2020. 11. 30. 06:54 Mathematics
A soft cut-off regulator
This series is divergent, therefore we may be able to do something with it.
- Oliver Heaviside (quoted by Kline)
양자장론 계산을 하다 보면 발산하는 급수를 다루기 마련이다. 예컨대 다음과 같은 경우.
$$ \sum_{n=0}^{\infty} n = 0 + 1 + 2 + \cdots = ?$$
많은 끈이론 책에서는 Zeta function regularisation을 이용해서 이 값을 $-\frac{1}{12}$로 고정한다. 예외(?)라면 그냥 이 합을 $a$란 변수로 두고 target space Lorentz algebra를 이용해서 $a = - \frac{1}{12}$로 고정하는 GSW 정도랄까. 물론 Terence Tao의 블로그 글에서 볼 수 있듯 발산하는 급수를 말이 되게 하는 방법에는 cut-off function $c(n;\Lambda)$을 도입해서 cut-off independent한 부분을 읽어내는 방법 또한 존재하며, 그 방법으로 구하는 급수의 값은 위의 경우 $-\frac{1}{12}$가 되기는 한다.
$$\sum_{n=0}^{\infty} n c(n;\Lambda) = - \frac{1}{12} + O(\Lambda^2) $$
cut-off function은 $\Lambda$보다 작은 $n$은 1로 더하고, $\Lambda$보다 큰 $n$은 적당히 누르는 함수로 적당히 택하면 된다.
$$ c(n;\Lambda) = \left\{ \begin{aligned} &1 && n \ll \Lambda \\ &0 && n \gg \Lambda \end{aligned} \right.$$
이 방법으로 string worldsheet의 zero point energy를 계산하는 책이 Polchinski였던 것으로 기억하고 있다.
그렇다면 여기서 문제. "어떤 cut-off function이 유용할까?". 흔히 선택하는 regulator에는 Gaussian이나 exponential이 있는데, 내가 개인적으로 선호하는 cut-off function은 다음과 같이 생겼다.
$$c_{\Lambda,m}(n) = 1 - e^{-(\Lambda/n)^{2m}}$$
이 regulator는 발산하는 급수의 argument가 적당히 작은 크기로 발산해야만 cut-off의 역할을 수행할 수 있다는 단점이 있기는 하지만, 그 단점을 무시하는 어마어마한(?) 장점이 추가로 있다. $n$을 연속변수 $x$로 바꾸었을 때 $x=0$이나 $x=\infty$에서의 미분값이 항상 0이라는 것.
$$\forall k \ge 1 \,, c_{\Lambda,m}^{(k)}(0) = c_{\Lambda,m}^{(k)}(\infty) = 0 $$
위 성질을 보면 알겠지만 실변수해석학에서 해석적이지 않은 함수의 실례로 이용되는 함수를 응용한 것이다. 위의 cut-off function을 도입하면 Euler-Maclaurin 공식을 이용해 계산하는 발산급수를 다음과 같이 정리할 수 있다.
$$\sum_{n=0}^{\infty} f(n) c_{\Lambda,p} (n) = \int_0^\infty f(x) c_{\Lambda,p} (x) dx + \frac{f(0)}{2} - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!}$$
구체적인 사례로 $\sum n^m$을 계산하면 다음과 같은 결과를 얻는다.
$$\sum_{n=0}^{\infty} n^m c_{\Lambda,p}(n) = R_m + \frac{\Lambda^{m+1}}{m+1} \Gamma \left( 1 - \frac{m+1}{2p} \right) \\ R_m = - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!} = \left\{ \begin{aligned} &- \frac{B_{m+1}}{m+1} && m \text{ odd} \\ &0 && m \text{ even} \end{aligned} \right.$$
'Mathematics' 카테고리의 다른 글
An elementary technique for resumming power series (0) | 2021.07.30 |
---|---|
선형미분방정식과 선형대수학 (I) : Green's function (0) | 2021.07.10 |
적분구간에 대한 섭동계산 취급법 (0) | 2020.08.12 |
행렬식의 섭동계산 (0) | 2020.07.30 |
Integral for Dirac delta (0) | 2020.03.26 |