지는 않다고 할 수 있다.

하지만 등방향성은 어떤가? 우리가 아는 것은 A까지의 거리일 뿐, A에 대한 방향은 알 수 없다. 이건 A의 입장에서 보면 더욱 두드러진다. A가 보기에는 12시 방향이나, 4시 방향이나 다 똑같은 끝없는 암흑뿐이다.(12시 방향도 정의하기 힘들다.) 결국 점을 하나 가져다 놓는다고 해서 등방향성이 깨지지는 않는다. 이처럼 우주가 등방향성을 보존한다는 것과 관련있는 힘이 중심력이다. 이제 중심력의 정확한 정의를 알아보자.

중심력은 무엇인가.

중심력이란 "입자와 입자 사이의 거리에만 관여하며, 그 방향이 입자와 입자를 잇는 선상에 놓이는 힘"을 말한다. 만약 중심력의 벡터가 입자와 입자를 잇는 선상에 놓이지 않는다면, 등방향성을 위배하게 된다. A로부터 받는 힘을 이용해 자신의 방향을 예측할 수 있고, 이는 등방향성이 깨져버리게 되기 때문이다. 실제 이런 방법으로 등방향성이 깨지는 경우는 관측된 바는 없다. 물론 일반상대론의 영역으로 가면 공간 자체가 휘어버리면서 공간 자체가 방향성을 가지게 되기도 하지만, 그것은 기본적으로 가속운동상태인 회전운동중이나 입자 자체가 움직이고 있어 방향성을 갖는 경우에나 볼 수 있는 것이다. 고전역학은 가속운동되는 계가 아닌 관성운동을 하는 계, inert한 계만 다루기 때문에 이런 경우까지 따로 다루지는 않겠다.

실제로도 자연계의 기본적인 힘으로 여겨지는 4대 힘(중력, 전자기력, 약력, 강력) 모두 중심력에 속한다. 이쯤 되면 독자들도 왜 기본적인 힘이 중심력에 속하는지 눈치를 챘으리라 믿으며(혹시 눈치채지 못한 독자를 위해 내 개인적인 생각을 말하자면, 나는 우주는 최대한 대칭성(등방향성이나 균일성)을 보존하려고 하는 성질을 갖고 있다고 믿는다. 이런 성질에 최대한 부합하기 위해 4대 힘이 모두 중심력으로 나타난다고 생각한다.), 중심력 중 가장 기초가 되는 중력으로 넘어가겠다.

가장 기초적인 중심력, 중력.

중력은 "중력질량을 갖는 두 물체 사이의 힘" 으로 정의된다. 물론 이 힘을 매개하는 입자(가상적인 입자, 중력자(graviton))나 마당(장, 역장(force field)을 말한다) 으로도 정의할 수도 있으나, 중력을 제일 처음 다루었던 뉴턴(Sir Isaac Newton)의 관점을 따르기로 하자. 뉴턴이 발견한 중력의 특징은 다음과 같다.

"두 질량을 가진 입자는 서로를 끌어당기며, 그 힘은 두 질량의 곱에 비례하고 두 입자사이의 거리의 제곱에 반비례한다"

참 신기하게도, 전자기력 또한 두 입자 사이의 거리의 제곱에 반비례하는 성질을 가지고 있다. 이러한 성질은 우리가 보는 세계의 차원(공간적인 차원. 시간까지 합치면 완전치 못한 4차원이 된다. 이 부분은 특수론에서 다루기로 하자.)과 관련이 있다고 여겨진다. 3차원의 공간에서 정의된 구의 겉넓이는 반지름의 제곱에 비례한다.(자명하므로 증명은 생략한다.) 힘이 공간에 의해 매개된다고 할 때(역장의 개념으로 볼 수 있다), 힘은 등방향성의 성질에 따라 힘을 생성하는 입자에서 같은 거리에 떨어진 지점마다 모두 같은 힘을 제공해야만 한다.(이렇지 않다면 특정한 방향성이 존재한다는 것을 알게 되고, 등방향성이 깨져버린다.) 이때, 이 같은 거리에 떨어진 지점들의 수는 거리의 제곱에 비례한다(구의 겉넓이에 비례하게 될 것이기 때문이다). 따라서, 지점당 배당되는 힘은 거리의 제곱에 반비례할 수 밖에 없다. 나눠줄 점들이 거리의 제곱에 비례해서 계속 늘어나기 때문이다.

