'Physics'에 해당되는 글 82건

  1. 2009.03.30 압력밥솥 기압재기 및 밥 짓는 온도 재기 (10)
  2. 2009.03.07 물리학이란 학문에 대해서 (19)
  3. 2009.03.04 파동함수... (6)
  4. 2009.02.10 하늘에 떠다니는 물에 의한 빛의 굴절과 산란에 대하여(1) (6)
  5. 2009.01.08 [물벽깨-2] 동시성의 상대성이란 무엇인가 - 실체진실의 장 1에대한 반론 (15)
  6. 2008.12.08 직관과 포인팅 벡터 (15)
  7. 2008.12.01 [물벽깨-1] 특수상대론은 무엇인가 (10)
  8. 2008.11.20 특별기획 - 물리의 벽을 깨라! (6)
  9. 2008.08.08 힘과 운동
  10. 2008.08.08 우주의 균일함과 중심력
  11. 2008.07.14 상대론 문제 (2)
  12. 2008.05.27 에너지, 일-에너지 정리와 열역학 제 1법칙
  13. 2008.04.03 K_f 구하기(어는점내림 상수)
  14. 2008.04.03 Freezing point depression
  15. 2008.02.05 줄로 물체를 묶었을 때 그 물체에 가해지는 압력 구하기 (9)
  16. 2008.01.15 물리 개념 정리
  17. 2007.10.20 나름대로 물리문제2
  18. 2007.09.24 나름대로 물리문제1 (2)
  19. 2007.08.11 물리문제풀이의 정석 (2)
  20. 2007.08.05 물리란 무엇일까?
무려 열역학 숙제입니다...-_-;;

주어진 힌트는 압력밥솥이 압력을 조절하는 매커니즘 뿐입니다.


위 꼭지의 무게가 작은 구멍에서 나오는 압력을 막는 형태입니다. 저 압력과 꼭지의 무게와 맞먹는 정도로 밥솥 내부의 압력이 유지되는 것이지요.

힌트는 여기까지. 자, 이제 구해오세요.

하하하하하하ㅏ하하하 -_-

자, 무작정 시작해 봅시다. -_-;


참 저도 신기하게 구하는데 성공했습니다. 사람은 역시 극한상황에서는 못하는 것이 없다는데 진리이군요.


덧. 숙제는 내일(쓰는 시각 29일)까지인데 예~~전에(19일) 풀었던 문제입니다. 그 주 주말에 숙제 네개를 하느라 떡실신했는데 이런 것도 할 여유가 있었나 보네요 -_-;;; 일단은 예약발행 해 둡니다.
  1. 엄격한 물리적인 논의에서 무게는 질량과는 달리 힘의 단위를 갖습니다. [본문으로]
  2. 이러면 이중지렛대가 되는 것이지요. [본문으로]
  3. 이때의 가정은 책의 무게중심은 책의 정중앙이다라는 것입니다. 이 경우 책이 워낙 위아래로 커서 살짝만 기울어져도 무게중심이 많이 움직이더군요. 이를 계산하니 약 5%정도의 차이를 가져올 것으로 계산했구요. 물론 이 5%는 계산에 넣지 않았습니다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://chew282.wordpress.com BlogIcon Donnie  댓글주소  수정/삭제  댓글쓰기

    하하, 승리의 공대생이군요.

    2009.03.30 22:55
  2. Favicon of https://www.i-rince.com BlogIcon rince  댓글주소  수정/삭제  댓글쓰기

    아 머리 아퍼... ㅠㅠ

    2009.03.31 00:01 신고
  3. Favicon of http://babmucza.com BlogIcon 밥먹자  댓글주소  수정/삭제  댓글쓰기

    그렇지 않아도 압력밥솥 실험하셨다고 해서 어떻게 압력 재셨는지 궁금했었는데, 식으로 계산하는 것이었군요. 저는 압력밥솥에 뭔가를 넣는 건 줄 알고... ^^;;; (무식한 생각입니다만, 제가 좀 그렇죠.ㅎ;;) 재미있게 읽었습니다.ㅎㅎ

    아, 그리고 저는 전자저울이 있답니다아. 훗. ^^;;

    2009.03.31 20:35

사람들은 물리학 하면 일단 편견을 갖고 대합니다. 이런 우스갯소리도 있지요.

"제가 비행기를 탔을 때, 옆 자리 사람과 대화를 나누고 싶으면 저를 천문학자라고 소개합니다. 그날이 피곤하거나 하면 물리학자라고 소개하구요."

-천체물리학자

천문학자라고 하면 '오늘 양자리 운세는 어떤가요?'라는 다소 황당한 질문이라도 들려오지만, 물리학자라고 하면 말을 안 거는 상황을 빗댄 것이지요. 예, 그런 겁니다. 기계과는 하수구 막히면 뚫는거고, 전기과는 컴퓨터 에러나면 고치는거고, 영문과는 '아리까리하다'란 단어 번역해야 하는거고, 경제학과는 부동산 가격이나 예측하고 있어야 하는 거지만, 물리과는 조용히 있어 주어야 하는 겁니다.(이건 철학과도 그럴듯...)

그러고 보니 수능 준비하던 때가 생각나는군요. EBS에서 수능 점검용 문제집을 내기도 하는데(그 왜 최종점검용으로 나오는 얇고 큰 문제집 있잖아요), 물리II는 대전에 없었습니다. 당시 반짝 서울로 학원을 다니던 때라 고속터미널에서 문제집을 사 돌아오기는 했는데, 친구들 말을 들어보면 물리II 문제집은 대전 어디에도 없었다는군요. 어찌되었든 친구들은 제 문제집 복사해 가서 열심히 풀더군요. 뭐 얼마나 물리II를 신청한 사람이 없었으면 대전에 안 들어왔겠느냐는 답이 가능하겠지요. 그만큼 물리란 학문은 사람과 거리가 먼 듯 합니다(먼산..).[각주:1]

뭐 어찌되었건, 어떻게든 물리를 공부해야 하는 한 사람으로서 물리가 무엇인지에 대해 잠깐 정리해 보는 것도 좋은 경험이 되겠지요. 자, 그럼 시작합니다.

물리는 '자연을 수학으로 모형화(Modeling)하는 학문'입니다. 사람에 따라서는 물리학 법칙이 '실제 자연이 움직이는 원리이다'와 '자연을 제일 잘 서술하는 근사(Approximation)이다'[각주:2] 두 가지로 나뉩니다만, 모형화라는 부분은 공통입니다. 이 모형이 실제 자연인가 좋은 근사인가에 대한 왈가왈부일 뿐이지요. 그리고 중요한 것은 모형화한다는 것입니다. 모형화라는 것이 수학과 물리를 구분짓는 가장 큰 기준이 됩니다. 사실, 순수하게 물리적인 부분이라고 할 수 있는 부분은 모형화까지입니다. 그 이후부터는 각종 방정식을[각주:3] 풀어내는 것이 전부인데(이후 결과값을 해석하는 것은 모형화라고 보아야겠지요.), 이건 사실 수학으로 보아도 무방하지요. 뉴턴경이 위대한 물리학자이면서 유명한 수학자라는 것이 이 사실을 뒷받침합니다.[각주:4]

그러면 이런 모형화에 대해서 알아보는 것이 다음 수순이 되겠지요. 모형화는 주로 몇 가지 가정을 통해 이루어집니다. 이런 가정 중 어떤 것은 모든 모형에서 다루지만 어떤 것은 그 모형에서만 다루어져 그 모형을 특징짓기도 합니다. 모든 모형에서 다루는 대표적인 가정으로는 '우주가정'을 들 수 있습니다. 아무 것도 없는 공간에서는 위치와 방향을 가늠할 수 없다는 것이지요. 이것을 공간의 균일성(Homogeneity)과 등방성(Isotropy)이라고 부릅니다.[각주:5] 한편, 특별한 모형에서만 다루는 가정으로는 슈레딩거 방정식이나 운동량 보존 법칙이 있습니다. 슈레딩거 방정식은 사실 가정입니다. 모든 파동함수가[각주:6] 이 편미분방정식에[각주:7] 따라서 변화한다는 가정이며, 이 가정이 비상대론 영역에서 양자역학의 뼈대를 이룹니다. 운동량 보존 법칙은 각 물체를 나타내는 운동량이라는 벡터량의[각주:8] 총합이 보존된다는 가정입니다. 이 가정은 뉴턴역학의 뼈대를 이루지요.[각주:9]

자, 그러면 이제 이 가정들이 얼마나 합당한지를 살펴보아야 합니다. 이런 검증 과정은 실험으로 이루어집니다. 이것이 모형화라는 특징을 갖는 물리학이 수학과 다른 부분이지요. 물리학에서는 가정이 얼마나 합당한지를 실제 자연 현상을 관찰해서 결론내립니다. 하지만 수학의 경우에는 그런 과정이 없습니다. 요즘 한창 유명한 (초)끈이론이 아직은 물리학의 범위에 발을 들이지 못한 이유도 이것입니다. 모형을 검증할 정도로 기계장치들이 발전하지 못했다는 것이지요.[각주:10]

이제 정리하겠습니다. 물리학은 자연의 모형화를 다루는 학문입니다.[각주:11] 이 모형화는 수학적인 모형화이며,[각주:12] 이것이 물리학을 수학과 떨어뜨려 생각하기 힘들게 합니다. 또, 수학과 물리학이 다른 것은 물리학은 모형이 얼마나 적합한지를 실험으로 검증해야 하기 때문입니다. 이 정도면 깔끔한 정리라고 보여지는데, 아닌가요?

덧. 이게 바로 날려먹은 그 글입니다. 아아아아ㅏ악! 짜증나 ㅠㅠ
덧2. 크게 보면 예전 글 리뉴얼입니다. 07년에 썼으니, 상당히 오래된 글이네요.
2007/08/05 - 물리란 무엇일까?

  1. 그러고 보니 당시(08수능)에 있었던 물리II 복수정답 스캔들(?)이 생각나는군요. 기체의 자유도에 대한 문제였던 것으로 기억하는데, 전 사실 그 문제제기는 적당하지 않다고 생각합니다. 물론 물리학의 관점에서 보면 옳은 소리이긴 하지만, 교과과정을 봐야지요. 언어공부 제대로 했으면 고등학교 과정에서는 자유도가 3 이상인 이상기체는 다루지 않는다는 것을 알 것이고, 그러면 정답이라고 보기 힘들다는 것도 아실텐데 말이지요. 물론, 저도 고민하다가 원 정답을 찍기는 했습니다. [본문으로]
  2. 파동함수(나중에 설명)를 어떻게 해석할 것인지에 대한 입장 중에서 리처드 파인만은 '닥치고 계산'이라는 입장을 고수했다고 알려집니다. 물리 법칙을 근사로 이해하는 것의 연장선상에 이 입장을 놓을 수 있겠지요. [본문으로]
  3. 방정식은 '수들 사이의 관계'라고 할 수 있습니다. 이 방정식을 이용하여 아는 수들을 이용해 모르는 수를 알아내는 것을 '방정식을 푼다'라고 합니다. [본문으로]
  4. 뉴턴역학으로 유명하신 우리의(?) 뉴턴경은 라이프니츠와 함께 미적분학의 발견자로 명성을 떨치셨습니다. 이 일로 둘이 피터지게 싸웠다는 후문이... [본문으로]
  5. 예전 글에 이에 대해서 조금 설명해 두었습니다. 용어 선택은 조금 다르긴 하지만, 내용상 큰 차이는 없으니 참고 바랍니다. http://dexterstory.tistory.com/247 [본문으로]
  6. 함수는 '여러 입력값에 하나의 출력값을 내보내는 것'이라고 요약할 수 있습니다. 예를 들어 z=x^2+y라는 함수의 경우 x에 2를, y에 3을 넣어주면 z에 7을 출력합니다. [본문으로]
  7. 미분은 '함수에서 입력값이 변화할때 출력값이 어떻게 변화하는가'를 나타내어 줍니다. 편미분은 입력값을 하나로 제한하는 경우에 얻어지는 결과이구요. 보통 미분은 그래프의 기울기로 나타납니다. [본문으로]
  8. 벡터란 '덧셈과 곱셈이 잘 정의된 집합의 원소'를 말합니다. 물리의 영역으로 끌어오면 한 가지 조건이 더 붙는데, 그것은 바로 '변환에서 공간상의 점과 같은 방식으로 변해야 한다'는 것입니다. 이것은 물리에서 다루는 벡터량이 측정량과 관련이 있다는 사실과, 이 측정량은 누가 어떤 기준에서 측정하더라도 동일해야 한다는 것에서 붙는 제한입니다. 이런 잡소리를 다 무시하고 간단하게 말하자면, 벡터란 '방향을 가지는 수'라고 할 수 있습니다. [본문으로]
  9. 전 슈레딩거 방정식과 운동량 보존 법칙을 가정이라고 했습니다. 왜냐하면 그것은 증명할 수 없는 것이기 때문입니다. 공리(axiom, postulate)라고 부르기도 하지만 넓게 보면 가정이라고 보아야겠지요. 논리를 출발시키려면 어딘가 단단한 기반이 있어야 합니다. 그것은 물리학도 마찬가지입니다. [본문으로]
  10. LHC가 검증할 수 있게 되기를 바라는 사람들이 많기는 하지만, 아직까지는 검증 안된 이론일 뿐... [본문으로]
  11. 주식시장 예측으로 나가는 사람들이 많은 것도 이런 이유에서일지도... 주식의 오르락내리락을 모형화하는 것이니까 모형화를 다루는 학문으로서는 유리하겠지요. [본문으로]
  12. 캘빈경도 일찍이 수학의 중요성을 강조했지요. "In physical science the first essential step in the direction of learning any subject is to find principles of numerical reckoning and practicable methods for measuring some quality connected with it. I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of Science, whatever the matter may be." [PLA, vol. 1, "Electrical Units of Measurement", 1883-05-03] - http://zapatopi.net/kelvin/quotes/ [본문으로]

댓글을 달아 주세요

  1.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2009.03.09 09:21
  2. Favicon of https://inuit.co.kr BlogIcon Inuit  댓글주소  수정/삭제  댓글쓰기

    네. 깔끔합니다.
    그런데 이 글을 날리고 다시 쓰셨다면.. 근성의 덱스터님이로군요. +_+

    2009.03.09 23:44 신고
  3. Favicon of http://chew282.wordpress.com BlogIcon Donnie  댓글주소  수정/삭제  댓글쓰기

    아 모형화 부분에 대해 좀 더 알면 재밋을 거 같네요. T^T

    2009.03.11 03:35
  4.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2009.03.12 19:32
  5. Favicon of http://nigimizoddo.tistory.com BlogIcon 냉면개시  댓글주소  수정/삭제  댓글쓰기

    ,머.....머리가 터질듯합니다!!!!!

