Feynman Lectures 3권의 (21.1) 식은 다음과 같다.

\left< b | a \right>_{\text{in } \bold A}=\left< b |a\right>_{\bold A=0}\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

무슨 뜻인고 하면, 자기포텐셜 A가 존재할 때 전이확률을[각주:1] 구하려면 A가 0일 때의 전이확률에 자기포텐셜을 선적분한 만큼 추가적인 위상을 곱해주어야 한다는 것이다. 이 뜬금없는 식은 어디에서 등장한 것일까? 어떤 이유에서든 양자물리는 고전역학에 뿌리를 두고 있으므로 고전역학의 어디에서 왔는지 살펴보자. 먼저 Lagrangian in Electromagnetism에서 마지막 결과물로 얻은 고전적인 장-전하 반응 Lagrangian을 끌어오자.

L=\sum_j\frac1{2}m\dot{x_j}^2-q(\varphi-\dot{x_j}A_j)=\frac1{2}m\vec{v}\cdot\vec{v}-q(\varphi-\vec{v}\cdot\vec{A})

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 속도 벡터. 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {x_i}}=m\dot{x_i}+qA_i

conjugate momentum을 구했으니 Legendre 변환을 취한다.

H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+q\varphi

얼레. 이상한 포텐셜도 끼어들었는데 제대로 된 에너지가 결과로 나왔다. 하지만 명심해야 할 사실은, Hamiltonian은 좌표의 시간변화율이 끼어들 자리가 없다는 것이다. d(x_i)/dt를 p_i로 바꾸어주어야 한다는 사실을 잊지말자.

\dot{x_i}=\frac{p_i-qA_i}m \\\therefore H=\sum_i\frac1{2m}(p_i-qA_i)^2+q\varphi

이제 Schrodinger equation으로 자기력을 다룰 때 어째서 괴상한 방식으로 자기포텐셜이 도입되었는지 그 유래가 조금은 보일 것이다. 이제 Schrodinger 방정식을 풀어보자. 일반적으로 이 방정식을 풀 때 상태함수는 위치좌표를 기저로 쓰므로 운동량을 적당히 바꾸어 넣는다.

H=\frac1{2m}(-i\hbar\vec\nabla-q\bold A)\cdot(-i\hbar\vec\nabla-q\bold A)+q\varphi

우변의 첫 항이 사실 좀 많이 거슬린다. 계산이 너무 귀찮게 생겼다. 그런데 운동량과 자기포텐셜이 뒤섞여 있는 저 항은 잘 하면 계산하기 쉽게 바꿀 수 있을 것도 같다. 먼저 위의 Hamiltonian을 다시 써보자.

H=-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi

다음 방정식은 쉽게 보일 수 있다. 이 녀석을 응용할 수 있지 않을까? (F는 f의 역도함수)

\left(\frac{d}{dx}-f(x)\right)g(x)~e^{F(x)}=g'(x)~e^{F(x)}

일단 입자가 a에서 b까지 1차원 경로로 이동하는 경우는 다음과 같이 쓰면 쉽게 정리할 수 있다.

\Psi(x,t)=\Psi_0(x,t)\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

적분이 아직 난감하다고 해도, 미분은 엄청 간편해졌다.

i\hbar\frac{\partial\Psi}{\partial t}=H\Psi=\left[-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi\right]\Psi \\=\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0 \\=i\hbar\frac{\partial}{\partial t}\left(\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\Psi_0\right)

특히, A가 시간과 무관한 경우라면 계산이 엄청나게 간단해진다.

i\hbar\frac{\partial\Psi_0}{\partial t}=\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0

이제 처음에 등장한 식이 어떻게 얻어졌는지 조금은 보일 것이다.
  1. 실제 확률은 절대값의 제곱을 취하지만, 여기서는 간단히 두 상태의 내적으로 취급하자. [본문으로]
Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함