중력으로 돌아와서, 이제 이 중력이라는 것을 수학적으로 나타내 보기로 하자. 계속 강조하듯이, 물리라는 학문 자체가 수학적인 모델링에 그 기본 뼈대를 두고 있기 때문에 이런 귀찮은(?) 작업은 필수적이다.

vec[F(r)] = -GMm/(r^2) vec[e_i]

벡터 F(r)은 바라보는 질점이 바라보아지는(..) 질점에게 가해주는 힘이며,G는 비례상수를 나타낸다. 유래는 아무래도 영어단어 gravitation에서 온 듯 하다. M과 m은 두 질점의 질량을 말하며, r은 두 질점 사이의 거리를,벡터 e_i는 바라보는 질점에서 바라보아지는(..) 질점을 잇는 벡터의 단위벡터를 말한다. 말이 좀 꼬여있기는 한데, 다음 예를 보면 쉽게 이해할 수 있으리라 생각한다.

질점 M이 질점 m을 징그럽게 끌어당기는 힘은 위의 식과 같이 나타난다고 할 때, 벡터 e_i는 질점 M을 시점으로 하고 질점 m을 종점으로 하는벡터와 같은 방향의 단위벡터이다. 이쯤 되면 왜 - 부호가 붙었는지 이해할 수 있을 것이다. 근본적으로 벡터 e_i는 밀어내는 방향의 벡터이다. 중력은 끌어당기는 힘이므로, 필연적으로 - 부호가 붙게 되는 것이다.

2체문제와 환산질량

이제 두 물체가 중심력으로 서로 영향을 주고받는 상황을 다루어 보자. 이런 경우는 참 복잡하다. 이런 문제는 하나를 고정시키고(누구맘대로인지는 모르겠다) 다른 하나만 자유로이 움직인다고 가정하고 풀면 매우 쉽게 풀린다. 두개의 물체를 전부 고려해 주어야 했는데, 이제는 그 수고를 덜 수 있기 때문이다. 이제 그 수학적 기교를 보도록 하자.

먼저, 두 물체의 질량은 변하지 않는다고 가정하자. 이렇게 질량이 불변하다는 가정을 하면 여러가지로 참 편리하다. 대표적인 예로 운동량의 시간에 따른 변화로 정의되는 힘이 매우 간단해진다는 것이다. 이제 두 질점을 가정해 보자. 두 질점은 각각 M, m의 질량을 가지고 있으며, 두 질점의 위치벡터는 r_1, r_2이며, 두 질점 사이에 작용하는 중심력은 질점 M에서 기술된다고 하자. 그렇다면 방정식은 다음과 같이 나타내어 질 것이다.

m (d^2 vec[r_1])/(d t^2) = F(|vec[r_1]-vec[r_2]|) vec[e_i]

뉴턴의 제 3번째 법칙을 기억하시는지? 기억하신다면 다음과 같이 나타내는 것을 쉽게 이해할 수 있을 것이다. F의 힘을 M이 m에게 먹이고 있으니, 자기는 -F를 먹어야지.

M (d^2 vec[r_2])/(d t^2) = -F(|vec[r_1]-vec[r_2]|) vec[e_i]

이 두 식에서 각각 질량으로 나누어주고 위에서 아래를 빼 보자.

(d^2 vec[r_1])/(d t^2) -(d^2 vec[r_2])/(d t^2) = (M^-1 + m^-1) F(|vec[r_1]-vec[r_2]|) vec[e_i]

이제 vec[r]을 vec[r_1]-vec[r_2]로 정의해주고 잘 정리해 보자.