    2009.03.13 11:39
  6. Favicon of http://withthink.egloos.com BlogIcon 고무풍선기린  댓글주소  수정/삭제  댓글쓰기

    Inuit Blogged에서 트랙백타고 와서 구경하다가
    덧말 남겨 봅니다.

    저도 물리를 하고 있어서, 차마 그냥 갈수가 없습니다. ^^;

    명확한 물리학의 정의 잘 봤습니다.
    초심을 잃어버리면 안되는데,
    덕분에 제가 가졌던 초심을 떠올리는 좋은
    시간 되었습니다. ^^

    2009.04.23 11:46
  7. 우와 덱스터님  댓글주소  수정/삭제  댓글쓰기

    CP symmetry 깨짐 이런것은 염두에 안두시나염. 등방성과 균일성이라니염.

    2009.04.26 00:09
  8. 즈뵤즈드  댓글주소  수정/삭제  댓글쓰기

    빛의 산란에 대한 정보를 찾다 어찌어찌하다 보니 덱스터님 블로그에 방문하게 되었는데요.
    물리에 대한 재미있고 유익한 내용이 많아 이렇게 또 찾아 뵙습니다.
    과거, 모두들 생물2를 선택할 때 교내 1%만이 선택한다는 물리2를 선택하여 해당 교실에서 담임께(당시 물리가르치셨음) '넌 왜 여기있니?' 라고 질문을 받았었죠.
    '물리, 그거 하나도 이해 못해도 흥미와 재미만은 갖고 있던 공부안하는 학생' 이었던 즈뵤즈드라고 해요.
    수능을 치른지 10년이 흘렀어도, 덱스터님 포스팅한 글들을 읽다 보니 역시 물리는 매력적인 학문!! 이라는 사실을 새삼 느꼈습니다. 좋은 정보 감사합니다~ 자주 들릴것 같아요.
    ㅎㅎ 이런글 흥미있어하는 일반인입니다.

    2009.10.01 12:07
  9. ourbeauty  댓글주소  수정/삭제  댓글쓰기

    안녕하세요, 덱스터님.

    전공자는 아니지만, 대학에서 물리 수업을 듣고 있는 학생입니다.
    우선 좋은 글 너무 감사합니다.

    물리수업을 들으면 들을 수록, 많은 매력을 느끼게 되는 것 같습니다. 사고력 향상에도 많은 도움이 되는 것을 느끼구요. (시험에서 좋은 점수가 나오지 않은 다는것이 문제이긴 합니다.ㅋㅋ^^;;)

    지난 시험에서 고배를 마시고...ㅠ.ㅠ 물리를 잘 이해하고 싶은 욕심이 마구마구 솓아올라 여기까지 오게 되었습니다.

    항상 건강하시길 바라며, 자주 찾아 뵙겠습니다.

    2009.10.20 10:00

[주의] 일반인을 내쫓는 글 입니다.

1.
하나의 입자를 서술하는 한 파동함수가 A에서 델타함수로 붕괴한 다음에 B에서 델타함수로 붕괴한다.
이때 관찰자를 잘 잡으면 A에서 붕괴하는 사건과 B에서 붕괴하는 사건이 동일 시간에 일어나게 되는데, 그러면 이때에는 하나의 입자가 두개의 입자가 된 것으로 나타나게 되지 않을까?
(어제 수업시간에 했던 질문)

2.
상대론을 양자역학에 접목시키려면 그렇게 변환하면 안된다는 답변이...
그것보다도 상대론적 양자역학에서는 하나의 관찰자만을 가정한다고 했던 것 같다. 하나의 관찰자를 잡은 다음에는 그대로 쭈욱 가야 한다고....

3.
생각해보니 저 사건이 일어나려면 붕괴하는 사건은 space-like 관계여야 한다(즉, ds^2=dx^2+dy^2+dz^2-dt^2으로 잡으면 ds^2>0). 그런데 그러면 입자가 빛의 속도 이상으로 움직였다는 말이 되는데, 이건 상대론의 가정에서 어긋나는구나.
(터널링이 일어난다면 가능할지도...)
그런데 그것보다도, 파동함수가 붕괴했을 때 그게 다른 관찰자에게는 붕괴한 것이 아닌 것으로 보일 수 있다는 것이 문제인듯 하다. A에게 동시인 것이 B에게 동시인 경우는 매우 드무니까...

4.
갑자기 지난 학기에 들었던 '파인만의 업적'이 생각났다.
이른바 재규격화(re-normalization)이라는 거였던 것 같은데, 조금은 알 것 같기도...
관찰자를 바꿀 때 마다 파동함수를 재규격화 해야 한다는 건가...

5.
결론> 슈뢰딩거 방정식이나 마스터하고 디랙으로 넘어가든가 하자 -_-

'Physics > Speculations' 카테고리의 다른 글

Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
직관과 포인팅 벡터  (15) 2008.12.08

댓글을 달아 주세요

  1. Favicon of https://j4blog.tistory.com BlogIcon 재준씨  댓글주소  수정/삭제  댓글쓰기

    역시 관찰자인가효..? 관측이 현상을 교란한다는 말이 생각납니다.
    일반인은 이만 총총.

    2009.03.05 06:38 신고
  2. Favicon of http://babmucza.com BlogIcon 밥먹자  댓글주소  수정/삭제  댓글쓰기

    내쫓기는 1인... ㄷㄷㄷ

    2009.03.05 18:49
  3. ㅣㅣㅣ  댓글주소  수정/삭제  댓글쓰기

    같이 보여도 상관 없을 것 같은데..
    어떤 관찰자든 시공상에 같은 사건(일어날 확률이 같은)으로 치부되어서? 미시적 관점에서 빛의 속도가 모든 확률진폭을 가지는걸 봐서?

    모르면서 아는척하다 내좇기는 2인;;;

    2010.02.14 10:35

일요일(그러니까 대보름 전날) 달무리를 보았습니다. 여태 달무리는 달 주변에 조그맣게 생기는 것인 줄 알았는데 엄청 크더군요.(쿨럭;) 뭐 초중딩때 과학 공부(특히 기상 부분 OTL) 조금 하셨다면 달무리나 해무리는 48시간 이내에 비가 온다는 것을 예보하는 기상 현상이라는 것도 아실 겁니다. 마침 나갔다 들어왔는데 이슬비가 내리더군요.

제가 눈대중으로 잰 달무리의 반경은 0.38 래디언, 즉 약 22도였습니다. 달무리를 만드는 그 각도가 어떻게 생겨나는가에 대해 고심하기 시작했지요. 덕분에 고딩때 손 놓았던 기하광학에 빠져들었습니다.


먼저 몇가지 가정을 해 보겠습니다.

1. 달빛은 평행하다.
2. 물방울은 구형이다.
3. 달무리는 물방울 내부에서 일어나는 굴절이나, 내부에서 반사 후 일어나는 굴절에 의해 생긴다.

그리고 달무리의 사진을 봅시다. 해무리도 좋습니다.(편의상 위키피디아의 Halo 항목에 있는 사진을 가져왔습니다.)

File:Bosman 09222008 002-1.JPG

안쪽이 어둡습니다.
이건 빛의 굴절이 어느 각도 이하에서는 일어나지 않는다는 의미입니다. 그러니까, 22도 이하에서는 일어나지 않던 빛의 굴절이 22도 이후부터 생겨나기 때문에 상대적으로 안이 어둡고 밖이 밝은 무리가 생긴다는 것입니다. 이건 무리가 어떻게 생기는가에 대한 탐구 방향을 제시해줍니다.


case I. 1회 굴절할 경우



델타(δ)가 물방울 안에서 반사가 일어나지 않을 때, 광선이 휘어지는 각도입니다. 이 각도는 입사각인 베타(β)와 물의 굴절률 n에 의해 영향을 받게 됩니다. 이등변삼각형의 원리와 스넬의 법칙, 그리고 기타 등등을 버무려서 계산해 보면, 다음 식을 얻게 됩니다.

\delta = 2(\beta - \arcsin ( \frac {\sin(\beta)} {n})

하지만 입사각이 전부 동등한 중요도를 갖지는 않습니다. 당연히 입사각이 똑바를수록 더 많은 입사광을 받겠지요. 그래서 중요한 것은 물방울의 중심으로부터 얼마만큼 떨어져 있으면 얼마만큼 굴절되느냐입니다. 물방울에 비치는 빛이 일정할 경우 빛의 세기는 중심에서의 거리와 무관할 테니까요.


위의 그림에서 입사각 베타와 거리 d, 그리고 반지름 R 사이에는 다음의 식이 성립하는 것을 알 수 있습니다. 편의상 거리대 반지름의 비율 d/R을 x라고 부르도록 하겠습니다. x는 0부터 1 사이에 속하는 수가 되겠지요?

\beta = \arcsin(\frac{d}{R}) \\ = \arcsin(x)

이 결과를 굴절각 델타에 넣어보면 다음 식이 얻어집니다.

\delta = 2(\arcsin(x) - \arcsin(\frac{x}{n}))

이 식을 이용해 그래프를 그려보겠습니다. 굴절률 n은 1.33을 넣었습니다.


x가 1일 때의 값은 약 1.44래디언으로, 각도로 따지면 약 82도 정도 됩니다. 이 상관 없어 보이는 숫자는 어디에 쓰이는 숫자일까요? 바로 태양이나 달이 밝히는 하늘의 범위입니다. 그러니까 태양이나 달을 중심으로 한 82도의 범위 내의 하늘은 굴절된 빛에 의해 밝게 빛난다는 뜻이지요. 이 값은 순수히 물방울에 의한 굴절만 계산했기 때문에, 반사광이나 먼지의 영향은 고려되지 않았다는 점에 유의하시길 바랍니다.



case II. 내부에서 1회 반사가 있을 경우



위의 경우입니다. 이번에도 마찬가지로 여러가지 식들과 싸우다 보면 다음의 결과를 얻게 됩니다.

\delta = \pi + 2\arcsin(x) - 4\arcsin(\frac{x}{n})

흠... 일단 그래프 먼저 그려보겠습니다...

적색은 case I이고, 이번에 그려진 그래프는 녹색입니다.

원하던 형태의 그래프입니다. 어느 각도 이하에서는 빛이 더 이상 굴절되지 못하지요. 해무리와 달무리처럼 말입니다. 그런데 문제는, 값이 π 근처에만 존재하는 것을 볼 수 있습니다. 최소값은 약 2.40래디언으로, 각도로 바꾸어주면 138도입니다. 180도에서 42도 모자란 셈이지요. 바로 무지개의 각도입니다. 결국 무언가 틀렸다는 말이 되는데, 무엇이 문제였을까요?

가정으로 돌아가 보겠습니다.

1. 달빛은 평행하다.
2. 물방울은 구형이다.
3. 달무리는 물방울 내부에서 일어나는 굴절이나, 내부에서 반사 후 일어나는 굴절에 의해 생긴다.

가정 1은 합당한 가정입니다. 달의 거리가 얼마나 먼데요...
가정 2가 문제입니다. 무리는 상공에 얼음이 떠 있을 때 만들어집니다. 얼음의 경우에는 결정이 구형이 아니라 육각형입니다. 그래서 이런 오류가 생기는 것이지요. 결국 구형 물체가 아닌 다른 물체를 가정해야 한다는 것이지요.(전 이 가정에서 이틀동안 헤매다가 결국 찾아보고 말았습니다.)


나머지는 포스트 2에서 찾아뵙겠습니다 -_-;;;
(포스트 하나 쓰는것도 은근히 힘들군요)

댓글을 달아 주세요

  1. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    지금은...공부시간이 되어버렸을 뿐이고~~~

    다음시간도.... 같겠죠~

    즐거운 하루 되세요^^

    2009.02.11 09:30
  2. Favicon of http://babmucza.com BlogIcon 밥먹자  댓글주소  수정/삭제  댓글쓰기

    사인에 arc가 붙은 건 뭔가하고 생각하고 있었을 뿐이고.... 이번 거는 좀 어질어질합니다.
    무리가 얼음에 의해 일어나는 현상이로군요. 오호...

    2009.02.11 20:36
  3. Favicon of https://reach-rich.tistory.com BlogIcon buckshot  댓글주소  수정/삭제  댓글쓰기

    덱스터님의 물리 포스트를 잘 이해하고 싶은데. 실력이 딸려서 고전 중입니다. ^^

    2009.02.11 23:12 신고
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2009.02.12 16:10 신고  댓글주소  수정/삭제

      저 값을 구하는 중간과정과 저 값을 해석하는 중간과정을 적지 않아서 그럴 거예요 ^^;;;

      그런 자잘한 부분이 은근히 신경 많이 쓰이더라구요 -_-;;

물리는 어렵지 않습니다. 단지 관심과 그에 맞는 시간을 요구할 뿐...

특별기획 물리의 벽을 깨라!-제 2회 기획글입니다.

먼저 연당선생의 홈페이지에는 실체진실의 장이라는 코너가 있습니다. 이번 글에서는 이에 대해 무엇이 잘못되었는지 지적을 하면서 반론을 하게 될 것입니다. 먼저, 특수상대론이 무엇인지 알 필요가 있으니 잘 모르시는 분은 전 글을 참고하시길 바랍니다.

[물벽깨-1] 특수상대론은 무엇인가



동시성의 상대성 - 나에게 동시에 일어난 일은 남에게 동시에 일어나지 않았다?


