그냥저냥 근황

Daily lives 2019. 10. 20. 11:10

0.

블로그는 정말 오랜만이군요. 더군다나 일(?)이나 외부의 뉴스에 대한 글이 아니라 일기를 쓰는 것은 정말 오랜만인듯 하네요.

 

1.

졸업당하는(...) 것이 확정된 이상, 포닥 지원서를 열심히 쓰고 있습니다. 박사학위에 어울리는 지식이 있느냐고 묻는다면 아슬아슬하게 커트라인에 닿을지도 모르겠다는 생각은 하지만[각주:1], 그것과는 별개로 박사학위에 어울리는 연구능력이 있냐면 글쎄요. 박사학위를 '독립적으로 연구주제를 발굴해 연구를 수행할 능력'에 대한 자격증으로 생각하는 편이라 제가 연구주제를 발굴해낼 능력이 있는지에 대해서는 아직 의구심이 있습니다.

 

그래도 뭐 결정된 것은 결정된 것이니 어쩌겠습니까. 할 수 있는 것을 해야지.

 

2.

시험기간에는 오랜만에 책상을 정리하고 싶어지는 것과 동일한 원리(...)로, 오랜만에 전자책으로 구한 <역시 내 청춘 러브코메디는 잘못됐다>를 정주행했습니다[각주:2]. 찾아보니 마지막으로 읽은게 거의 4년 전이군요. 그동안 쌓인 경험도 있고 관점도 있다보니 전에 읽었을 때는 별 생각없이 읽었던 표현들도 거슬리는 부분이 생겼습니다만, 전체적으로는 꽤 괜찮고 추천할만한 소설이란 평가는 딱히 변하지 않았습니다. 등장인물들에 대한 평가도 거의 변하지 않았고요. 다만 두 권 더 읽은 지금은 앞으로의 진행에 대해 조금 다른 예측을 하게 되는군요.

 

13권에서는 유키노의 문제가 해결되었다고 선언되었지만, 그걸 해결이라고 부를 수는 없겠죠. 다음 권에서는 이 문제로 돌아오지 않을 수 없을거예요. 유이와 함께 서로의 소원에 대해 이야기한 장면에서 이미 충분한 복선이 준비되어 있기도 하고요. 더군다나 '뜻을 나눈 동지로서의 소울메이트'와 '연인 혹은 배우자로서의 소울메이트'가 꼭 일치해야 하는 것은 아니니까요. 작가는 욕을 엄청 먹겠지만서도. 애초에 이런 관점도 소설 속 캐릭터를 사람보다는 관념의 인격화로 여기는 경향이 있는 저 같은 사람들에게나 납득 가능한 결말일테고요.

 

2.1.

"씁쓸한 인생, 커피 정도는 달아도 괜찮겠지"란 말이 유독 기억에 남네요. 아침부터 공복에 블랙커피를 설탕 없이 우겨넣는 것이 일상이 되다보니 웬만한 커피로는 씁쓸함을 못 느끼게 되었거든요. 어른이 된다는 것은 더 이상 커피로부터 씁쓸함을 못 느끼게 된다는 것은 아닐까란 쓰잘데기 없는 잡념만 남아 맴도는군요.

 

2.2.

"예언할게. 너는 취할 수 없어"란 말도 기억에 남습니다. 뭐, 저부터도 취하지 못하는 편에 속하는 인간이니까요. 사실 취하기 전에 전원이 나가는 것이니 뭔가 하려고만 하면 블루스크린을 띄우고 파업하던 예전에 쓰던 컴퓨터에 더 가까운 것일지도 모르겠습니다만.

 

여튼, 술자리에서 솔직한 이야기를 한다는 것은 어쩌면 '취한 사람은 속을 감추지 않는다'란 사회의 고정관념에 기대어 역할극을 한다는 것은 아닐까란, 예전부터 문득 들곤 하던 생각을 다시 해보았습니다. 사람이 작정하고 숨기겠다고 마음먹은 속마음이 그렇게 쉽게 밖으로 나올리는 없겠죠. 누구에게나 누구에게도 드러낼 생각이 없는 마음 정도는 하나씩 가지고 있을거고, 그런 의미에서 사람은 누구나 해소할 수 없는 외로움에 시달리는 외톨이겠죠.

 

2.3.