(mu) (d^2 vec[r])/(d t^2) = F(|vec[r]|) vec[e_i]

한결 식이 간단해졌다. 이 방정식은 이제질점 M이 바라보는 질점 m의 운동의 방정식이 된다. 이때의 mu는 mM/(m+M)으로 정의되며, 이것을 환산질량이라고 부른다. 더 공부할 사람들은 앞으로 이 환산질량을 많이 쓰게 될 것이다. 이 포스팅의 주요 목적은 물리적인 현상을 쉽게 설명하는 데 있고, 이후 중심력에 대한 부분은 대부분 수학적인 풀이법에 그치므로, 이쯤에서 포스팅을 마친다.

댓글을 달아 주세요

에너지, 일-에너지 정리와 열역학 제 1법칙


들어가기 앞서 물리는 자연을 수학이라는 도구로 모델링하는 학문이라는 것을 상기하도록 하자. 수학적으로 모델링을 하는데 있어서 중요한 것은 어떤 경우에도 변하지 않는 소위 "불변량" 이라는 것이다. 이 불변량들이 특히 편리한 이유는, 수학적으로 쉽게 다룰 수 있기 때문이다. 일례로 뉴튼의 제 2법칙에서 얻어지는 F=ma라는 공식만 해도, 질량이 변하지 않는다는 가정 하에서 얻어진 방정식(즉, 질량을 불변량으로 취급한 방정식)이라는 것을 생각해 본다면 수학이 얼마나 쉬워지는가에 대해서는 의심할 여지가 없어 보인다.

이런 불변량들은 물리에서 다양하게 나타난다. 고전 역학부터 따져본다면 운동량, 각운동량 등이 있으며, 한참 후에 다루게 될 특수상대론에서는 spacetime interval(한글로는 어떻게 번역되는지 잘 모르나 시공거리라고 부르자)이 보존되고, 또 나중에 다룰 양자역학에서는 parity 등의 다양한 불변량들이 존재한다. 하지만 그 중 운동량 보존만큼 기초적이면서 제일 큰 중요도를 갖는 것은 에너지라고 할 수 있을 것이다.


에너지는 무엇인가

앞서 힘이란 "'쉽게 변하지 않는 무언가'를 변화시키는 것" 이라고 정의한 적이 있다. 그리고 그 '쉽게 변하지 않는 무언가'는 운동이라는 성질이며, 이것을 정량화한 것이 운동량으로 힘은 "운동량을 변화시키는 것"으로 정의되었다. 물론 이때 변화시킨다는 것은 시간의 개념을 내포하고 있으며, 힘은 운동량의 시간에 따른 변화량으로 정량화할 수 있었다. 그렇다면 에너지는 무어란 말인가?

에너지는 무엇인가. 내 경험으로 미루어 볼 때 고전역학의 범위에서 에너지는 "'쉽게 변하지 않는 무언가'를 변화시킬 수 있는 잠재적인 능력" 이라는 정의가 가장 타당해 보인다. 고전역학의 관점을 따르자면 "운동을 변화시킬 수 있는 잠재적인 능력" 정도로 정리가 가능하다. 이제 그 자세한 내막으로 들어가 보자.


일-에너지 정리

에너지가 정의되었다. 그러면 이를 어떻게 정량화하는 것이 옳을까? 먼저 에너지를 어떻게 측정하는가의 문제가 생긴다. 운동을 변화시키는 능력, 그것도 잠재적인 능력은 어떻게 측정하면 되는 것일까? 엔트로피라는 개념을 나중에 다루겠지만, 에너지라는 것은 엔트로피처럼 그 '변화량' 을 측정하기는 쉬워도 그 '절대량'을 측정한다는 것은 쉽지 않다. 약간의 물리학 지식을 가진 사람은 에너지의 절대량을 측정할 수 있다고 할 지 모른다. 하지만 이것을 떠올려주기 바란다. 그대들이 측정한 에너지는 어떤 '절대적인' 기준점에 대해 측정한 에너지라는 것을. 그렇다. 엔트로피와 마찬가지로, 에너지라는 것은 어떤 기준 없이 절대량을 측정한다는 것이 거의 불가능하다. 그렇다면 그 변화량은 어떤 방법으로 측정하는 것이 옳을까?

이 변화량은 일이라고 불리며, 다음과 같이 정의된다. "힘의 경로 적분(path integral of force)".