특수상대론이 상식을 야멸차게 배신하는 경우의 대표적인 예는 동시성의 문제입니다. 동시성의 문제란 쉽게 말하면 "나에게는 동시에 일어났는데, 왜 너한테는 다르게 일어났냐"라고 할 수 있지요. 일단 그 이전에 물리에서 중요한 개념 중 하나인 "사건"에 대해 명확히 하고 넘어가야겠습니다.

"사건"이란 "하나의 점(공간을 지정합니다)에서 하나의 시간에 일어난 것"을 말합니다. 그러니까 '대한민국 서울, 2008년 11월 20일. 덱스터가 블로그에 글을 올리다'가 사건의 일례입니다.('대한민국 서울'이라는 공간을 지정하는 점과 '2008년 11월 20일'이라는 시간을 지정하는 점, 그리고 이때 '덱스터가 블로그에 글을 올렸다'라는 일까지 전부 합친 것이 사건이지요.) 물리에서는 이 사건이 중요합니다. 왜냐하면, 물리는 "일어난 사건들을 통해서 일어날 사건들을 예측하는 학문"이거든요. 또, "사건은 누가 보더라도 같게" 일어나야 합니다. A라는 사람과 B라는 사람이 하나의 사건을 서로 다르게 보았다고 한다면(예를 들어 개와 고양이가 싸우는 사건[각주:1]이 일어났는데 A는 개가 이기는 사건으로 끝났다고 하고 B는 고양이가 이기는 사건으로 끝났다고 한다면), A와 B는 다른 세계에 사는 것이란 말입니까?(평행우주? 생각해 보니 재밌네요 -_-;;) 당연히 일이 일어났으면 일어난 거고 일어나지 않았으면 일어나지 않은 것이지요.

이제 동시성의 상대성이란 말은 여기서 등장하는 말입니다. 두 사건이 동시에 일어났다고 생각할 수 있지만, 다른 사람에게는 그게 동시에 일어나지 않은 사건일 수 있다는 것입니다. 이게 무슨 뚱딴지같은 소리냐고요?

다음과 같은 상황을 생각해 봅시다. 제가 기차 플랫폼에서 기다리고 있는데 기차가 자기를 막 지나 가는거예요. 편의상 이 기차는 제가 보기에 일정한 속도로 가고 있다고 합시다. 그런데 이 기차의 한가운데에는 기차의 양 끝 벽으로 빛을 쏘는 장치가 설치되어 있습니다. 갑자기 이 장치가 빛을 쏘게 된다면 기차 안에서는 이런 모습을 보게 되겠지요.

File:Traincar Relativity1.svg

당연하지요. 빛의 속도는 일정하니까, 한 가운데에 있으면 장치가 빛을 쏘기 시작하는 점에서부터 양 끝까지의 거리가 같으니까 둘 다 도착하는데 걸리는 시간은 같을 것입니다. 당연히 동시에 이루어져야 할 것 같은데, 무엇이 문제인 걸까요?

문제는 제가 보고 있는 현상입니다. 전 플랫폼에 서 있어요. 제가 보는 현상은 이렇습니다.

File:Traincar Relativity2.svg

뒤에 먼저 빛이 도달합니다. 왜냐하면, 기차의 뒷 벽은 다가오는 빛을 '마중나가기 때문'이지요. 반대로 앞쪽 벽은 도망갑니다. 그래서 시간이 더 걸리지요. 결국, 기차 안에서는 빛이 벽에 도달하는 두 사건이 동시에 일어났지만, 제가 보기엔 벽 뒤에 도달하는 것이 먼저 일어난 것으로 느껴지게 됩니다. 이렇게 한 사람이 보기에는 동시에 일어났던 사건이 다른 사람이 보기에는 다른 시각에 시작한 것처럼 느껴지는 것을 동시성의 상대성이라고 부릅니다. 이런 현상이 일어나는 데에는 특수상대론의 첫 가정인, 모든 관성계는 동등한 물리 법칙을 갖는다가 놓여 있습니다.

그래프를 보실 줄 아시는 분들을 위해 깜짝 준비한 선물입니다 ^^(사실 위키피디아에 가면 있긴 하지만...-_-;;) 민코프스키 다이어그램이라는 그래프입니다. 이 그래프는 특수상대론에서 여러 사건들을 다루기 쉽도록 하기 위해서 고안된 그래프이며, 보통 가로축에 공간상의 좌표를 세로축에 시간상의 좌표를 놓습니다. 이 그래프의 가장 큰 특징은 축의 기울기를 일정하게 바꾸어 주면 다른 이동하는 사람이 어떻게 사건을 보고 있는지 서술해준다는 것입니다. 이 변형 방식은 조금 독특해서, 축을 한 방향으로 몰아주는 형태를 취하지요. 자 그러면 그래프 나갑니다 ^^

File:Relativity of Simultaneity Animation.gif

아래 쓰인 숫자가 변하는 것 보이시죠?? ^^ v는 속도를 나타내는데(velocity의 첫 글자), c는 잘 아시다시피 빛의 속도입니다(어원은 불분명하다고 하지요.). 처음에 속도가 0이었다가(정지한 입장이었다가) 0.3c(+ 방향으로 광속의 30%로 이동하는 사람이 보는 좌표), -0.5c(-방향으로 광속의 50%로 이동하는 사람이 보는 좌표) 이렇게 변하는 것을 보시면 그래프가 특이하게 변하시는 것을 보실 수 있습니다. 물론 사건 자체는 그대로 있는데, 왜냐하면 관측자가 움직이면서 변하는 것은 그 관측자가 측정할 때 쓰는 자이기 때문이지요(이것이 축이 저렇게 이리저리 움직이는 원인입니다). 잘 보시면 속도가 0일 때에는 동시에 일어났던 일들이(즉, 같은 시간값을 갖던 사건들이) 보기에 따라서 다른 시간값을 갖는 것을 보실 수 있습니다. 이게 물리학에서 말하는 동시성의 상대성입니다.




실체진실의 장 1 - 동시성의 상대성은 존재하지 않는다?


자 이제 실체진실의 장 1에 대해 반론해 봅시다. 먼저 연당선생의 글을 보도록 하지요.


이를 이해하기 쉽게 설명하면 두대의 로켓 문제가 되겠습니다.[각주:2] 상황 설명에 대한 것은 자세히 하지 않고, 여기서 오류만 지적하려고 합니다. 아니, 오류라기보다는 빼먹은 논의를 지적해야겠군요. 위에서 말한대로 당연히 K'이 보는 빛은 동시가 아니며, 이건 고전역학적인 범위에서도 당연한 말입니다. 그런데, K'이 보는 빛이 동시가 아니라면 K'은 빛이 동시에 발사된 것이 아니라고 느낀다는 것이 핵심입니다. 왜냐하면, K'이 보는 원점과 광원 사이의 거리는 K에서 보고 있는 원점과 광원 사이의 거리와 똑같거든요. 그러니까, 빛이 발사되는 사건이 K에서는 동시에 일어났다고 할 수 있지만 K'에서는 동시에 일어나지 않았다는 것입니다. 왜냐하면, (다시 말하다시피) 빛의 속도는 누가 어떤 속도로 이동하고 있어도 보기에 똑같고, 거리가 같다면 그 거리를 빛이 이동하는데 걸린 시간은 같기 때문이지요.

그냥 제가 보기엔 연당선생께서는 특수상대론에 대해 완전한 이해를 못 하신 것 같습니다.



덧1. 어익후.. 벌서 해를 넘겼네요;;; ㄷㄷㄷ 앞으로도 쓸 말이 많은데...
덧2. 특별기획이 이거 아무리 비정기포스팅이라고 해도...-_-;;; 다음엔 노력하도록 하겠습니다 ㅠㅠ
  1. 이때는 엄밀히 말해 사건'들'이 맞겠지요. 개가 앞발을 휘두르는 사건 하나, 고양이가 꼬리로 후려치는 사건 하나, 뭐 이런 식으로 여러 사건들을 전부 일컫는 것이니까요. [본문으로]
  2. 일반물리학을 공부하는데 기본 지침서중 하나로 애용되는 Halliday의 Fundamentals of Physics에 잘 나와 있답니다. [본문으로]

댓글을 달아 주세요

  1. Favicon of http://nigimizoddo.tistory.com BlogIcon 냉면개시  댓글주소  수정/삭제  댓글쓰기

    호오...... 적절히 이해가 가면서도 전혀 모르겠군요
    ㅋㅋㅋㅋㅋ 흥미는 가는데 빡세요~

    2009.01.08 09:34
  2. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    물리학은 어렵던데...다시 읽어봐야겠어요^^

    2009.01.08 10:10
  3. Favicon of http://babmucza.com BlogIcon 밥먹자  댓글주소  수정/삭제  댓글쓰기

    대충 뭔 말인지 알 것 같습니다. ^^;; 저 움직이는 좌표 덕에 이해가 잘 가네요.

    2009.01.09 19:38
  4. 아!!ㅂ  댓글주소  수정/삭제  댓글쓰기

    미치겠네요......
    생전 생각 안해보다가 tv 보고 궁금해서 상대성 이론이 뭔지 이해볼려고 며칠을 똑같은 내용을
    보고 있지만 이해가 될듯 말듯 하는건...... 이해하면 속이 후련하련만......
    아무래도 현실에 안주하고 살아야겠습니다.

    2009.04.14 03:42
  5. 우와 덱스터님  댓글주소  수정/삭제  댓글쓰기

    천재네요ㅋ

    2009.04.26 00:03
  6.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2013.01.19 14:09
  7.  댓글주소  수정/삭제  댓글쓰기

    비밀댓글입니다

    2015.03.18 00:33
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2015.03.19 00:30 신고  댓글주소  수정/삭제

      자유롭게 쓰셔도 좋습니다. 다만 블로그 글 같이 전문성이 떨어지는 글은 언제까지나 이해를 위한 보조적인 수단으로 취급해야 한다는 것은 잊지 않으셨으면 해요.

  8. 고3  댓글주소  수정/삭제  댓글쓰기

    연당선생이라는 분의 주장이 잘못된 것 같습니다
    특수상대성 이론에 의하면 k'의 관측자도 두 광원이 동시에 빛을 발사했다고 봐야 합니다.

    2019.05.26 16:45

生 이론물리 포스트입니다 ^-^;;
아무래도 엔비앙 님만 이해하실듯...ㄷㄷ;;;

포인팅 벡터(Poynting Vector)라는 것이 있어요. 전자기학에서 에너지의 흐름을 나타내는 벡터인데, 많은 경우 이 녀석이 말하는 내용이 직관적으로는 말이 안 됩니다. 가장 대표적인 예로는 열이 발생하고 있는 저항선에서 전기 에너지가 어디서 들어오는가 하는 문제이지요. 직관적으로 생각하면 전기 에너지는 전지에서 전선을 타고 들어와서 열에너지로 빠져나가야 합니다. 전선을 타고 에너지가 흐른다는 생각을 하는 것이지요. 그런데 포인팅 벡터는 전선의 외부에서 전선 속으로 에너지가 흘러 들어온다고 말합니다. 그러니까, 전선을 타고 들어오는 에너지는 하나도 없다는 것이 포인팅 벡터가 말하는 주된 내용입니다. 이건 저번 주 수요일 강의 내용이었지요.(교과서로는 파인만 강의록을 사용하고 있는데, 이 책 참 읽기가...-_-;;)

그날 일이 있어서 맥주 한캔을 빨고(-_-;;) 잠자리에 들다가 갑자기 이런 생각이 들었습니다. '논리적으로 생각하면 에너지는 당연히 전선을 타고 올 수 없구나!'. 원래 떠올린 것은 '전자의 부호를 -가 아닌 +로 센다면' 이었는데, 찾아보니 C-대칭(Charge Conjugation Symmetry-입자를 반입자로 바꾸어도 물리 법칙이 일정하다는 그런 내용입니다. 중력과 전자기력에는 적용되지만 약력에는 적용되지 않는다고 하더군요.)과 전혀 차이가 없는 듯 합니다. 하여튼, 시작해 보겠습니다 ^^;;

먼저, 몇 가지 가정을 할 필요가 있습니다. 첫 가정은 '전하의 부호를 반대로 세어도 전자기학 법칙은 바뀌지 않는다' 이고, 두 번째 가정은 '에너지는 국소적으로 보존된다' 입니다. 첫 가정으로부터 얻어지는 뒤따르는 가정은 '에너지의 흐름은 전하의 부호를 반대로 세어도 바뀌지 않는다'가 되겠지요. 흠... 이건 독립된 가정인가요? 뭐 하여튼 가정은 이쯤에서 끝내고, 적용해 보겠습니다.

먼저 에너지는 전선만 타고 흐를 수 있다고 가정합니다. 그러면 전선에는 전류가 흐르는 방향이 있을 것이고, 전체 에너지의 흐름은 전류의 방향과 (1)평행하거나, (2)역평행(antiparallel)하거나, (3)무관해야 합니다. 여기서 무관하다는 말은 에너지가 모든 점에서 수렴한다거나 모든 점에서 발산한다는 것인데, 이렇게 되면 두번째 가정인 '에너지는 국소적으로 보존된다'에 어긋나게 됩니다. 사실, 에너지 보존 법칙을 쓰지 않더라도 어떻게 해야 모든 점에서 에너지가 수렴하거나 발산하도록 할 수 있는 방법이 있기나 한지 저는 전혀 모르겠네요.(지금은 에너지가 전선만 타고 흐를 수 있다고 가정했기 때문에 그렇습니다.)

