2009. 10. 16. 01:00 Mathematics
Tensor(1)
목요일에 보았던 시험범위네요.
1. 먼저 벡터.
벡터는 수학적으로는 덧셈이 교환법칙(a+b=b+a)을 만족하며, 항등원이 있고(a+0=a) 역원이 있는(a+(-a)=0) 집합의 원소로 정의합니다. 일부의 경우 곱셈까지 제한조건으로 걸어두기도 하지만, 일단은 그 부분은 무시.
물리학적으로는 제한조건이 하나 더 붙게 됩니다. '좌표변환에 대해 좌표(변위벡터)와 동일한 방식으로 변화할 것.'이라는 조건인데, 생각해보면 당연합니다. 물리법칙은 좌표 선택에 영향받지 않습니다. 따라서 물리법칙에 들어가는 벡터량들은 좌표 선택에 영향받지 않아야 합니다. 그리고 좌표 선택에 영향받지 않는 물리량은 좌표 그 자체, 변위가 되겠지요. 그러면 당연히 다른 벡터들도 변위가 변화하는 방식에 따라 변화해야지요. 1
이런 방식으로 변화하지는 않지만 벡터와 같은 성질을 갖는 물리량들도 있습니다. 그런 벡터들을 두고는 유사벡터(pseudovector)라고 말합니다. 대표적인 예로는 각운동량이 있군요. 좌표를 전부 거꾸로 셀 때(이를 반전-inversion-이라고 부릅니다) 위치와 속도벡터는 거꾸로 세어지지만 이들의 벡터곱인 각운동량은 뒤집어지지 않기 때문입니다.
2. 다음, 텐서.
텐서는 벡터의 확장입니다. 말이야 쉽지요.
먼저 벡터의 정의에서 마지막으로 하나의 제한조건을 더 붙였던 것 기억하시길 바랍니다. 여기가 포인트입니다.
텐서는 좌표의 '조합'에 하나의 값을 부여합니다. x와 x에 대해서는 a라는 값을, x와 y에 대해서는 b라는 값을, y와 x에 대해서는 c라는 값을, 등등등... 그러면 텐서는 어떻게 변화해야 하나요? 좌표의 조합이 변화하는 방식에 따라 변화해야 합니다. 2
정확히 말하자면, x와 y의 조합에 b라는 값을 부여했을 때, b는 x좌표가 x'으로 바뀔 때 변하는 방식과 z좌표가 z'으로 바뀔 때 변하는 방식을 동시에 만족하면서 변해야 한다는 의미입니다. 수학적으로 바꾸어 보겠습니다.
좌표변환에서 새로 정의되는 벡터성분은 좌표변환 이전의 벡터성분들을 조금씩 수혈받습니다. xy평면상의 벡터들의 회전에 대한 행렬이 좋은 예이지요.
이 행렬에서 새로운 축의 x방향 성분은 이전 축의 x방향 성분에서 cos값을 곱한만큼 수혈받고 y축 방향 성분에서 -sin값을 곱한만큼 수혈받는다는 것을 알 수 있습니다.
그렇다면 x와 y의 조합에 대해 규정된 값인 b는 어떻게 변화해야 할까요? 새로운 축의 x와 옛 축의y의 조합에 대해 규정된 값 b'은 위의 방식대로 해주면 됩니다. 옛 축의 x와 x에 대해 정의된 값에서 cos값을 곱한만큼 수혈받고, 옛 축의 x와 y에 대해 정의된 값에서 -sin값을 곱한만큼 수혈받습니다. 그리고 새로운 축의 x와 y에 대해 부여된 값 b''은 새로운 축의 x와 옛 축의 x에 대해 정의된 값에서 sin값을 곱한만큼, 새로운 축의 x와 옛 축의 y에 대해 정의된 값에서 cos값을 곱한만큼 수혈받으면 되는 것이지요. 각 비율을 p라고 적으면, 다음과 같이 쓸 수 있습니다.
일단은 여기까지.
Contravarient/Covarient Tensor에 대해서도 해야 하는데...-.-;; 귀찮네요 -_-;;;
(2)는 쓸 지 안쓸 지 모르겠네요. 글은 쓰고 싶을 때 쓰는거라...
1. 먼저 벡터.
벡터는 수학적으로는 덧셈이 교환법칙(a+b=b+a)을 만족하며, 항등원이 있고(a+0=a) 역원이 있는(a+(-a)=0) 집합의 원소로 정의합니다. 일부의 경우 곱셈까지 제한조건으로 걸어두기도 하지만, 일단은 그 부분은 무시.