W = ∫(a, b, vec[F] * vec[ds])

a는 적분의 밑, b는 적분의 위, vec[F] * vec[ds]는 힘벡터와 미소경로벡터의 내적을 나타낸다. 이 일은 에너지의 변화량으로 정의되며, 여기서 역으로 에너지를 정의할 수도 있다. 마치 엔트로피로 정의되는 온도로 엔트로피를 정의할 수 있는 것과 같이 말이다.

E_i + W = E_f ... W = E_f - E_i = ΔE

이제 일의 정의를 다시 한번 잘 살펴보자.

W = ∫(a, b, vec[F] * vec[ds])
= ∫(a, b, vec[dP]/dt * vec[ds])
= ∫(a, b, vec[dP] * vec[v])
= ∫(a, b, vec[P]/m * vec[dP])
= ∫(a, b, m^(-1) 1/2 d(vec[P] * vec[P]))
= ∫(a, b, m^(-1) 1/2 d(P^2))
= Δ(P^2 / 2m)

vec[ds]/dt = vec[v] 인 이유는 vec[ds]가 이동하는 경로이기 때문이다. 이 부분에 대해서는 따로 언급하지 않겠다.

이제 정리된 식을 자세히 보자. P^2 / 2m의 변화량이 일과 같아졌다. 만약 T := P^2 / 2m 라고 정의한다면

W = ΔT = T_f - T_i

를 얻는다. 식이 한결 간단해진 것을 알 수 있다. 여기서 흥미로운 점은 T는 운동량 P의 크기에만 관계하는 양이며 T의 차원은 에너지와 같다는 것이다(당연한 것이지만). 따라서 T를 운동에너지라고 정의한다면 외부에서 해준 일은 운동에너지의 변화이다 라고 정리할 수 있다. 이것이 일-에너지 정리이다.


포텐셜 에너지와 에너지 보존

이처럼 힘들게 얻은 에너지라는 개념을 어디에 사용할 수 있을까? 먼저, 일은 어떤 일정한 종류의 힘에 대해 상당히 재미있는 성질을 갖는다. 바로 '어떤 경로를 따라 이동하더라도 두 위치를 이동하는데 필요한 일의 양은 같다'는 것이다. 이런 종류의 힘을 보존력이라고 하는데, 모든 중심력(중심력은 우주의 모든 힘을 구성하는 기본이 된다는 것을 상기하기 바란다.)은 이런 종류의 힘에 속한다. 이에 대한 증명은 자세히 다루지 않겠지만, 이런 성질은 확실히 유용하다는 생각을 버릴 수 없다. 그 시덥잖은 적분을 일일이 하지 않고서도 일을 이용해서 속력을 계산할 수 있다는데, 그 누가 이런 간단한 방법을 버리겠는가?

앞서 계산을 했을 때, 일은 에너지의 변화량이라는 것을 알 수 있었다. 하지만 그것은 '일을 받은 쪽'의 에너지 변화량이다. 일을 한 쪽의 에너지 변화량은 결코 일과 같지 않다. 그렇다면 일을 한 쪽의 에너지 변화량은 어떻게 될까? 여기에 뉴튼의 제 3법칙을 적용시켜 보자. 뉴튼의 제 3법칙은 '어떠한 작용에 대해, 그와 반대되는 방향을 갖는 같은 크기의 반작용이 존재한다'는 것이다. 그렇다면 일을 한 쪽의 에너지 변화량은 어떻게 되는 것일까? 단순히 생각하면 '반작용의 방향이 반대이므로 부호가 반대이고 크기는 같을 것이다' 이지만, 이렇게 단순하게 내린 결론이 결과적으로는 옳다. 왜냐하면, 뉴튼의 제 3법칙이 적용되는 힘의 거리적분이 일이기 때문이다. 적분에서 안에 있는 상수(이 경우에는 -1)는 적분 밖으로 빼 줄수 있다. 이런 식이다.