그러면 당연히 전체 에너지의 흐름은 전류의 방향과 평행하거나 역평행하다는 결론이 내려집니다. 이제, 전하의 부호를 바꾸어 세 보겠습니다. 그러면 전류의 방향이 역전되고, 에너지의 흐름도 반대가 되겠지요. 그런데 문제는, 이렇게 바꾸어 세기만 했을 뿐인데 에너지의 흐름이 뒤바뀌느냐는 겁니다. '에너지의 흐름은 전하의 부호를 반대로 세어도 바뀌지 않는다'는 가정에 의해서 에너지의 흐름은 전류의 방향과 무관하다는 결론이 얻어집니다. 왜냐하면, 에너지의 흐름이 반대가 되어도 원래 에너지의 흐름과 같으려면 에너지의 흐름은 그 점에 대하여 대칭이 되어야 하기 때문이지요. a=-a의 답이 a=0인 이유와 같다고 생각하시면 됩니다. 그런데 앞서 한 논의에서 에너지의 흐름이 전선 위에만 있으면서 모든 점에서 수렴하거나 발산하는 경우는 있을 수 없다고 결론내렸습니다. 따라서, 위의 가정 중 하나가 틀렸다는 말이 되지요. 그러면 가장 만만한(?) 가정은 에너지는 전선만 타고 흐를 수 있다는 가정입니다. 결국 에너지는 전선이 아니라 공중에서 흘러들어온다는 것이 논리적으로 볼 때에는 타당하다는 것이지요.

음... 이건 전 이렇게 해석했습니다. 전기장을 만드는 것은 실제로는 만드는 것이 아니라 공간에 퍼져 있는 미세한 전기장을 그 지점으로 끌어오는 것이라구요. 그러니까, 거의 0에 가까운 전기장들을 전선 주변으로 가져오는 것이 전선에 전류를 흘리는 방법인데, 이렇게 전기장들을 전선으로 가져오려면 전기장들은 허공에서 전선으로 흘러들어가는 형태가 되어 버립니다. 이렇게 전기장들이 허공에서 흘러들어가니까 포인팅 벡터가 허공에서 전선 속을 향하고 있다고 생각하는 것이지요. 이 논의는 무한평면축전기에도 적용이 가능해 보입니다. 파인만 강의록에도 같은(?) 방법으로 설명해 두었더군요. 물론, 파인만 강의록에 있던 설명은 무한평면축전기에 대한 내용이었긴 하지만 말입니다.

덧. 물리시험은 다음주 월요일이고 내일 통계시험이 있는데 이러고 있는 저는 막장?

'Physics > Speculations' 카테고리의 다른 글

Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
직관과 포인팅 벡터  (15) 2008.12.08

댓글을 달아 주세요

  1. Favicon of https://myungee.tistory.com BlogIcon 명이~♬  댓글주소  수정/삭제  댓글쓰기

    확실한건 저는 이해를 못한다는....ㅋㅋ;
    덱스터님은 능력자 +_+

    즐거운 하루 잘 보내고 계신가요옴~~~!!

    2008.12.08 17:51 신고
  2. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    함께 공부하는 분위기 맞죠~~

    2008.12.09 10:57
  3. Favicon of http://envyang.tistory.com BlogIcon 엔비앙  댓글주소  수정/삭제  댓글쓰기

    앗+_+!! 저를 이리 포스팅에 쎄워주시다니ㅠ 감개 무량해요 ㅠ ㅋㅋ

    저는 파인만 아저씨를 사랑하지만 아저씨의 강의록은 그닥 이뻐하지 않아효-_-ㅋㅋ

    포인팅 벡터는......참...제가 물리를 포기하게 만들 뻔 한 녀석이죠 ㅋㅋ
    갑자기 감회가 새롭군요=ㅅ=a;;
    결국 지금은 포인팅 벡터의 평균값을 다루는 광학에 종사하고 있지만
    학부 때 전자기학을 배우면서 너무 많이 좌절을 했었어요. ㅠ

    직관으로 물리를 다뤘다간 쥐도 새도 모르게 잊혀지겠구나라고 생각했었죠 ㅋㅋ
    근데 자석에서 포인팅 벡터를 배우면서 슬슬 이해를 했다능 ㅠ

    그나저나, 물리 및 통계 시험은 잘 보셨는지 +_+?

    2008.12.09 16:08
  4. Favicon of https://appleii.tistory.com BlogIcon appleii  댓글주소  수정/삭제  댓글쓰기

    포인팅 벡터는 전계와 자계가 상호작용해서 전자기파를 전달한다는 것을 나타냅니다. 전자기파는 전력을 전달합니다. 포인팅 벡터는 전계에 수직한 방향입니다.


    이것이 혼란스러울 수 있는데 도체에 전계가 가해지면 전하를 움직인다 , 그래서 에너지가 전달된다는 식으로 이야기하기 때문입니다. 이것은 주파수가 회로와 비교해서 아주 작은 경우를 가정한 것입니다. 주파수가 높으면 약간 달라져야 합니다. 전자기파에 의해서 대부분의 에너지가 전달된다고 생각해야 합니다. 포인팅 벡터는 전계뿐만 아니라 자계도 있어야 됩니다. 에너지가 전계뿐만 아니라 자계에 의해서도 전달된다는 뜻입니다. 전계가 자계를 유도하고 자계가 전계를 유도하는 식으로 전달됩니다. 한개의 도체만을 생각하면 이상할 수 있지만 두 개의 도체를 생각하면 의문이 풀립니다. 집에서 사용하는 전선은 도체가 하나가 아니라 두개입니다. (전선 2개가 한쌍으로 구성) 도체 2개 사이에 전위차가 있으면 전계가 생깁니다. 전류가 발생하면 전류방향을 휘감는 방향으로 자계가 생깁니다. 전계와 자계 모두에 수직한 방향이 포인팅 벡터의 방향입니다. 포인팅 벡터의 방향이 에너지가 전달되는 방향입니다.


    그러므로 도체 사이의 공간을 통해서 대부분의 에너지가 전달된다는 것을 이해할 수 있습니다. (도체 내부는 주파수가 높아지면 저항이 몹시 커져서 에너지를 전달하기 어려움. 거의 표면으로만 에너지가 전달됨.)

    2008.12.16 12:58 신고
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2008.12.16 19:53 신고  댓글주소  수정/삭제

      음.... 전 직류를 이야기하고 있었는데 조금은 주제가 다른 것 같네요...;;

      결과적으로 말하고 싶었던 것은 '에너지는 도체를 통해 운반되는 것이 아니다'가 왜 논리적으로 올바른지였는데, 그런 식으로 설명하는 것도 가능하군요...

  5. Favicon of https://appleii.tistory.com BlogIcon appleii  댓글주소  수정/삭제  댓글쓰기

    공간을 통해서 에너지가 전달되기 위해서는 전자기파를 발생시켜야 됩니다. 전자기파는 변위전류에 의해서 발생합니다. 직류성분은 도체의 자유전자를 움직이는데 소모되는 열에너지로 변환되고 교류성분은 전자기파를 발생시켜 공간으로 에너지를 전달합니다. 교류성분이 없이 직류성분만으로 되어 있는 경우라면 에너지가 도체를 통해 운반된다는 말은 옳은 것이 됩니다.


    포인팅 벡터를 면적분하면 세가지 성분이 나오게 됩니다.
    1. 전계에 축적된 전기에너지가 방출
    2. 자계에 축적된 자기에너지가 방출
    3. 도전성 매질에 의한 열손실


    1, 2 는 교류성분에 의해서 발생하므로, 직류만 있을 경우에는 해당이 안되고 3만 남습니다.


    직류일 경우 공간으로는 에너지를 전달하지 못하고 오직 도체를 통해서만 전달됩니다.

    결론은 직관적으로 생각한 것이 맞다는 것입니다.

    2008.12.17 10:25 신고
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2008.12.17 15:33 신고  댓글주소  수정/삭제

      음..

      그런데 무한직선도선을 가정하고 도선 바로 밖에서 포인팅 벡터를 구하면 0이 아니지 않나요? 전 이 포인팅 벡터에 대해서 말하고 싶었던 것인데...

  6. Favicon of https://appleii.tistory.com BlogIcon appleii  댓글주소  수정/삭제  댓글쓰기

    일단, 전원을 연결하기 전을 생각해 보세요. 그 때는 전류가 흐르지 않습니다. 그 뒤 전원을 연결하면 전류가 흐르게 됩니다. 그런데, 전압이 금방 올라가지는 않습니다. 따라서 전원 전압까지 올라갈때까지 전류의 흐름이 점차적으로 변하는 시간(transient state)이 있습니다. 그 때는 전류가 변합니다. 그 때 생긴 전류는 도선 주변에 자기장을 발생시킵니다. 그리고 더 이상 전류의 변화가 없는 상태가 될 때 , 직류전류가 흐르게 될 때(steady state)는 자기장의 변화가 없습니다.


    여기서 중요한 것이 한가지 있습니다. 도선 주변의 자기장은 전류의 변화가 있었던 초기에 생긴 것입니다. 다르게 말하자면 전류가 변할 때 주변 공간에 자기에너지를 저장했다는 이야기가 됩니다. 그럼 이 자기에너지는 언제 나올까요? 전류가 다시 변해야 나오지 않을까요? 즉, 전원을 차단해서 전류가 점점 줄어드는 상태가 되어야 다시 나오지 않겠습니까?


    1. 과도상태(transient state)에서는 투입된 전기에너지가 주변 공간에 자기에너지로 변환된다.

    2. 정상상태(steady state)에서는 투입된 전기에너지가 열로 변환된다.


    요점은 도선 주변의 공간에 저장된 자기에너지는 전류의 상태가 변할때만 방출과 흡수를 한다는 점입니다. 그러므로 직류전류가 흐르는 steady state 에서는 도선에만 에너지를 전달한다는 말이 옳지 않을까요?

    2008.12.17 18:39 신고
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2008.12.17 18:50 신고  댓글주소  수정/삭제

      음 제가 말하고 싶었던 부분이랑 좀 어긋나는 것 같네요. 님이 말씀하신대로 전류가 흐르고 있으면 자기장이 형성되어 있지요. 제가 말하고 싶은 것은 이때 도체의 표면을 보면 분명히 전기장이 형성되어 있고, 또 여기에 자기장이 수직하게 형성되어 있기 때문에 0이 아닌 포인팅벡터가 도체 내부를 가리키도록 생성된다는 것이었습니다. 교과서에서 포인팅 벡터와 관련되어 나오는 예시문제를 생각해 보시면 되겠네요.

  7. 엑소시스트  댓글주소  수정/삭제  댓글쓰기

    무슨 동양철학하십니까. 그냥 배터리에서 전자를 퍼주기만하면 그로 인해 도선의 나머지 부분에 쌓인 전하에 의해 자동적으로 전기장이 형성됩니다. 그 전기장으로 전류가 흐르게 되는거고요. 그리고 또다시 그 전류는 전기장을 형성하고 ... 한마디로 피드백과정이 즉각즉각(광속으로) 일어나는거죠. 수도꼭지에 호스 꼽고 물 틀어 보세요. 공간상의 미세한 전기장이니 뭐니 하는 말들은 모두 미신류로 들립니다.

    포인팅 정리에 따르면 에너지가 저항체의 옆면으로 흘러들어와야 한다는게 가능한 선택들 중에 그나마 자연스러운 해석이지만, 도선을 따라서 에너지가 넘실넘실 흘러다닌다는 상상과 님께서 보여주신 그에 대한 논증은 다소 불필요하고 그 논리도 부실합니다.(물론 님께서는 그것을 반박하는 논증을 펴셨지만) 회로의 기전력 (전지나 유도 기전력 등등...) 은 단지 회로내부의 자유전자에게 일을 해줄 뿐이지 그들의 운동을 타고 에너지가 전달된다는 말은 어폐가 심합니다.

    덧붙여 말씀드리자면 포인팅 정리의 유도를 보시면 알겠지만 애초에 E*H 항은 폐곡면에 대해 적분된 항입니다. 애초부터 방향성이 없다는 말씀이죠. 따라서 E*H 벡터의 방향으로 에너지가 흐른다는 것은 단지 미학적인 해석에 불과하고, 실재 물리적 내용은 포인팅 정리의 적분형태에 있다고 하겠습니다.

    추신: 포인팅 벡터의 div가 포함된 국소 에너지 보존 법칙의 방정식을 가지고도 에너지의 방향성을 구할 수는 없습니다.(물론 에너지 흐름이 폐곡면의 안쪽이냐 바깥쪽이냐는 구분되지만) 결국 포인팅 벡터가 그러한 방향을 가지고 있는 것은 순전히 인간의 선택에 의한 것입니다. 간단한 예로 포인팅 벡터에 상수벡터를 더해 보세요. 상수벡터의 div는 0 이기 때문에 면적분에 영향을 주지 않습니다. 그러면 에너지 흐름의 '방향'도 달라지겠죠. 물론 물리학에는 아무런 변화도 없이요.
    제 소견으로는 에너지에 관한 많은 착각이 에너지가 공간상에 절대적으로 존재해야 한다는 관념에서 비롯되는 것 같습니다. 에너지는 물론 존재하지만 물리적으로 존재한다기 보다는 수학적으로 존재합니다. 그리고 그 존재는 가변적이고 인위적인 측면이 큽니다. 에너지의 물리적 가치는 언제나 그 보존성에 있지 에너지 흐름의 방향이 무엇이냐하는 것은 사실 물리적으로 큰 의미가 없다고 봅니다.

    2009.08.11 16:56
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2009.08.12 00:20 신고  댓글주소  수정/삭제

      생각해 보니 헛소리가 맞긴 맞네요. 괜히 포인팅벡터에 물리적인 의미를 부여하느라 생긴 무리한 해석 정도로 보아주시길 ^^;;

      에너지는 인공적인 개념인 측면이 크기는 하지요. 절대적인 기준 자체를 구할 수 없는 경우도 많으니...(자기포텐셜의 경우가 가장 크겠네요...) 뭐 이런 부분은 물리학에서 나타나는 수많은 개념들이 실제로 존재하는 것이냐는 존재론에 대한 질문이 되니까 무시하는게 맞을지도 모르겠네요.

      그런데 텅 빈 공간이라도 일정 정도의 전자기장이 존재하는 것은 맞을 겁니다. 최소한 QFT 수준에 가면 그 말은 옳다고 알고 있습니다. 물론 지금은 고전적인 범위니까 그런 헛소리는 집어치워야 하는게 옳겠지만요.

