통계역학 시험결과가 나왔는데 광자의 화학포텐셜(chemical potential)이 0이라고 가정했다고 점수가 까인 것 때문에 까칠모드로 전환해 써 보는 글. 완벽히 고전적으로 할 경우 어디까지 갈 수 있나 해 봅시다.




1. 먼저 진공이 차 있는 실린더를 가정합니다. 실린더 안은 전자기파로만 채워지고 양자역학적으로 말하면 photon gas에 해당하는 radiation continuum으로 채워진다고 가정하겠습니다. '광자'라는 개념 자체가 없으므로 광자의 수 dN은 등장하지 않습니다.


2. 실린더 안의 radiation continuum을 설명할 때 쓸 변수를 T와 V로 고정하고 이것으로 충분하다고 가정합니다.


3. 여기까지의 가정에서 다음 두 정리를 얻습니다.


3.1. 에너지 U는 extensive variable입니다. 따라서 같은 extensive variable인 V에 대해 선형적으로만 영향을 받을 수 있습니다. 그러므로 U/V=u(T)라는 결론을 얻습니다. 엔트로피 S 또한 extensive variable이기 때문에 부피에 선형적으로 비례하고 S/V=s(T)라는 결론을 얻습니다.


3.2. 압력(있다고 가정할 경우) p는 intensive variable입니다. 따라서 V와는 무관한 변수여야 하며, p=p(T)를 얻습니다.


4. 상태방정식 u=3p를 얻어야 하는데, 이 부분이 제일 까다로와 보이네요. 일단


4.1. 상대론적인 물질은 E/P=c라는 방정식을 만족합니다. 여기서 P는 운동량입니다.


4.2. 임의의 방향으로 분포된 P로부터 압력을 구하면 p = Pc/3V를 얻습니다.


dP_\text{avr}=\frac{(dA \times cdt\cos\theta)\times(P/V\times\cos\theta)\times(\sin\theta d\phi d\theta)}{2\pi} \\\\\text{average momentum passing through an area element}\\=\frac{(\text{swept volume})\times(\text{momentum component per volume})\times(\text{solid angle})}{\text{solid angle of half-sphere}}


통과한 평균 운동량 = (면적 * 통과한 수직길이 = 통과한 부피) * [(단위부피당 존재하는 운동량의 크기) * 면에 수직한 성분을 위한 코사인] * (고체각 성분) / (반구-한쪽 방향만 생각하므로-의 고체각)


넘어가면서 phi에 대한 부분은 적분으로 날려버립니다.


dp=\frac{dP_\text{avr}}{dA\times dt}=\frac{Pc}{V}\cos^2\theta\,d(\cos\theta) \\\\\text{contribution to pressure}\\=\frac{\text{momentum flux contribution}}{\text{area element}\times\text{time elapsed}}\\\\0\leq\theta\leq\pi/2


압력을 구하기 위해 적분하면 p = Pc/3V를 얻네요.


4.3. 에너지를 집어넣습니다. P=E/c=U/c에서 p=U/3V=u/3을 얻습니다.


5. 위의 과정을 통해 U/V=u(T)와 p=u(T)/3을 얻습니다. 독립적인 변수는 T와 V 뿐입니다. 따라서 열역학 제 1법칙을 다음과 같이 정리합니다.


dU=TdS-pdV=T\left[ {\left. \frac{\partial S}{\partial T}\right|}_V dT +{\left. \frac{\partial S}{\partial V}\right|}_T dV \right]-pdV \\\therefore dU=T{\left.\frac{\partial S}{\partial T}\right|}_VdT+\left[T{\left. \frac{\partial S}{\partial V}\right|}_T-p \right]dV


5.1. dT=0으로 두면 s = 4u/3T을 얻습니다.


{\left. \frac{\partial U}{\partial V}\right|}_T=u(T)=T{\left. \frac{\partial S}{\partial V}\right|}_T-p=Ts(T)-p(T) \\\therefore u+p=\frac43u=Ts \\\therefore s=\frac{4u}{3T}=\frac{4p}{T}


6. 비열을 구해 봅시다. 정적비열은 다음과 같이 구합니다.


c_V=\frac1V {\left. \frac{\partial U}{\partial T}\right|}_V=\frac TV{\left. \frac{\partial S}{\partial T}\right|}_V=\frac{4T}{3V}{\left. \frac{\partial (U/T)}{\partial T}\right|}_V=\frac{4T}{3V}\left[{\left. \frac1T\frac{\partial U}{\partial T}\right|}_V-\frac{U}{T^2}\right] \\\therefore c_V=\frac43 c_V - \frac{4U}{3VT} \\\\c_V=\frac{4u}{T}=3s=\frac{du}{dT}


6.1. 정압비열은 구할 수 없습니다. 압력이 온도에 대한 함수로 나오기 때문에 압력을 고정한 채로 온도를 변화시킬 수 없기 때문이죠.


7. 마지막 결과를 조금 꼬아 봅시다. 그러면 고전적으로 스테판-볼츠만 법칙(Stefan-Boltzmann law)을 얻을 수 있습니다.


c_V=\frac{du}{dT}=3s=\frac{4u}{T} \\\\\therefore \frac{du}{u}=\frac{4dT}{T} \\\\\ln u=4\ln T +C \Leftrightarrow u=AT^4




스테판-볼츠만 상수는 구할 수 없는데, 그 이유는 스테판-볼츠만 상수에는 플랑크 상수가 들어가기 때문이며 플랑크 상수는 양자역학을 도입해야만 등장할 수 있기 때문입니다. 4번까지가 문제가 되고 5번부터는 위키백과에도 나오는 별로 특별할 것은 없는 문제.(신나게 유도해놓고 혹시 있나 해서 찾아봤더니 있었죠...=_=;;)


상대론적인 에너지와 운동량 관계식을 제외하고는 전부 고전열역학적 취급입니다. 양자 가설은 코빼기도 안 비치고, 굳이 태클을 건다면 4.2에서 kinetic theory가 필요하다고 볼 수 있겠네요.

Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.11
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함