W_r = ∫(a, b, -vec[F] * vec[ds]) = -∫(a, b, vec[F] * vec[ds]) = -W

여기서 W_r은 받은 일을 말한다. 이처럼 적분이 이렇게 간단화되면, 받은 일은 한 일과 부호가 반대임을 쉽게 알 수 있다. 여기에 받은 일은 자신의 에너지 변화라는 것을 생각해 본다면

ΔE = -W

라는 결론에 다다르게 된다. 이를 다룰 때, 에너지의 변화량은 최종위치에만 따라 일정하다는 것을 알 수 있다. 위치에 따라 결정되는 상태함수라는 것이다.(상태함수란 처음과 끝 상태만 값에 관계있는 함수이다.) 이런 종류의 에너지를 하나로 다루면 편리할 것이라는 생각이 든다. 그래서 나온 것이 포텐셜 에너지라는 개념이다. 위치에 따라 어떤 정해진 절차로 그 위치에 해당하는 에너지라는 숫자를 배당시켜 준다면, 그 숫자의 차이로 일을 계산할 수 있는 것이다.

이제 이 숫자를 어떻게 배당하는 것이 옳을까? 일을 이용하면 된다. 어느 점을 기준점으로 잡아서 그곳에 숫자 0을 배당하고, 그 점을 기준으로 일을 했을 때 이 점에서는 무슨 숫자가 배당되야 옳은 결과가 나오는지를 살펴보는 것이다. 대부분의 중심력의 경우 이 기준점은 무한원점에 배당한다. 이렇게 기준점을 무한원점에 배당한 경우에 측정한 에너지를 일반적으로 포텐셜 에너지라고 부르는 데, 이를 절대적인 것으로 생각하지는 말았으면 좋겠다. 어떤 경우에는 이처럼 어리석은 짓도 없기 때문이다.

한편, 이 논의를 두 계로 구성된 차단된 계에 확장하면(차단된 계란 에너지의 유입이나 유출이 없는 계를 말한다)

ΔE_1 = -W = -ΔE_2
∴E_1i + E_2i = E_1f + E_2f

를 얻는다. 에너지의 유입이나 유출이 없는 계 안에서는 에너지의 합이 항상 일정하다는 것이다. 이를 에너지 보존 법칙이라고 부른다. 이 법칙은 다른 법칙과는 다르게, 여태까지 예외가 발견된 적이 없는 유일한 법칙이다. 단, 일부 에너지의 종류에서는 에너지가 증가하거나 감소하는 효과를 보일 수 있으나(에너지는 지금 다룬 포텐셜 에너지와 운동에너지 말고도 많이 존재한다. 하지만 대부분의 에너지는 미시적으로 따졌을 때 이 두가지 에너지로 표현될 수 있다.) 모든 종류의 에너지를 고려한다면 예외가 알려진 바 없고, 또한 예외가 있을 리 만무한 법칙이다.(개인적으로는 만무하다는 표현을 사용하기는 했으나, 이는 인간의 오만에 불과한 것이 아닌가 하고 생각하기도 한다.)


에너지 보존의 확장 1: 열역학 제 1법칙

다음으로 이 논의를 차단되지 않은 계로 확장해 보자. 먼저 흘러들어온 에너지는 들어와서 저장되거나 어디론가 빠져나가야만 한다. 흘러들어온 에너지의 양은 일정하기 때문이다. 그렇지 않다면 에너지가 어디선가 새어서 사라졌다는 말이 되고, 이것은 에너지 보존 법칙에 어긋나는 결과이다. 먼저 흘러 들어온 '알짜' 에너지, 즉 '알짜 일' 만 고려해 보자. 받은 일은 자신의 에너지 변화와 같다. 그러므로

ΔE = W_r'

이다. 그런데 생각해 보자. W_r'은 '알짜'로 계에 굴러들어온 에너지이다. 그렇다면 실제로는 굴러들어온 에너지에서 굴러나간 에너지를 제거해 준 것이 된다. 굴러들어온 에너지를 Q, 굴러 나간 에너지는 자신이 한 일과 같으므로 W라고 해 준다면

ΔE = Q - W

를 얻는다. 이를 보기 좋게 정리해 주면

Q = ΔE + W

이것이 에너지 보존을 일반화시킨 열역학 제 1법칙이다. 일반적으로 이 법칙은 열에너지에 적용한 것이라고 하지만, 필자의 경우에는 에너지 보존 법칙을 사용할 때 이 법칙만큼 편리한 방법을 아직까지는 찾지 못했다. 이 식을 사용하면 자신이 놓친 부분까지도 고려할 수 있기 때문이다.(많은 경우에 에너지를 사용하여 푸는 경우 외부에서 들어오는 에너지를 생각하지 못하는 경우가 있다.)