물리학적으로는 제한조건이 하나 더 붙게 됩니다. '좌표변환에 대해 좌표(변위벡터)와 동일한 방식으로 변화할 것.'이라는 조건인데, 생각해보면 당연합니다. 물리법칙은 좌표 선택에 영향받지 않습니다. 따라서 물리법칙에 들어가는 벡터량들은 좌표 선택에 영향받지 않아야 합니다. 그리고 좌표 선택에 영향받지 않는 물리량은 좌표 그 자체, 변위가 되겠지요. 그러면 당연히 다른 벡터들도 변위가 변화하는 방식에 따라 변화해야지요. 1
이런 방식으로 변화하지는 않지만 벡터와 같은 성질을 갖는 물리량들도 있습니다. 그런 벡터들을 두고는 유사벡터(pseudovector)라고 말합니다. 대표적인 예로는 각운동량이 있군요. 좌표를 전부 거꾸로 셀 때(이를 반전-inversion-이라고 부릅니다) 위치와 속도벡터는 거꾸로 세어지지만 이들의 벡터곱인 각운동량은 뒤집어지지 않기 때문입니다.
2. 다음, 텐서.
텐서는 벡터의 확장입니다. 말이야 쉽지요.
먼저 벡터의 정의에서 마지막으로 하나의 제한조건을 더 붙였던 것 기억하시길 바랍니다. 여기가 포인트입니다.
텐서는 좌표의 '조합'에 하나의 값을 부여합니다. x와 x에 대해서는 a라는 값을, x와 y에 대해서는 b라는 값을, y와 x에 대해서는 c라는 값을, 등등등... 그러면 텐서는 어떻게 변화해야 하나요? 좌표의 조합이 변화하는 방식에 따라 변화해야 합니다. 2
정확히 말하자면, x와 y의 조합에 b라는 값을 부여했을 때, b는 x좌표가 x'으로 바뀔 때 변하는 방식과 z좌표가 z'으로 바뀔 때 변하는 방식을 동시에 만족하면서 변해야 한다는 의미입니다. 수학적으로 바꾸어 보겠습니다.
좌표변환에서 새로 정의되는 벡터성분은 좌표변환 이전의 벡터성분들을 조금씩 수혈받습니다. xy평면상의 벡터들의 회전에 대한 행렬이 좋은 예이지요.
이 행렬에서 새로운 축의 x방향 성분은 이전 축의 x방향 성분에서 cos값을 곱한만큼 수혈받고 y축 방향 성분에서 -sin값을 곱한만큼 수혈받는다는 것을 알 수 있습니다.
그렇다면 x와 y의 조합에 대해 규정된 값인 b는 어떻게 변화해야 할까요? 새로운 축의 x와 옛 축의y의 조합에 대해 규정된 값 b'은 위의 방식대로 해주면 됩니다. 옛 축의 x와 x에 대해 정의된 값에서 cos값을 곱한만큼 수혈받고, 옛 축의 x와 y에 대해 정의된 값에서 -sin값을 곱한만큼 수혈받습니다. 그리고 새로운 축의 x와 y에 대해 부여된 값 b''은 새로운 축의 x와 옛 축의 x에 대해 정의된 값에서 sin값을 곱한만큼, 새로운 축의 x와 옛 축의 y에 대해 정의된 값에서 cos값을 곱한만큼 수혈받으면 되는 것이지요. 각 비율을 p라고 적으면, 다음과 같이 쓸 수 있습니다.
T_{x'y'}=p^x_{x'} p^x_{y'} T_{xx} + p^x_{x'} p^y_{y'} T_{xy} + p^y_{x'} p^x_{y'} T_{yx} + p^y_{x'} p^y_{y'} T_{yy}
일단은 여기까지.
이런 기분은 당연한겁니다.
Contravarient/Covarient Tensor에 대해서도 해야 하는데...-.-;; 귀찮네요 -_-;;;
(2)는 쓸 지 안쓸 지 모르겠네요. 글은 쓰고 싶을 때 쓰는거라...
'Mathematics' 카테고리의 다른 글
무한대의 비교: 자연수와 실수 (0) | 2010.01.13 |
---|---|
Laplace 변환을 이용한 미분방정식 풀이 (2) | 2009.12.17 |
각종 변환들 (0) | 2009.12.15 |
Fourier 변환의 고유함수 (0) | 2009.12.15 |
적분놀이 (0) | 2009.12.05 |