    • 우왕ㅋ굳ㅋ 2016.03.18 10:37  댓글주소  수정/삭제

      저는 에너지의 방향성이 불필요하다고 생각하진 않아요.. E cross H*는 결국 파동의 진행 방향을 나타내잖아요?

      그냥 여러 정보를 한 공식 안에 다 집어 넣은거죠.

      글로 풀어낸다면,
      "이 방향으로 진행하는 전자기파는 이런 에너지를 가지고 있더라!"
      여기서 "이 방향으로 진행하는" 부분이 포인팅 벡터의 방향성이죠.

      실생활에 접목해서 이야기 해본다면,
      "지금 경부고속도로를 타고 택배 배달 가고 있습니다"

      경부고속도로가 방향성이고 택배 내용물이 에너지인 거죠.

물리는 어렵지 않습니다. 단지 관심과 그에 맞는 시간을 요구할 뿐...

특별기획 물리의 벽을 깨라!-제 1회 기획글입니다.

먼저 연당선생의 홈페이지에는 실체진실의 장이라는 코너가 있습니다. 이에 대해 반론하기 전에, 특수상대론이 무엇인가를 알아봐야 하겠지요. 먼저 특수상대론이 무엇인지 알아봅시다.



특수상대론은 무엇인가요?


특수상대론은 '특별한 상황에서 적용되는 상대론'입니다. 특별한 상황이란 우리가 지구위에 서 있도록 해 주는 중력이 없는 경우를 말하지요. 여담이지만 물리학자들에게 이 중력이란 놈처럼 여러곳에 산재하면서 골치아픈 녀석도 없습니다. 과학쪽에 관심이 있는 사람이라면 다 알고 계실 통일장이론에서 유일하게 마지막까지 해결하지 못한 녀석이 중력이지요. 지금은 해결 되었는지 모르겠습니다만...

다시 돌아와서, 특수상대론이 등장하게 된 이유는, 빛(전자기파)의 속도가 일정하게 관측되어야 한다고 전자기학이 예측하였기 때문입니다. 자, 상식적으로 생각해 봅시다. 100키로로 달리고 있는 도주차량이 있습니다. 이 자동차를 50키로로 쫓아가는 경찰차에서 바라보면 당연히 이 도주차량의 속도는 50키로로 보여야 하겠지요. 그런데 빛의 경우에는 그렇지 않더라는 말입니다. 50키로로 쫓아가서 바라보더라도 여전히 100키로로 도망가고 있는 것처럼 보인다는 것이지요.(경찰관 입장에서는 통탄할 노릇이군요) 더 나아가서, 이 도주차량을 1키로로 쫓아가던지, 99키로로 쫓아가던지 이 도주차량은 계속 100키로로 도망가는 것처럼 보인다는 것입니다. 그러니까, 누가 쫓아가더라도 이 도주차량을 잡을 수 없다는 것이 전자기학이 예측한 현상입니다.(전자기학에서는 이 도주차량이 빛입니다.)

여기까지는 이해하셨죠??

원래 전자기학이 예측한 상황은 이게 아니었습니다. "누군가가 측정하기에 빛의 속도는 항상 c이다"였지요. c는 초속 299,792,458미터로, 우리가 자주 쓰는 키로미터 단위로 환산하면 초당 약 삼백만 키로미터가 됩니다. 이 속도는 1초만에 지구 둘레의 일곱배 하고도 반을 돌 수 있을 정도로 빠른 속도입니다.(80일간의 세계일주에서 포그씨가 80일동안 지구 한바퀴를 겨우 돈 것을 생각하면 이건 그야말로 혁명적(?)인 속도이지요.) 그래서 '광속'이란 단어는 매우 빠른 속도를 일컫는 일반명사로 쓰이기도 합니다. '광속으로 갔다와라'는 말에서처럼 말이지요. 그런데, 이 광속이 "누가 측정하기에 항상 c인가?"라는 의문이 남습니다. 누구일까요?

옛 사람들은 이 누군가가 "완전히 정지해 있는 사람"[각주:1]이라고 생각했습니다. 초등교육때부터 계속적으로 주입된 과학교육으로 아시다시피, 지구는 멈추어 있지 않아요. 지구는 태양 주위를 돕니다(이를 서로 돌고 있다고 해서 공전이라고 부릅니다.). 자체적으로 돌고 있기도 하구요(이를 스스로 돈다고 해서 자전이라고 부르지요.). 그래서, 옛 사람들은 지구 위에서 빛의 속도를 측정할 수 있다면 이 빛의 속도는 c가 아닐 것이다라고 결론내렸습니다. 100키로로 달리는 자동차들만 가득한 고속도로에서 90키로로 달리고 있을 때, 반대편의 차는 매우 빠르게 지나가지만 주변의 차는 천천히 앞으로 지나가는 것처럼, 빛의 속도도 방향에 따라 다르게 느껴질 것이라는 것이었지요. 논리적으로는 전혀 문제될 부분이 없어 보입니다. 하지만, 실제 자연 현상은 그럴까요?

OLYMPUS IMAGING CORP. | u1030SW,S1030SW | 1/13sec | F/5.1 | 18.2mm | ISO-100

이런 느낌입니다.
(스캐너가 없어요...ㅠㅠ 디카 사진입니다.)

실제로는 그렇지 않았습니다. 마이켈슨-몰리 실험에서 "지구에서 측정한 빛의 속도는 방향에 상관없이 일정하다"는 결론이 내려진 것입니다.(이 실험에 대한 자세한 설명은 다음에 다른 글에서 하겠습니다. 이게 할 말이 상당히 많은 흥미로운 주제이거든요.) 패닉이지요. 쉽게 설명하자면, 위의 고속도로에서 달리고 있는데 이쪽의 자동차나 저쪽의 자동차나 같은 빠르기로 지나가는 것처럼 느낀다는 것입니다. 여기서 상식이 깨지기 시작합니다. 왜 빛은 쫓아가도 그 속도 그대로 도망갈까?(여담이지만, 빛이 도둑이었다면 치안유지가 상당히 힘드리라 생각되네요. 무슨 도둑이 다 홍길동이야 -_-)

이에 아인슈타인은 상식 비틀기를 시도합니다. "움직이면 시간이 늘어나고 거리가 줄어든다"는 것이었지요. 단, 주의해야 할 것이 있습니다. 이때 늘어나고 줄어드는 것은 기준이 되는 시간과 거리입니다. 그러니까, 움직이는 녀석의 1초가 제가 보기엔 1.1초인 것이고, 움직이는 녀석의 1미터가 제가 보기엔 0.9미터인 것이지요. 그러면 제가 관측한 55초는 움직이는 녀석에게는 50초처럼 느껴지는 것이고(수정)제가 관측한 50초는 움직이는 녀석에게는 55초처럼 느껴지는 것이고, 제가 관측한 50미터는 움직이는 녀석에게는 45미터로 느껴지는 것이지요. 환율에 빗대어 설명해 보자면, 1 달러의 값(측정하는 값-미터나 초가 여기에 해당합니다.)이 1100원(자연상태의 값-아직 측정하지 않은 거리나 시간입니다.)이었는데 줄어들어 1000원이 되어 버리면, 실제로는 전혀 변하지 않은 5만 5천원이 50달러였다가 55달러로 늘어나는 것과 같은 이치입니다. 이렇게 기준이 되는 시간과 거리가 늘어나고 줄어들기 때문에, 실제 관측값은 줄어들고 늘어나게 됩니다. 이 부분이 오해하기 가장 쉬운 부분입니다. 이제 다시 돌아가 보지요.

속도는 다들 알다시피 이동거리를 시간으로 나누어 정의합니다. 이런 분수에서 분자(윗 부분)를 키우고 분모(아랫 부분)를 줄이면 분수는 커지게 됩니다. 위처럼 관측된 거리가 늘어나고 관측된 시간이 줄어들면 분수의 분자가 커지고 분모가 작아지면 분수의 크기가 커져, 속도가 늘어난다는 것이었지요. 이 늘어나는 정도는 정말 절묘하게 설정되어 있어서, 빛의 속도는 쫓아가는 정도만큼 그 속도가 정확히 늘어나서 그 속도 그대로 유지된다고 설명하는 것입니다.[각주:2]

이정도 수학은 중학교때 배우지 않나요?

이것이 특수상대론입니다. 최대한 쉽게 설명해 보려고 했는데, 이해하기 쉬웠는지는 잘 모르겠네요.[각주:3]

재미있는 것은, 이런 가정을 처음으로 한 사람은 아인슈타인이 아니라는 것입니다. 이런 가정을 처음으로 한 사람은 네덜란드 사람인 핸드릭 안톤 로렌츠(Hendrik Antoon Lorentz)였습니다. 애석하게도 이 분은 위의 "완전히 정지해 있는 사람"이 있을 거라고 생각해서 특수상대론에 다다르지는 못했지요. 그래도 이 사람이 만든 로렌츠 변환은 아직까지도 살아 남았습니다.(변환이란, "A라는 사람이 관측한 C라는 사건을 다른 B라는 사람은 어떻게 볼까"라는 질문에 답하기 위해 만들어진 수학적 과정을 말합니다.) 이제 이처럼 상식을 약간 비튼 일이, 얼마나 상식에서 벗어나는지는 다음 글에서 알아보겠습니다.


덧1. 원래 이 글은 다음 글과 같이 포스트하려고 공개를 미루었던 글인데, 공개가 너무 늦어지는 것 같아서(^-^;;) 지금 공개합니다. 다음 글은 사진만 구하면 금방 금방 쓸 것 같으니(기말이 코앞이긴 하지만 -_-;;) 오래 기다리실 필요는 없을 겁니다 ^^;;

덧2. 특수상대론이 문제가 아예 없는 이론은 아닙니다. 물론 상대론 자체에는 문제가 없지만, 이게 전자기학과 연계되는 과정에서 문제가 만들어지게 된다고 해야겠네요. 이에 대한 것은 나중에 다루겠습니다.
  1. 옛 사람들이 도입했던 개념인 '에테르'를 아시는 분이 있으련지 모르겠네요. 이 '에테르'가 보기에 멈추어 있는 사람이 '완전히 정지해 있는 사람'입니다. [본문으로]
  2. 정확히 말하자면 이건 상대론이 아닙니다. Preferred reference Frame Theory(PFT)에 해당하는데, 현 시점에서는 따로 구분할 필요는 없어 보이니 그냥 그대로 진행하도록 하겠습니다. [본문으로]
  3. 제가 설명을 하면서 한가지 빼먹은 것(상대성)이 있는데, 이것에 대해서는 다음 글에서 말해야 할 것 같습니다. 상대성에 대해 간단히 말하자면 '관성 운동(가만히 움직이거나 멈춰있는 운동)을 하는 관찰자들이 관측하는 물리법칙은 동일하다' 입니다. 역시 다른 글에서 설명하는게 낫겠네요. [본문으로]

댓글을 달아 주세요

  1. Favicon of https://envyang.tistory.com BlogIcon 엔비앙  댓글주소  수정/삭제  댓글쓰기

    꼼꼼한 포스팅 +_+ 멋지네요 ^-^ ㅋ 그림도 직접 그려서 올리시나봐 =_= ㄷㄷ

    2008.12.02 10:28 신고
  2. Favicon of https://inpresity.tistory.com BlogIcon presii  댓글주소  수정/삭제  댓글쓰기

    밥 아저씨의 "참 쉽죠?"가 갑자기 생각이...;;;
    서...설마 다음은 더 난해한 내용인가요...;;;

    2008.12.02 13:56 신고
  3. 지나가는양,  댓글주소  수정/삭제  댓글쓰기

    퍼갑니다 ㅠㅠ.

    2009.02.04 21:12
  4. 헤헤  댓글주소  수정/삭제  댓글쓰기

    우선 이런 기획물 감사합니다ㅜ
    그런데 이해가 안가는 게 시간이 늘어났다는 게 어떤 의미인가요?
    시간이 느리게 간다랑 비슷한 느낌인가ㅠ관측자가 본 55초가 움직인 사람에게 50초로 느껴진게 시간이 늘어난건가요?

    2013.02.23 01:36
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2013.02.23 11:24 신고  댓글주소  수정/삭제

      움직이는 사람의 50초가 관측하는 사람에게는 55가 지난 것으로 보이는 것을 의미합니다.

      이 기획물 쓰다가 연재중단한지 너무 오래되어서;;;

  5. 잘 봤어요!!  댓글주소  수정/삭제  댓글쓰기

    이해가 될랑말랑하네요..ㅜㅠ
    그런데 중간 부분에 환율 얘기 바로 전에
    '그러면 제가 관측한 55초는 움직이는 녀석에게는 50초처럼 느껴지는 것이고, 제가 관측한 50미터는 움직이는 녀석에게는 45미터로 느껴지는 것이지요'
    이 부분 있잖아요 55초랑 50초랑 바뀐거 아닌가요?

    2013.06.09 21:31

안녕하세요 돌아온 덱스터입니다!(항상 여기에 있었으니 돌아왔다고 하기도 뭐하지만...;;)
제 블로그를 조금 꼼꼼히 돌아보신 분들은 아시겠지만(없을 거라고 거의 확신하지만..ㅠㅠ) 물리에 대한 포스트가 좀 많은(?) 편입니다. 물리에 관한 포스트를 손보고 있는 부분도 많구요. 그건 제가 공대생이라는 물리와 절대 벗어날 수 없는 영역에서 살아가고 있는것도 한 원인이 되겠지만 나름대로 물리를 많이 좋아하는 것이 주 원인이겠지요.

그런데 일단 물리에 대한 사람들의 인식은 이렇습니다.


...

이런 우스갯소리가 있습니다.

"제 옆자리의 사람과 대화를 나누고 싶을 때에는 천문학을 전공했다고 해요. 그냥 쉬고 싶을땐 물리학을 전공했다고 합니다." - 천체물리 전공자

이처럼 물리라는 것에 사람들은 거대한 벽을 느낍니다. 단순한 벽도 아닌 매우 거대한 벽을요.

