(필명으로 운영하는 이 블로그 말고) 나중에 제대로 된 개인 홈페이지를 만들었을 때 올려놓아도 괜찮겠다 싶어서 학생 세미나도 준비할 겸 작성한 텍. 쓰다보니 너무 길어졌다.

Notion of Particles in Curved Space public.pdf


Unruh effect를 다루기 위해 넣은 Unruh-DeWitt detector는 진짜 열적 분포를 갖는 결과가 나오도록 하고 싶었는데 계산을 간단히 하려고 1+1차원에 갇혀있었던 것이 문제가 된 듯. 노트의 각주에 달아놓기는 했지만 3+1차원에서 계산하면 열적 분포가 제대로 나온다. 조금 신경쓰이는 부분은 $1/E$에 비례하는 항 때문에 구한 response function이 E에 대해 우함수가 아니라는 것인데, 이건 전이 확률이 에너지 준위차에만 의존하지 않고 에너지가 높은 쪽으로 전이하는 확률과 낮은 쪽으로 전이하는 확률이 서로 다르다는 것을 의미해서 그렇다. 여태 본 계산 중에는 이런 계가 없었던 것으로 기억하는데 무언가 잘못한 것이 있는 것은 아닌가 싶어서.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20

댓글을 달아 주세요

  1. 옹야  댓글주소  수정/삭제  댓글쓰기

    블로그 잘 보고 갑니다^-^
    저도 블로거님처럼 이쁜 만들어보고 싶네요ㅠ.
    저 혹시 괜찮으시다면 초대장 받을 수 있을까요.
    향후 블로그 운영 계획은 클라우드와 임베디디 시스템 관련 프로그래밍 가이드를 주로 다룰 계획입니다. 여러 개발자들이 제 블로그를 보고 개발에 박차를 가 할 수 있도록 함께 공유해 나갈 계획입니다.
    제 이메일은 kim6kim@nate.com입니다.
    좋은 하루 되세요ㅎ

    2016.09.09 23:06 신고

1 ··· 8 9 10 11 12 13 14 15 16 ··· 812 

글 보관함

카운터

Total : 624,234 / Today : 16 / Yesterday : 133
get rsstistory!

티스토리 툴바