만년필에 "별은 보는 사람이 있어서 빛나는 것이 아니다"란 글귀를 적으려던 시절이 있었습니다. 어차피 허세인거 라틴어로 하자는 생각이었죠. 그래서 선택한 글귀는 Lucet stellar non videndi causa였으나 만년필에 새겨진 글귀는 Lucet stellar non videndi cause였고, 수령하면서 크리스마스 선물로 오락기를 웠했던 어린이가 선물을 열었을 때 오락기가 나왔는데 원했던 오락기는 아닐 때의 그 감정 비슷한 것을 맛보았습니다. 아무래도 자동 오탈자 수정으로 a가 e로 바뀐거겠죠. 그래서 제가 한 일은 커터칼을 가져다가 e에 얇은 흠집을 내어서 a처럼 보이게 만드는 작업이었습니다. 결국 취향이 좀 더 굵은 만년필로 옮겨가면서 자연스럽게(?) 안 쓰는 만년필 통에 보관되게 되었지만요.

 

계속 생각이 난단 말이죠. 하치만의 관계에 대한 독백을 보고 있자면.

 

2.4.

얼핏 <너의 췌장을 먹고 싶어>를 읽다가 잠시 멈짓하고 책을 덮었던 기억이 났습니다. 학창시절 자신의 물건이 있을 리 없는 곳에서 발견되는 일을 몇 번 겪어본 사람의 사람에 대한 관점은, 그런 일이 없었던 사람의 그것과는 좀 다를 수 밖에 없겠죠.

 

3.

오랜만에 졸립지만 잠은 오지 않는 새벽을 보냈습니다. 모든 불면증이 기분 나쁜 것은 아니고, 개운한 불면증도 존재한다는 것을 알게 된 것은 오랜만의 소득일까요.

  1. 다만 '야 이렇게 얄팍하게 아는데 박사라고 해도 되는거냐?'란 부분에서는 양심이 찔리는군요... [본문으로]
  2. 이번에는 13권까지. [본문으로]

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08

댓글을 달아 주세요

여러가지 잡담들

Daily lives 2019. 6. 17. 03:43

0.
홍콩의 길거리에서 〈임을 위한 행진곡〉이 불린다는 소식을 들었다. 길거리에 나섰던 홍콩 시민들이 40년 뒤에도 이 날의 기억을 승리의 추억으로 회상하기를 기원한다.

1.
사상적 성향이 사해동포주의에 가까운 것과는 별개로, '그 나라 하면 떠오르는 것은?'이란 질문은 항상 나를 생각에 잠기게 만들었던 질문 중 하나이다. 뭐, 자신의 머리가 생각하는 바와 자신의 가슴이 생각하는 바가 일치하지 않는 경우는 많으니까.

 

가장 자주 볼 수 있는 답은 음식이다. 김치, 스시, 피자, 피쉬 앤 칩스, 맥주 등. 에펠탑과 같이 건축물인 경우도 있고, 캥거루와 같이 동물인 경우도 있다. 상대적으로 드문 답은 추상적인 가치이다. 미국에게는 자유가 있고 프랑스에게는 혁명의 세 정신이 있으며 영국은 전통을 중시하고 독일은 합리성을 추구한다는 이미지가 있다. 식민지배를 경험한 입장에서는 쓴웃음을 지을 수 밖에 없지만 옆나라에서는 와(和)를 추구한다고 하고. 어릴 때는 이렇게 추상적이지만 일상적인 결정을 내릴 때 나아가야 할 방향을 제시해줄 수 있는 가치를 조국의 상징으로 쓸 수 있는 사람들이 있다는 것이 한편으로는 부러웠고 한편으로는 시샘이 났었다. 지금은 좀 덜하지만 그렇다고 해서 일어나는 감정을 밝다고만 표현할 수는 없는 노릇이고.

 

1.1.

흥미로운 점은 이렇게 추상적인 가치를 전면에 내세우는 국가는 제국주의 시절 식민지를 운영해본 경험이 있는 국가가 대부분이라는 것이다. 혈연에 기반한 민족주의를 내세울 수 없었기 때문에 제국을 하나로 묶을 소속감을 제공할 수단을 찾다가 누구나 소속감을 제공해줄 수 있는 정신적인 가치를 고안해낸 것일까? 나로서는 알 수 없다.

 

1.2.

"한없이 높은 문화의 힘"이란 이런 정신적 가치를 이야기하는 것이었을까? 여기에 대해서도 나로서는 알 수 없다.

 

2.

홍콩의 길거리에서 〈임을 위한 행진곡〉이 불린다는 소식을 들었을 때는 복잡한 심정이 들었던 이유이기도 하다. 한편으로는 우리가 걸어온 길이 남에게 용기가 되어줄 수 있다는 것. 다른 한편으로는 그래서 실질적으로 도움을 줄 방법을 떠올리라 하면 도저히 생각나지 않는다는 것.

 

부디 길거리에 나선 사람들이 집에 돌아와 웃으며 가족과 식사할 수 있기를.