그런데 실제로 물리라는 학문은 그렇게 어려운 학문은 아닙니다. 이런 말이 있지요.

어렵다는 것은 익숙하지 않다는 말의 다른 표현에 불과하다.
-도아

물리가 어려워 보이는 것은 물리가 기반으로 하는 학문이 수학이기 때문입니다. 수학이란 학문은 웬만한 관심을 갖지 않고서는 깊이있는 이해를 하기 힘들지요. 물리는 깊이가 어느 정도 있는 수학을 요구하기 때문에, 당연히 어려워 보일 수 밖에 없습니다. 하지만, 물리는 수학을 도구로 할 뿐 나머지는 상식에 기반을 둡니다. 즉, 수학만 다루지 않는다면 그리 복잡할 것 없는 학문이라는 것이지요. 그래도 시간은 많이 잡아먹을 것이라는 데는 저도 크게 동의합니다...ㅠㅠ

이번 기획은 이런 물리에 대한 벽을 깨뜨려 보고자 하는 것이 목표입니다. 예전에 서울메트로에서 야심차게 기획하던 풍력발전계획이 완전한 돈을 날리는 사업이라는 것을 증명하는 것은 목표가 아니긴 하지만, 앞으로 물리가 대중과 좀 더 가까워진다면 이런 어처구니 없는 사건은 사라지겠지요.

제일 먼저 '특수상대성 이론'을 시작으로 하려고 합니다. 상식과 가장 어긋나는 이론으로 유명하지요. 물론 이제는 이론이 아니라 정설에 가깝긴 하지만 말입니다. 이번 기획에 가장 커다란 영향을 주신 연당선생께 감사의 말씀 드립니다.

제가 왜 이런 기획을 하냐고요? 트래픽을 노려보자는 꿍꿍이도 있지만 지식 자체는 누구에게 귀속되는 것이 아니지 않습니까.(그 사용권은 좀 문제가 다르죠) 여튼, 이번 기획을 끝까지 가져갈 수 있느냐는 제 근성에 달린 문제인데, 잘할 수 있으려나 모르겠네요. 그러면 이만, 다음을 기약해야겠네요.

댓글을 달아 주세요

  1. Favicon of https://inpresity.tistory.com BlogIcon presii  댓글주소  수정/삭제  댓글쓰기

    본격 물리 전문 블로그로 컨셉을 잡으신건가요? ^^;;;
    그것도 그 어렵다는 상대성이론으로 시작하신다니 기대되는군요...^^
    대...대략 짤방과 같은 일이 나올까요...;;;

    2008.11.20 21:23 신고
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2008.11.20 21:30 신고  댓글주소  수정/삭제

      하하하;;; 설마요 ㅠㅠ

      동아사이언스처럼 쉽게 읽을 수 있는 칼럼 형식으로 하려고 해요. 원래 물리가 블로그를 시작하게 된 컨셉이긴 한데, 아직까지는 잡담용 블로그로 하려구요 ^^

  2. Favicon of http://read-lead.com/blog BlogIcon Read&Lead  댓글주소  수정/삭제  댓글쓰기

    정말 기대가 큽니다. 앞으로 열심히 배우겠습니다. ^^

    2008.11.23 09:31
  3. Favicon of https://envyang.tistory.com BlogIcon 엔비앙  댓글주소  수정/삭제  댓글쓰기

    대단하시네요+_+
    저도 물리 포스트 시작했지만 이론물리쪽으로는 절대 넘어가지 않으리라 다짐하고 있는데 ㅋㅋㅋㅋ
    무조건 기본 이론 끝내면 실험으로 빠지는거돠 -ㅁ-우후훗;;;
    사람들이 물리를 어려워 하는 이유는 - 그게 수학이 기본바탕이라는 이유도 있지만 -
    대체적으로 이론물리만 물리로 생각하는 까닭인 것 같아요.
    실험물리가 얼마나 재미있는데 =ㅅ= (헐;; 혼자만의 착각인가;; ㅋㅋ)

    2008.11.27 10:12 신고

힘과 운동

Physics/Concepts 2008.08.08 00:38

물리는 '자연 현상'을 '수학적'으로 '모델링'하고 그 모델에 따라 앞으로 있을 자연 현상을 '예측'하는 학문이다. 오늘은 간단하게 모든 물리학의 기초가 되는 뉴턴 역학에 대해서 알아보자.

힘은 무엇인가?

힘은 무언가를 변화하는데 사용되는 것이다. 일반적으로 그 무언가는 쉽게 변하지 않는 것이며, 그렇기 때문에 힘을 정의하기에 앞서 무엇이 쉽게 변하지 않는가 알아보아야 한다. 철학뿐만 아니라 여러 분야에서 두각을 나타내었던 옛 그리스 시대의 아리스토텔레스는 이 쉽게 변하지 않는 양이 '위치'라고 보았다. 하지만 '위치'라는 양은 그냥 놔두어도 쉽게 변한다. 공중에 던져진 물체의 위치는 매우 빠르게 변화한다. 쉽게 변하지 않는 양이 위치라면, 공중에 던져진 물체는 금방 멈추어야 할 것이다. 또한, 자유낙하를 설명하기 위해 도입한 자연운동이라는 개념은 일관성이 떨어진다. 무엇이 강제운동(아리스토텔레스는 힘에 의해 억지로 위치가 변하는 것을 강제운동이라고 불렀다.)이고 무엇이 자연운동인지 누가 정의한단 말인가? 천체들은 왜 자연운동을 하지 않는가? 물론 그렇기 때문에 아리스토텔레스는 천상과 지상의 법칙이 다르다는 결론에 도달했을 것이다. 천상에서는 자연운동이 원운동으로 나타나고, 지상에서는 자연운동이 낙하운동으로 나타나기 때문에 천상의 물체들(천체들)은 낙하하지 않는다는 설명은 얼핏 들으면 그럴듯하지만, 무엇이 천상의 물체이고 무엇이 지상의 물체인지 정확히 정해지지 않는다면 예외로 가득찬 법칙이 되어버릴 것임에 틀림없다.

뉴턴은 완전히 다른 관점에서 접근했다. 먼저 뉴턴은 천상의 법칙이나 지상의 법칙이나 다를 것이 없다고 생각했다. 흔히 사과가 떨어지는 것을 보고 뉴턴이 중력을 생각해 내었다고 전해진다. 하지만, 원래의 이야기는 사과가 떨어지는 것과 달이 원운동을 하는 것과 적용되는 법칙은 같다는 것을 떠올리게 된 것이라고 한다. 사과가 떨어지는 것이 만유인력 때문이다 이런류의 생각은 아니지만, 어찌 되었든 사과가 만유인력의 법칙을 떠올리는데 중요한 역할을 한 것임에는 틀림없다. 그렇다면 무엇이 쉽게 변하지 않는 것인지 알아보기로 하자.

변하지 않는 양-운동

여기서 그 유명한 갈릴레오의 관성에 대한 사고실험을 보도록 하자.

사용자 삽입 이미지

A위치에서 출발한 공은 곡면을 따라 같은 높이(B,C)까지 굴러 올라간다는 것은 경험상 모두 잘 알고 있다. 진자를 생각해 보아도 좋다. 진자가 올라가는 최대 높이는 그리 큰 차이를 보이지 않는다. 물론 갈수록 조금씩 내려가기는 하지만, 그리 큰 것은 아니다. 원래 그림으로 돌아와서, 만약 이 곡면을 무한대로 확장한다면(D) 어떻게 될까? 이 공은 같은 높이가 될 때까지 계속 굴러갈 것이라는 추론이 가능하다. 이것이 그 유명한 갈릴레오의 관성에 대한 사고실험이다.

여기서 중요한 것은 '계속' 굴러간다는 사실이다. 여기서 얻어진 아이디어가, 물체에게 있어 잘 변하지 않는 것은 바로 '운동'이라는 것이다. 이것은 현대 물리학의 '쉽게 변하지 않는 것'에 대한 관점이다.(뉴턴의 제 1 법칙: 운동하는 물체는 계속 운동한다) 이제 이렇게 쉽게 변하지 않는 것을 알아내었으면, 그것을 수학적으로 표현해주어야 한다. 운동을 무엇으로 나타내야 잘 나타낼 수 있을까?

누구나 무거운 물체에는 더 많은 힘이 들어가야만 같은 속도로 운동시킬 수 있다는 것을 알고 있다.(뉴턴의 제 2 법칙: 질량과 가속도는 반비례한다) 이처럼 운동을 대표하는 양에는 '질량', 즉 무겁고 가벼움에 대한 값이 포함되어야 한다. 마찬가지로 누구나 빠른 공은 느린 공보다 더 많은 힘을 들여야 멈출 수 있다는 것을 알고 있다. 굴러오는 총알보다 총에서 발사된 총알이 더 무서운 것과 같다. 이처럼 빠르기를 대표하는 양인 '속도'도 운동에 고려되어야 한다. 실제 실험에서는 질량과 속도는 서로 동등한 가중치를 갖기 때문에 운동을 운동량, 질량과 속도의 곱으로 표현한다.

뉴턴의 3 법칙

우리는 여태까지 뉴턴의 3가지 법칙 중 두가지 법칙(제 1, 제 2 법칙)에 대해 알아보았다. 이제 마지막 법칙인 세번째 법칙을 알아보도록 하자. 먼저 두개의 물체를 생각해 보자. 이 두개의 물체를 묶어서 보는 입장에서는 두 물체에 외부에서 아무런 힘을 주지 않더라도 두 물체의 운동량의 합은 변하지 않아야 한다. 두 물체를 질량 없는 상자로 덮어 놓는다면, 외부에서 볼 때에는 두 물체의 집합이 하나의 물체로 보일 것이고, 이 하나의 물체에 대해서는 여태 다루었던 법칙이 다 적용되어야 하기 때문이다.이것이 세번째 법칙의 골자이다.

세번째 법칙은 두 물체가 힘을 주고받는 경우, 둘은 같은 크기의 힘(짝힘이라고 부른다)을 주고받으며, 두 힘의 방향은 반대라고 말하고 있다. 운동량의 합이 변하면 안되기에, 한쪽의 운동량이 변하는 만큼(힘) 반대쪽의 운동량이 감소하는 것이다(짝힘). 변화하는 방향이 반대인 만큼(한쪽은 증가, 반대는 감소), 두 힘의 방향은 반대가 된다. 이제 세번째 법칙을 정리할 수 있다. '두 물체 사이에 힘이 작용할 경우 두 물체 사이에는 같은 크기의 힘이 작용하며, 그 힘들의 방향은 서로 반대이다.'

힘과 운동에 대한 포스트는 간단하게 이정도에서 마치도록 한다.

TAG 물리, 운동,

댓글을 달아 주세요

균일함에 대하여

우주는 균일하다고 여겨진다. 균일하다는 것은 쉽게 구분할 수 없다는 것으로, 크게 두 가지가 있는데, 하나는 방향에 대한 개념이 있고, 다른 하나는 위치에 대한 개념이 있다.

먼저, 방향적으로 균일하다는 것을 isotropic이라고 부른다. 한글로는 어떻게 번역되는지 잘 모르겠으나, 이 글에서는 편의상 "등방향성" 이라고 부르기로 하자. 우주에 등방향성이 존재한다는 것은 다음의 말과 같다. 우주 안의 한 지점에서 우주를 바라보고 있을 때, 그 점에서 어떤 방향으로 바라보고 있는지 알 수 없다는 뜻이다. 등방향성이란 바라보는 방향마다 차이가 적어 방향을 구분할 수 없을 때를 말한다. 쉽게 말해 밤하늘을 크게 확대해 놓으면 자기가 동쪽을 바라보고 있는지 남쪽을 바라보고 있는지 모르는 것이다.

다음으로, 위치적으로 균일하다는 것을 homogenous라고 부른다. 역시 한글로는 어떻게 번역되는지 잘 모르겠으나, 이 글에서는 "균일하다"라는 말을 이 개념에 배당하겠다. 이 균일성이라는 개념은, 우주 안에서 어떤 위치에 있는지는 기준점 없이는 알 수 없다는 것이다. 이처럼 균일하다는 것은 바라보는 위치가 바뀌어도 차이가 적어 위치의 차이를 구분하지 못할 때를 말한다. 쉽게 말해 서울의 밤하늘과 대전의 밤하늘은 밤하늘만 가지고서는 자기가 어디에서 하늘을 보고 있는지 구분하지 못하는 것이다.

균일함과 중심력

이제 완전히 빈 공간을 생각해 보자. 쉽게 생각하면 티끌하나 존재하지 않는 우주와 비견될 수 있을 것이다. 물론 실제의 우주에서는 양자 요동이라는 현상에 의해 불가능하지만, 아직까지는 고전적인 범위에서만 다루므로 티끌하나 존재하지 않는 완전히 비어있는 우주를 생각할 수 있다.

이제 이곳에 입자 하나를 놓자. 무엇이 되어도 상관이 없다. 그것이 사람이든, 책이든, 휴대폰이든, 시계든 상관이 없다. 하지만 이런 모든 것들은 자체적으로 방향성을 가지고 있는데다가(사람을 위에서 보는것과 아래에서 보는 것으로 구분할 수 있듯이), 분해되어 점들의 집합으로 서술될 수 있기 때문에 이상적인 상황을 논하고 있는 현재에는 그다지 합당하지 않다고 느껴진다. 따라서 이런 문제가 생기지 않도록 점 하나를 공간에 가져다 놓았다고 생각해 보자. 이제 이 점입자를 A라고 부르자.

바로 이 순간, 빈 공간에서의 균일성은 붕괴하게 된다. A라는 물질이 존재하게 되면서 A까지의 거리라는 변수에 의해 위치의 차이를 구분할 수 있게 되기 때문이다. 하지만, 아직 A의 방향성이 정해지지 않았으므로 A까지의 거리가 다른 경우에만 서로 구분할 수 있고 A까지의 거리가 같은 점들(구를 만들어낸다)끼리는 구분이 불가능하므로 균일성은 붕괴하기는 하지만 완전하지는 않다고 할 수 있다.