에너지 보존의 확장 2; 베르누이 방정식

유체에서 이런 에너지 보존을 다룰 수도 있다. 이 경우에는 베르누이 방정식이라고 알려진 다음과 같은 방정식으로 표현된다.

(ρv^2)/2 + ρgh + p = constant

이 식은 포텐셜 에너지가 mgh로 주어졌을 때 에너지 보존 법칙에서 얻어진다. 이 부분에 대해서는 포텐셜 에너지가 mgh로 주어진 계에서 에너지를 부피에 대해 미분해 주면 얻어진다는 정도로 설명하고, 이후 부분은 독자들의 연습용으로 남겨두기로 한다.


===================================================================================================

에너지 보존 이전의 부분은 전부 http://blog.naver.com/jwkonline 에 있습니다.

'Physics > Concepts' 카테고리의 다른 글

힘과 운동  (0) 2008.08.08
우주의 균일함과 중심력  (0) 2008.08.08
에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15

댓글을 달아 주세요

먼저 열역학의 기본적인식 두가지를 기본 전제로 하고 시작한다. 또한, 어는점내림은 약간의 얼음이 있을 때 평형상태인용액의 온도를 재는 것을 기준으로 한다.

S≡k log (omega)

T^-1≡(∂S)/(∂Q)

여기서 omega는 가능한 미시상태의 수를 나타낸다.

먼저, 총 엔트로피 S는 원래 용매의 엔트로피 S_0에 용질에 의한 엔트로피 S_s의 합이라고 가정하자.

또한, 용질은 용매와 함께 얼어버리지 않는다고 가정하자.

먼저, 다음과 같이 수를 정의하도록 하자. 단, 다른 용질입자라도 다 동일한 것으로 취급하기로 한다.

(이 말인즉 용질 입자의 수만 고려하겠다는 뜻이다.)

N_0≡Avogadro constant

H_f≡Heat of fusion of solvent per mole

N_1≡Number of solvent particles

N_s≡Number of solute particles

a≡mole number per unit mass of solvent

x≡molality concentration of solute

T_0≡Freezing point of pure solvent(Kelvin)

이제 식을 전개하도록 하자.

T^-1 = (∂S)/(∂Q) = (∂S_0)/(∂Q) + (∂S_s)/(∂Q)

= T_0^-1 + (∂S_s)/(∂Q)

먼저 S_s는 어떻게 되는지 보도록 하자.

정의를 사용하면

S_s≡k log (omega)

omega≡N_1 Combination (N_1 + N_s)

Sterling's formular(log(N!)≒N log N - N)를 이용해서 전개하면

S_s = k(N_1 log (N_1) + N_s log (N_s) - (N_1 + N_s) log (N_1 + N_s))

가 된다. 이제 (∂S_s)/(∂Q) 를 변수분리를 통해 전개하면

(∂S_s)/(∂Q) = (∂S_s)/(∂N_1) *(∂N_1)/(∂Q)

가 된다. (∂N_1)/(∂Q)은 -N_0/H_f(부호는 Q<0일때 N_1이 증가하기 때문이다. Energy가 액체계에서 떨어져 나가야지만 용매 분자가 하나 더 생겨난다. 따라서 Q<0일때 N_1이 증가한다.)이다. 또한

(∂S_s)/(∂N_1) = k log (N_1/(N_1 + N_s)) = -k log (1 + N_s/N_1) = -k log (1 + x/a)

(∵N_s = x N_0M , N_1 = a N_0M , M≡Mass of solvent)

이 됨을 알 수 있다. 따라서

T^-1 =T_0^-1 + (∂S_s)/(∂Q)

= T_0^-1 + N_0 H_f^-1 klog (1 + x/a)

= T_0^-1 (1 + N_0 H_f^-1 k T_0log (1 + x/a))

임을 알 수 있다. 이제 양변을 ^-1해주면

T = T_0 (1 + N_0 H_f^-1 k T_0log (1 + x/a))^-1

이 되는데, Taylor series expansion을 이용하면

T = T_0 (1 - (N_0 k T_0)/(a H_f) x)

∴T = T_0 - (N_0 k T_0^2)/(a H_f) x = T_0 - K_f x

임을 알 수 있다. 여기서 식

K_f = (N_0 k T_0^2)/(a H_f)

을 얻는다.