 

2.1.

지금은 종교성이 매우 옅은 삶을 살고 있지만 어릴 적 교회를 다니며 들었던 설교 중 아직도 기억에 남는 설교는 죽어서 심판대 앞에 섰을 때 "당신은 어떤 삶을 살아왔나?"란 질문에 대해 무엇이라 대답할 것인지 생각해야 한다는 것이었다. 아주 어린 시절이니 나야 별 생각이 없었지만 당시 모범 답안(?)으로 제시되었던 답변은 아직도 생각난다. "'예수님이었다면 어떻게 했을까?'를 자문해보고 그에 따른다."

 

우리의 삶은 그런 기준점이 될 수 있을까?

 

3.

1만년 뒤에도 인류가 남아있을지는 아직 알 수 없다. 인류가 있다 하더라도, 한국이 남아있을지는 알 수 없다. 만약 1만년 뒤에도 인류가 남아있는다면, 나는 그들에게 우리가 정신적인 가치로 기억되기를 기원한다. 아니, 일상 생활에서 결정을 내릴 때 쓸 수 있는 기준으로 계속 기념되기를 기원한다.

 

-1.

글을 쓰는 데는 시간이 걸린다. 생각을 정리하며 글을 쓰는 동안 홍콩에서는 송환법 입법이 일단 연기되는 것으로 1차적인 승리를 이끌어내는데는 성공했다는 소식을 들었다. 계속되는 투쟁에서도 좋은 소식이 있기를.

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08

댓글을 달아 주세요

대학원 고전역학에서 다룰만한 내용으로 교수님과 이야기하다가 Dirac bracket 이야기가 나와서 간단(?)하게 트위터에서 주절거렸던 내용을 정리. 해당 타래는 이것.



모든 미분방정식은 충분한 숫자의 변수를 도입하는 것으로 1계미분방정식으로 만들 수 있다. 예컨대 $y''+y=0$이란 미분방정식이 있다면 $x=y'$이란 독립변수 $x$를 도입하여 $x'+y=0$으로 만들 수 있다. 해밀턴역학도 어떤 의미에서는 그런 접근의 연장선상에 놓여있다. 르장드르 변환과도 엮여있기 때문에 좀 복잡한 방식으로 이 과정을 이용하기는 하지만.


트윗 타래에서 설명했듯, 해밀턴역학에서 해밀토니안 함수는 위상공간 위에서의 흐름(flow)을 만들어내는 물체로 생각할 수 있다. 해밀토니안 함수와 그에 대응되는 흐름 혹은 벡터장을 연결해주는 역할을 하는 것이 포아송 괄호(Poisson bracket)이다. 연결 방법은 $H \to \{H,\bullet \}$. 물론 위상공간 위에서의 흐름을 만들어내는 해밀토니안이 실제 계의 동역학과 관계가 있어야 할 이유는 없다. 보다 추상적인 임의의 함수도 포아송 괄호를 통해 위상공간 위에서 흐름을 만들어낼 수 있으며, 일반적으로는 계의 보존량 $Q$를 이용해 이런 흐름을 만들어낼 때 $Q$를 대칭 생성자(symmetry generator)라고 부른다. 이쪽은 운동량 사상(moment map)과 연결되는 방향이지만 이 글의 주제에서는 벗어나니 다음 기회에[각주:1].


임의의 함수는 포아송 괄호를 통해 위상공간 위에서의 벡터장과 대응될 수 있다.


위의 관점은 계의 모든 변수가 독립변수인 경우에는 문제 없이 적용이 가능하지만 계의 모든 변수가 독립변수가 아닌 경우, 즉 제약조건(constraint)이 존재하는 계의 경우에는 위의 관점을 적용하는데 무리가 있다. 이 경우 좌표를 새로 잘 정의해서 새 좌표에서는 모든 변수가 독립변수가 되도록 하는 것으로 위의 관점을 살려내는 방법이 있다. 물론 새 좌표를 찾는다는 것은 원칙상 가능하다는 뜻이고, 이 좌표를 찾는 일이 항상 쉬우리란 보장은 없다. 다른 방법은 디락의 디락 괄호(Dirac bracket)를 도입하는 것.


잠시 원래 이야기에서 벗어나 역사적인 맥락을 살펴보면, 디락이 디락 괄호의 도입을 생각하게 된 이유는 양자전기역학이었다고 한다. 디락은 포아송 괄호를 교환자(commutator)로 교체하는 것으로 고전계를 양자화할 수 있다는 것을 발견했는데, 같은 방법을 전자기학에 적용하려니 뭔가 잘 안 맞는다는 것을 알게 된 것이다. 디락은 가우스 법칙에 의해 전자기장이 가질 수 있는 값에 제약이 생기는 것이 원인이라는 것을 알게 되었고, 제약조건이 있는 계의 포아송 괄호에 해당하는 물체를 어떻게 찾아낼 것인가를 고민한 결과 디락 괄호를 찾아내게 된다.