하지만 등방향성은 어떤가? 우리가 아는 것은 A까지의 거리일 뿐, A에 대한 방향은 알 수 없다. 이건 A의 입장에서 보면 더욱 두드러진다. A가 보기에는 12시 방향이나, 4시 방향이나 다 똑같은 끝없는 암흑뿐이다.(12시 방향도 정의하기 힘들다.) 결국 점을 하나 가져다 놓는다고 해서 등방향성이 깨지지는 않는다. 이처럼 우주가 등방향성을 보존한다는 것과 관련있는 힘이 중심력이다. 이제 중심력의 정확한 정의를 알아보자.

중심력은 무엇인가.

중심력이란 "입자와 입자 사이의 거리에만 관여하며, 그 방향이 입자와 입자를 잇는 선상에 놓이는 힘"을 말한다. 만약 중심력의 벡터가 입자와 입자를 잇는 선상에 놓이지 않는다면, 등방향성을 위배하게 된다. A로부터 받는 힘을 이용해 자신의 방향을 예측할 수 있고, 이는 등방향성이 깨져버리게 되기 때문이다. 실제 이런 방법으로 등방향성이 깨지는 경우는 관측된 바는 없다. 물론 일반상대론의 영역으로 가면 공간 자체가 휘어버리면서 공간 자체가 방향성을 가지게 되기도 하지만, 그것은 기본적으로 가속운동상태인 회전운동중이나 입자 자체가 움직이고 있어 방향성을 갖는 경우에나 볼 수 있는 것이다. 고전역학은 가속운동되는 계가 아닌 관성운동을 하는 계, inert한 계만 다루기 때문에 이런 경우까지 따로 다루지는 않겠다.

실제로도 자연계의 기본적인 힘으로 여겨지는 4대 힘(중력, 전자기력, 약력, 강력) 모두 중심력에 속한다. 이쯤 되면 독자들도 왜 기본적인 힘이 중심력에 속하는지 눈치를 챘으리라 믿으며(혹시 눈치채지 못한 독자를 위해 내 개인적인 생각을 말하자면, 나는 우주는 최대한 대칭성(등방향성이나 균일성)을 보존하려고 하는 성질을 갖고 있다고 믿는다. 이런 성질에 최대한 부합하기 위해 4대 힘이 모두 중심력으로 나타난다고 생각한다.), 중심력 중 가장 기초가 되는 중력으로 넘어가겠다.

가장 기초적인 중심력, 중력.

중력은 "중력질량을 갖는 두 물체 사이의 힘" 으로 정의된다. 물론 이 힘을 매개하는 입자(가상적인 입자, 중력자(graviton))나 마당(장, 역장(force field)을 말한다) 으로도 정의할 수도 있으나, 중력을 제일 처음 다루었던 뉴턴(Sir Isaac Newton)의 관점을 따르기로 하자. 뉴턴이 발견한 중력의 특징은 다음과 같다.

"두 질량을 가진 입자는 서로를 끌어당기며, 그 힘은 두 질량의 곱에 비례하고 두 입자사이의 거리의 제곱에 반비례한다"

참 신기하게도, 전자기력 또한 두 입자 사이의 거리의 제곱에 반비례하는 성질을 가지고 있다. 이러한 성질은 우리가 보는 세계의 차원(공간적인 차원. 시간까지 합치면 완전치 못한 4차원이 된다. 이 부분은 특수론에서 다루기로 하자.)과 관련이 있다고 여겨진다. 3차원의 공간에서 정의된 구의 겉넓이는 반지름의 제곱에 비례한다.(자명하므로 증명은 생략한다.) 힘이 공간에 의해 매개된다고 할 때(역장의 개념으로 볼 수 있다), 힘은 등방향성의 성질에 따라 힘을 생성하는 입자에서 같은 거리에 떨어진 지점마다 모두 같은 힘을 제공해야만 한다.(이렇지 않다면 특정한 방향성이 존재한다는 것을 알게 되고, 등방향성이 깨져버린다.) 이때, 이 같은 거리에 떨어진 지점들의 수는 거리의 제곱에 비례한다(구의 겉넓이에 비례하게 될 것이기 때문이다). 따라서, 지점당 배당되는 힘은 거리의 제곱에 반비례할 수 밖에 없다. 나눠줄 점들이 거리의 제곱에 비례해서 계속 늘어나기 때문이다.

중력으로 돌아와서, 이제 이 중력이라는 것을 수학적으로 나타내 보기로 하자. 계속 강조하듯이, 물리라는 학문 자체가 수학적인 모델링에 그 기본 뼈대를 두고 있기 때문에 이런 귀찮은(?) 작업은 필수적이다.

vec[F(r)] = -GMm/(r^2) vec[e_i]

벡터 F(r)은 바라보는 질점이 바라보아지는(..) 질점에게 가해주는 힘이며,G는 비례상수를 나타낸다. 유래는 아무래도 영어단어 gravitation에서 온 듯 하다. M과 m은 두 질점의 질량을 말하며, r은 두 질점 사이의 거리를,벡터 e_i는 바라보는 질점에서 바라보아지는(..) 질점을 잇는 벡터의 단위벡터를 말한다. 말이 좀 꼬여있기는 한데, 다음 예를 보면 쉽게 이해할 수 있으리라 생각한다.

질점 M이 질점 m을 징그럽게 끌어당기는 힘은 위의 식과 같이 나타난다고 할 때, 벡터 e_i는 질점 M을 시점으로 하고 질점 m을 종점으로 하는벡터와 같은 방향의 단위벡터이다. 이쯤 되면 왜 - 부호가 붙었는지 이해할 수 있을 것이다. 근본적으로 벡터 e_i는 밀어내는 방향의 벡터이다. 중력은 끌어당기는 힘이므로, 필연적으로 - 부호가 붙게 되는 것이다.

2체문제와 환산질량

이제 두 물체가 중심력으로 서로 영향을 주고받는 상황을 다루어 보자. 이런 경우는 참 복잡하다. 이런 문제는 하나를 고정시키고(누구맘대로인지는 모르겠다) 다른 하나만 자유로이 움직인다고 가정하고 풀면 매우 쉽게 풀린다. 두개의 물체를 전부 고려해 주어야 했는데, 이제는 그 수고를 덜 수 있기 때문이다. 이제 그 수학적 기교를 보도록 하자.

먼저, 두 물체의 질량은 변하지 않는다고 가정하자. 이렇게 질량이 불변하다는 가정을 하면 여러가지로 참 편리하다. 대표적인 예로 운동량의 시간에 따른 변화로 정의되는 힘이 매우 간단해진다는 것이다. 이제 두 질점을 가정해 보자. 두 질점은 각각 M, m의 질량을 가지고 있으며, 두 질점의 위치벡터는 r_1, r_2이며, 두 질점 사이에 작용하는 중심력은 질점 M에서 기술된다고 하자. 그렇다면 방정식은 다음과 같이 나타내어 질 것이다.

m (d^2 vec[r_1])/(d t^2) = F(|vec[r_1]-vec[r_2]|) vec[e_i]

뉴턴의 제 3번째 법칙을 기억하시는지? 기억하신다면 다음과 같이 나타내는 것을 쉽게 이해할 수 있을 것이다. F의 힘을 M이 m에게 먹이고 있으니, 자기는 -F를 먹어야지.

M (d^2 vec[r_2])/(d t^2) = -F(|vec[r_1]-vec[r_2]|) vec[e_i]

이 두 식에서 각각 질량으로 나누어주고 위에서 아래를 빼 보자.

(d^2 vec[r_1])/(d t^2) -(d^2 vec[r_2])/(d t^2) = (M^-1 + m^-1) F(|vec[r_1]-vec[r_2]|) vec[e_i]

이제 vec[r]을 vec[r_1]-vec[r_2]로 정의해주고 잘 정리해 보자.

(mu) (d^2 vec[r])/(d t^2) = F(|vec[r]|) vec[e_i]

한결 식이 간단해졌다. 이 방정식은 이제질점 M이 바라보는 질점 m의 운동의 방정식이 된다. 이때의 mu는 mM/(m+M)으로 정의되며, 이것을 환산질량이라고 부른다. 더 공부할 사람들은 앞으로 이 환산질량을 많이 쓰게 될 것이다. 이 포스팅의 주요 목적은 물리적인 현상을 쉽게 설명하는 데 있고, 이후 중심력에 대한 부분은 대부분 수학적인 풀이법에 그치므로, 이쯤에서 포스팅을 마친다.

댓글을 달아 주세요

구가 있다. 이 구가 βc라는 속도로 움직이고 있다면, 그 구에 반사된 빛을 사진으로 찍었을때에는 어떤 모양이겠는가?

여기서 사진으로 찍는다는 말은 반사된 빛을 평면에 기록함을 의미한다. 예로 β=0일때 구를 사진으로 찍으면 원이 얻어진다.


댓글을 달아 주세요

  1. someone  댓글주소  수정/삭제  댓글쓰기

    로렌츠 피츠제럴드 변환에 관한 문제이군요. 사실 길이만 존재하는 막대에의해서는 인자 값의 역수배로 길이에 곱해지지만 광자가 도달하는 시간때문에 정지해 있을 때에는 안보이는 면까지 보이는 현상이지요...

    2009.10.02 13:31

에너지, 일-에너지 정리와 열역학 제 1법칙


들어가기 앞서 물리는 자연을 수학이라는 도구로 모델링하는 학문이라는 것을 상기하도록 하자. 수학적으로 모델링을 하는데 있어서 중요한 것은 어떤 경우에도 변하지 않는 소위 "불변량" 이라는 것이다. 이 불변량들이 특히 편리한 이유는, 수학적으로 쉽게 다룰 수 있기 때문이다. 일례로 뉴튼의 제 2법칙에서 얻어지는 F=ma라는 공식만 해도, 질량이 변하지 않는다는 가정 하에서 얻어진 방정식(즉, 질량을 불변량으로 취급한 방정식)이라는 것을 생각해 본다면 수학이 얼마나 쉬워지는가에 대해서는 의심할 여지가 없어 보인다.

이런 불변량들은 물리에서 다양하게 나타난다. 고전 역학부터 따져본다면 운동량, 각운동량 등이 있으며, 한참 후에 다루게 될 특수상대론에서는 spacetime interval(한글로는 어떻게 번역되는지 잘 모르나 시공거리라고 부르자)이 보존되고, 또 나중에 다룰 양자역학에서는 parity 등의 다양한 불변량들이 존재한다. 하지만 그 중 운동량 보존만큼 기초적이면서 제일 큰 중요도를 갖는 것은 에너지라고 할 수 있을 것이다.


에너지는 무엇인가

앞서 힘이란 "'쉽게 변하지 않는 무언가'를 변화시키는 것" 이라고 정의한 적이 있다. 그리고 그 '쉽게 변하지 않는 무언가'는 운동이라는 성질이며, 이것을 정량화한 것이 운동량으로 힘은 "운동량을 변화시키는 것"으로 정의되었다. 물론 이때 변화시킨다는 것은 시간의 개념을 내포하고 있으며, 힘은 운동량의 시간에 따른 변화량으로 정량화할 수 있었다. 그렇다면 에너지는 무어란 말인가?

에너지는 무엇인가. 내 경험으로 미루어 볼 때 고전역학의 범위에서 에너지는 "'쉽게 변하지 않는 무언가'를 변화시킬 수 있는 잠재적인 능력" 이라는 정의가 가장 타당해 보인다. 고전역학의 관점을 따르자면 "운동을 변화시킬 수 있는 잠재적인 능력" 정도로 정리가 가능하다. 이제 그 자세한 내막으로 들어가 보자.


일-에너지 정리

에너지가 정의되었다. 그러면 이를 어떻게 정량화하는 것이 옳을까? 먼저 에너지를 어떻게 측정하는가의 문제가 생긴다. 운동을 변화시키는 능력, 그것도 잠재적인 능력은 어떻게 측정하면 되는 것일까? 엔트로피라는 개념을 나중에 다루겠지만, 에너지라는 것은 엔트로피처럼 그 '변화량' 을 측정하기는 쉬워도 그 '절대량'을 측정한다는 것은 쉽지 않다. 약간의 물리학 지식을 가진 사람은 에너지의 절대량을 측정할 수 있다고 할 지 모른다. 하지만 이것을 떠올려주기 바란다. 그대들이 측정한 에너지는 어떤 '절대적인' 기준점에 대해 측정한 에너지라는 것을. 그렇다. 엔트로피와 마찬가지로, 에너지라는 것은 어떤 기준 없이 절대량을 측정한다는 것이 거의 불가능하다. 그렇다면 그 변화량은 어떤 방법으로 측정하는 것이 옳을까?

이 변화량은 일이라고 불리며, 다음과 같이 정의된다. "힘의 경로 적분(path integral of force)".

W = ∫(a, b, vec[F] * vec[ds])

a는 적분의 밑, b는 적분의 위, vec[F] * vec[ds]는 힘벡터와 미소경로벡터의 내적을 나타낸다. 이 일은 에너지의 변화량으로 정의되며, 여기서 역으로 에너지를 정의할 수도 있다. 마치 엔트로피로 정의되는 온도로 엔트로피를 정의할 수 있는 것과 같이 말이다.

E_i + W = E_f ... W = E_f - E_i = ΔE

이제 일의 정의를 다시 한번 잘 살펴보자.

W = ∫(a, b, vec[F] * vec[ds])
= ∫(a, b, vec[dP]/dt * vec[ds])
= ∫(a, b, vec[dP] * vec[v])
= ∫(a, b, vec[P]/m * vec[dP])
= ∫(a, b, m^(-1) 1/2 d(vec[P] * vec[P]))
= ∫(a, b, m^(-1) 1/2 d(P^2))
= Δ(P^2 / 2m)

vec[ds]/dt = vec[v] 인 이유는 vec[ds]가 이동하는 경로이기 때문이다. 이 부분에 대해서는 따로 언급하지 않겠다.