같은 원리로 끓는점오름상수 K_b를 구할 수 있다.

K_b = (N_0 k T_0^2)/(a H_e)

H_e≡Heat ofevaporation of solvent per mole

T_0≡Boiling point of pure solvent(Kelvin)

a≡mole number per unit mass of solvent

첨부.

H_f나 H_v가 J Kg^-1(단위질량당 에너지)로 주어지는 경우에는 a를 생략한다. a를 곱한 이유는 몰당 에너지를 단위질량당 에너지로 바꾸어 주기 위함이었기 때문이다.

Done by Dexter

http://blog.naver.com/jwkonline

'Physics > Concepts' 카테고리의 다른 글

우주의 균일함과 중심력  (0) 2008.08.08
에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
TAG 물리, 어는점내림, 어는점내림상수, 열역학, 통계물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

Freezing point depression

Physics/Concepts 2008.04.03 13:55

K_f=(N_0 k T_0^2)/(a H_f)

N_0≡Avogadro constant

k≡Boltzmann constant

T_0≡Freezing point of pure solvent(Kelvin)

a≡mole number per unit mass of solvent

H_f≡Heat of fusion of solvent per mole

For water

N_0 = 6.022 142 * 10^23 mole^-1

k = 1.380 650 * 10^-23 J K^-1

T_0 = 273.15 K

a = 5.550 84 * 10^1 mole Kg^-1

H_f = 6.009 0 * 10^3 J mole^-1

K_f = 1.859 8 K Kg mole^-1

증명은 생략. 다른 물체에 대해서도 시도해보려고 생각중.

'Physics > Concepts' 카테고리의 다른 글

에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
Trackback (0) : Comment (0)

댓글을 달아 주세요

물리 개념 정리

Physics/Concepts 2008.01.15 10:08
1. 변위(displacement)
위치의 변화량. a change in position

2. 속도(velocity)
시간에 따른 변위의 변화량. a change in displacement via time

3. 가속도(acceleration)
시간에 따른 속도의 변화량. a change in velocity via time

4. 질량(mass)
정지한 물체의 관성을 대표하는 물리량. a physical quantity that represents inertia of a motionless body

5. 운동량(momentum)
운동하는 물체의 운동을 대표하는 물리량. a physical quantity that represents a motion of a body

6. 힘(force)
쉽게 변하지 않는 것(현재 물리의 경우 운동량)을 시간에 따라변화시키는 것. a quantity of changing sth which is not easily modified(in case ofpresent physics momentum)via time

7. 충격량(impact)
운동량의 변화량. a change in momentum

8. 에너지(energy)
쉽게 변하지 않는 것(현재 물리의 경우 운동량)을 변화시킬 수 있는 잠재적인 능력. a physical quantity of potential ablity to change sth which is not easily modified(in case ofpresent physics momentum)

9. 일(work)
에너지의 이동. a transmission of energy

10. 열(heat) - 1st law of thermodynamics
계 내부로 유입되는 모든 에너지의 총합. a sum of energy transmitted into the system

11. 전하(charge)
물체의 전기적인 성질을 대표하는 물리량. a physical quantity that represents electric nature of a body.

12. 각운동량(angular momentum)
물체의 회전을 대표하는 물리량. a physical quantity that represents rotation of a body.

언제까지나 개인적인 정의입니다. 생각나는 물리량들은 더 많은데, 그것을 전부 정의하려면 좀 더 걸릴것 같군요.

'Physics > Concepts' 카테고리의 다른 글

K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
물리의 차원  (0) 2006.11.26
TAG 물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

1 2 

글 보관함

카운터

Total : 629,821 / Today : 182 / Yesterday : 79
get rsstistory!