다시 원래 이야기로 돌아와서, 제약조건이 있다는 뜻은 전체 위상공간 중 그 부분집합에 해당하는 $f_i(\vec{p},\vec{q})=0$을 만족하는 $(\vec{p},\vec{q})$만 실제 계의 상태를 나타낸다는 관점으로도 이해할 수 있다. 일반적으로 해밀토니안에 의해 만들어지는 흐름은 이 제약조건을 만족하는 위상공간 속 부분다양체(submanifold) 위에서 출발하더라도 그 밖을 벗어나게 되리라고 예상할 수 있다.


해밀토니안에 의해 만들어지는 흐름(연두)은 제약조건을 만족하는 부분다양체(연파랑) 위에서 출발하더라도 그 부분다양체 위에서 움직이는 방향(녹색)과 그 부분다양체에서 벗어나는 방향(적색)을 모두 포함한다.


이제 문제는 포아송 괄호를 통해 얻은 해밀토니안 함수에 대응되는 흐름에서 제약조건을 만족하지 못하게 하는 방향의 흐름을 제거하는 것이다. 위의 그림에서 적색 화살표에 해당하는 성분을 제거하는 것이 목표인 셈. 이 목표는 제약조건을 만족하는 경우 0이란 값을 갖는 제약조건에 해당하는 함수 $f_i$들을 적당히 더하는 것으로 이루어진다. $f_i$에 의해 만들어지는 흐름 $\{f_i,\bullet\}$은 일반적으로 0이 아니기 때문. 수식으로 나타내면 다음과 같다.

\[ H \to \{ H, \bullet \}_{\text{Dirac}} = \{ H + c_i f_i , \bullet \} \]


이제 문제는 1. 충분한 숫자의 $f_i$를 찾아서 어떤 방향으로 벗어나더라도 벗어나는 방향을 제거할 수 있을 것 2. 계수들 $c_i$를 결정할 것 두가지로 나뉘게 된다. 첫번째 문제에 대한 답은 제약조건을 primary/secondary constraint와 1st class/2nd class constraint로 분류하는 과정과 관련이 있는데[각주:2] 여기서는 일단 충분한 숫자의 $f_i$들을 구했다고 가정하기로 하자.


디락 괄호는 포아송 괄호에 보정을 가해서 제약조건을 만족시키도록 한 것으로 볼 수 있다.


계수들 $c_i$는 어떤 해밀토니안 함수를 통해 생성된 흐름이더라도 제약조건 $f_i$의 값을 0으로 유지시켜야 한다는 것으로부터 구할 수 있다. 따라서 다음 방정식의 해를 구해야 한다는 뜻이다.

\[ \forall i \,, \{ H, f_i \}_{\text{Dirac}} = 0 \]


이 문제는 다음 가설풀이(ansatz)를 적용해서 풀 수 있다. 이런 가설풀이를 도입하는 이유는 포아송 괄호의 성질들 중 필요한 성질들을 보존하기 위함인데, 그 이야기까지 하기에는 글이 너무 길어지므로 대충 넘어가기로 하자.

\[ c_i(H) = - \{ H, f_j \}M^{ji} \]


위의 가설풀이를 적용하면 이제 풀어야 할 방정식은 아래와 같이 바뀐다.

\[ \{ H, f_i \}_{\text{Dirac}} = \{ H, f_i \} - \{ H, f_k \} M^{kj} \{ f_j, f_i \} = 0\]


고맙게도 위 방정식은 단순한 역행렬 계산으로 풀 수 있다.

\[ M^{ij} \text{ is the solution to } M^{ij} \{ f_j, f_k \} = \delta^i_k \]


이 정도가 디락 괄호의 핵심적인 아이디어에 속한다.

  1. 오스카 와일드의 표현을 따르자면 '다음 기회가 있다면'.(...) [본문으로]
  2. 나도 잘 구분 못한다. 어차피 아이디어를 이해할 때 명칭은 아주 중요한 것은 아니니 대충 넘어가자. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Elementary introduction to Dirac brackets  (2) 2019.01.29
Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15

댓글을 달아 주세요

  1. Favicon of https://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    수식이 처리가 안되어 보이네요.

    2019.03.08 10:11 신고

1 2 3 4 ··· 272 

글 보관함

카운터

Total : 659,461 / Today : 48 / Yesterday : 123
get rsstistory!