이제 정리된 식을 자세히 보자. P^2 / 2m의 변화량이 일과 같아졌다. 만약 T := P^2 / 2m 라고 정의한다면

W = ΔT = T_f - T_i

를 얻는다. 식이 한결 간단해진 것을 알 수 있다. 여기서 흥미로운 점은 T는 운동량 P의 크기에만 관계하는 양이며 T의 차원은 에너지와 같다는 것이다(당연한 것이지만). 따라서 T를 운동에너지라고 정의한다면 외부에서 해준 일은 운동에너지의 변화이다 라고 정리할 수 있다. 이것이 일-에너지 정리이다.


포텐셜 에너지와 에너지 보존

이처럼 힘들게 얻은 에너지라는 개념을 어디에 사용할 수 있을까? 먼저, 일은 어떤 일정한 종류의 힘에 대해 상당히 재미있는 성질을 갖는다. 바로 '어떤 경로를 따라 이동하더라도 두 위치를 이동하는데 필요한 일의 양은 같다'는 것이다. 이런 종류의 힘을 보존력이라고 하는데, 모든 중심력(중심력은 우주의 모든 힘을 구성하는 기본이 된다는 것을 상기하기 바란다.)은 이런 종류의 힘에 속한다. 이에 대한 증명은 자세히 다루지 않겠지만, 이런 성질은 확실히 유용하다는 생각을 버릴 수 없다. 그 시덥잖은 적분을 일일이 하지 않고서도 일을 이용해서 속력을 계산할 수 있다는데, 그 누가 이런 간단한 방법을 버리겠는가?

앞서 계산을 했을 때, 일은 에너지의 변화량이라는 것을 알 수 있었다. 하지만 그것은 '일을 받은 쪽'의 에너지 변화량이다. 일을 한 쪽의 에너지 변화량은 결코 일과 같지 않다. 그렇다면 일을 한 쪽의 에너지 변화량은 어떻게 될까? 여기에 뉴튼의 제 3법칙을 적용시켜 보자. 뉴튼의 제 3법칙은 '어떠한 작용에 대해, 그와 반대되는 방향을 갖는 같은 크기의 반작용이 존재한다'는 것이다. 그렇다면 일을 한 쪽의 에너지 변화량은 어떻게 되는 것일까? 단순히 생각하면 '반작용의 방향이 반대이므로 부호가 반대이고 크기는 같을 것이다' 이지만, 이렇게 단순하게 내린 결론이 결과적으로는 옳다. 왜냐하면, 뉴튼의 제 3법칙이 적용되는 힘의 거리적분이 일이기 때문이다. 적분에서 안에 있는 상수(이 경우에는 -1)는 적분 밖으로 빼 줄수 있다. 이런 식이다.

W_r = ∫(a, b, -vec[F] * vec[ds]) = -∫(a, b, vec[F] * vec[ds]) = -W

여기서 W_r은 받은 일을 말한다. 이처럼 적분이 이렇게 간단화되면, 받은 일은 한 일과 부호가 반대임을 쉽게 알 수 있다. 여기에 받은 일은 자신의 에너지 변화라는 것을 생각해 본다면

ΔE = -W

라는 결론에 다다르게 된다. 이를 다룰 때, 에너지의 변화량은 최종위치에만 따라 일정하다는 것을 알 수 있다. 위치에 따라 결정되는 상태함수라는 것이다.(상태함수란 처음과 끝 상태만 값에 관계있는 함수이다.) 이런 종류의 에너지를 하나로 다루면 편리할 것이라는 생각이 든다. 그래서 나온 것이 포텐셜 에너지라는 개념이다. 위치에 따라 어떤 정해진 절차로 그 위치에 해당하는 에너지라는 숫자를 배당시켜 준다면, 그 숫자의 차이로 일을 계산할 수 있는 것이다.

이제 이 숫자를 어떻게 배당하는 것이 옳을까? 일을 이용하면 된다. 어느 점을 기준점으로 잡아서 그곳에 숫자 0을 배당하고, 그 점을 기준으로 일을 했을 때 이 점에서는 무슨 숫자가 배당되야 옳은 결과가 나오는지를 살펴보는 것이다. 대부분의 중심력의 경우 이 기준점은 무한원점에 배당한다. 이렇게 기준점을 무한원점에 배당한 경우에 측정한 에너지를 일반적으로 포텐셜 에너지라고 부르는 데, 이를 절대적인 것으로 생각하지는 말았으면 좋겠다. 어떤 경우에는 이처럼 어리석은 짓도 없기 때문이다.

한편, 이 논의를 두 계로 구성된 차단된 계에 확장하면(차단된 계란 에너지의 유입이나 유출이 없는 계를 말한다)

ΔE_1 = -W = -ΔE_2
∴E_1i + E_2i = E_1f + E_2f

를 얻는다. 에너지의 유입이나 유출이 없는 계 안에서는 에너지의 합이 항상 일정하다는 것이다. 이를 에너지 보존 법칙이라고 부른다. 이 법칙은 다른 법칙과는 다르게, 여태까지 예외가 발견된 적이 없는 유일한 법칙이다. 단, 일부 에너지의 종류에서는 에너지가 증가하거나 감소하는 효과를 보일 수 있으나(에너지는 지금 다룬 포텐셜 에너지와 운동에너지 말고도 많이 존재한다. 하지만 대부분의 에너지는 미시적으로 따졌을 때 이 두가지 에너지로 표현될 수 있다.) 모든 종류의 에너지를 고려한다면 예외가 알려진 바 없고, 또한 예외가 있을 리 만무한 법칙이다.(개인적으로는 만무하다는 표현을 사용하기는 했으나, 이는 인간의 오만에 불과한 것이 아닌가 하고 생각하기도 한다.)


에너지 보존의 확장 1: 열역학 제 1법칙

다음으로 이 논의를 차단되지 않은 계로 확장해 보자. 먼저 흘러들어온 에너지는 들어와서 저장되거나 어디론가 빠져나가야만 한다. 흘러들어온 에너지의 양은 일정하기 때문이다. 그렇지 않다면 에너지가 어디선가 새어서 사라졌다는 말이 되고, 이것은 에너지 보존 법칙에 어긋나는 결과이다. 먼저 흘러 들어온 '알짜' 에너지, 즉 '알짜 일' 만 고려해 보자. 받은 일은 자신의 에너지 변화와 같다. 그러므로

ΔE = W_r'

이다. 그런데 생각해 보자. W_r'은 '알짜'로 계에 굴러들어온 에너지이다. 그렇다면 실제로는 굴러들어온 에너지에서 굴러나간 에너지를 제거해 준 것이 된다. 굴러들어온 에너지를 Q, 굴러 나간 에너지는 자신이 한 일과 같으므로 W라고 해 준다면

ΔE = Q - W

를 얻는다. 이를 보기 좋게 정리해 주면

Q = ΔE + W

이것이 에너지 보존을 일반화시킨 열역학 제 1법칙이다. 일반적으로 이 법칙은 열에너지에 적용한 것이라고 하지만, 필자의 경우에는 에너지 보존 법칙을 사용할 때 이 법칙만큼 편리한 방법을 아직까지는 찾지 못했다. 이 식을 사용하면 자신이 놓친 부분까지도 고려할 수 있기 때문이다.(많은 경우에 에너지를 사용하여 푸는 경우 외부에서 들어오는 에너지를 생각하지 못하는 경우가 있다.)


에너지 보존의 확장 2; 베르누이 방정식

유체에서 이런 에너지 보존을 다룰 수도 있다. 이 경우에는 베르누이 방정식이라고 알려진 다음과 같은 방정식으로 표현된다.

(ρv^2)/2 + ρgh + p = constant

이 식은 포텐셜 에너지가 mgh로 주어졌을 때 에너지 보존 법칙에서 얻어진다. 이 부분에 대해서는 포텐셜 에너지가 mgh로 주어진 계에서 에너지를 부피에 대해 미분해 주면 얻어진다는 정도로 설명하고, 이후 부분은 독자들의 연습용으로 남겨두기로 한다.


===================================================================================================

에너지 보존 이전의 부분은 전부 http://blog.naver.com/jwkonline 에 있습니다.

'Physics > Concepts' 카테고리의 다른 글

힘과 운동  (0) 2008.08.08
우주의 균일함과 중심력  (0) 2008.08.08
에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15

댓글을 달아 주세요

먼저 열역학의 기본적인식 두가지를 기본 전제로 하고 시작한다. 또한, 어는점내림은 약간의 얼음이 있을 때 평형상태인용액의 온도를 재는 것을 기준으로 한다.

S≡k log (omega)

T^-1≡(∂S)/(∂Q)

여기서 omega는 가능한 미시상태의 수를 나타낸다.

먼저, 총 엔트로피 S는 원래 용매의 엔트로피 S_0에 용질에 의한 엔트로피 S_s의 합이라고 가정하자.

또한, 용질은 용매와 함께 얼어버리지 않는다고 가정하자.

먼저, 다음과 같이 수를 정의하도록 하자. 단, 다른 용질입자라도 다 동일한 것으로 취급하기로 한다.

(이 말인즉 용질 입자의 수만 고려하겠다는 뜻이다.)

N_0≡Avogadro constant

H_f≡Heat of fusion of solvent per mole

N_1≡Number of solvent particles

N_s≡Number of solute particles

a≡mole number per unit mass of solvent

x≡molality concentration of solute

T_0≡Freezing point of pure solvent(Kelvin)

이제 식을 전개하도록 하자.

T^-1 = (∂S)/(∂Q) = (∂S_0)/(∂Q) + (∂S_s)/(∂Q)

= T_0^-1 + (∂S_s)/(∂Q)

먼저 S_s는 어떻게 되는지 보도록 하자.

정의를 사용하면

S_s≡k log (omega)

omega≡N_1 Combination (N_1 + N_s)

Sterling's formular(log(N!)≒N log N - N)를 이용해서 전개하면

S_s = k(N_1 log (N_1) + N_s log (N_s) - (N_1 + N_s) log (N_1 + N_s))

가 된다. 이제 (∂S_s)/(∂Q) 를 변수분리를 통해 전개하면

(∂S_s)/(∂Q) = (∂S_s)/(∂N_1) *(∂N_1)/(∂Q)

가 된다. (∂N_1)/(∂Q)은 -N_0/H_f(부호는 Q<0일때 N_1이 증가하기 때문이다. Energy가 액체계에서 떨어져 나가야지만 용매 분자가 하나 더 생겨난다. 따라서 Q<0일때 N_1이 증가한다.)이다. 또한

(∂S_s)/(∂N_1) = k log (N_1/(N_1 + N_s)) = -k log (1 + N_s/N_1) = -k log (1 + x/a)

(∵N_s = x N_0M , N_1 = a N_0M , M≡Mass of solvent)

이 됨을 알 수 있다. 따라서

T^-1 =T_0^-1 + (∂S_s)/(∂Q)

= T_0^-1 + N_0 H_f^-1 klog (1 + x/a)

= T_0^-1 (1 + N_0 H_f^-1 k T_0log (1 + x/a))

임을 알 수 있다. 이제 양변을 ^-1해주면

T = T_0 (1 + N_0 H_f^-1 k T_0log (1 + x/a))^-1

이 되는데, Taylor series expansion을 이용하면

T = T_0 (1 - (N_0 k T_0)/(a H_f) x)

∴T = T_0 - (N_0 k T_0^2)/(a H_f) x = T_0 - K_f x

임을 알 수 있다. 여기서 식

K_f = (N_0 k T_0^2)/(a H_f)

을 얻는다.

같은 원리로 끓는점오름상수 K_b를 구할 수 있다.

K_b = (N_0 k T_0^2)/(a H_e)

H_e≡Heat ofevaporation of solvent per mole

T_0≡Boiling point of pure solvent(Kelvin)

a≡mole number per unit mass of solvent

첨부.

H_f나 H_v가 J Kg^-1(단위질량당 에너지)로 주어지는 경우에는 a를 생략한다. a를 곱한 이유는 몰당 에너지를 단위질량당 에너지로 바꾸어 주기 위함이었기 때문이다.

Done by Dexter

http://blog.naver.com/jwkonline

'Physics > Concepts' 카테고리의 다른 글

우주의 균일함과 중심력  (0) 2008.08.08
에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
TAG 물리, 어는점내림, 어는점내림상수, 열역학, 통계물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

Freezing point depression

Physics/Concepts 2008.04.03 13:55

K_f=(N_0 k T_0^2)/(a H_f)

N_0≡Avogadro constant

k≡Boltzmann constant

T_0≡Freezing point of pure solvent(Kelvin)

a≡mole number per unit mass of solvent

H_f≡Heat of fusion of solvent per mole

For water

N_0 = 6.022 142 * 10^23 mole^-1

k = 1.380 650 * 10^-23 J K^-1

T_0 = 273.15 K

a = 5.550 84 * 10^1 mole Kg^-1

H_f = 6.009 0 * 10^3 J mole^-1

K_f = 1.859 8 K Kg mole^-1

증명은 생략. 다른 물체에 대해서도 시도해보려고 생각중.

'Physics > Concepts' 카테고리의 다른 글

에너지, 일-에너지 정리와 열역학 제 1법칙  (0) 2008.05.27
K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
Trackback (0) : Comment (0)

댓글을 달아 주세요

줄로 물체를 묶었을 때 그 물체에 가해지는 압력 구하기

Physics/Problems 2008.02.05 12:15

이번엔 그냥 심심해서 풀어본(?) 문제랄까?

줄로 손가락 묶으면 아프잖아. 분명히 장력은 피부 표면에서 피부에 평행하게 나타날텐데

줄로 묶으면 왜 아픈걸까??

일단 이 문제를 해결하기 전에

일반적으로 사용하는 줄을 질점과 연결선의 집합으로 나타내려구.

물론 연결선은 선분이야. 절대 구부러지지 않지. 이건 가정이니까 태클걸지마.

간단하게 나타내면 아래처럼 되겠지.

여기서 R은 묶는 물체의 반지름이야. T는 아직 말 안했지만 줄에 걸린 장력이고.

인제 여기서 θ를 0에 근사시켜주면 압력이 나오겠지.

일단, 작용하고 있는 힘을 보자구.

질점이 물체에 주는 힘은 2Tsinθ야. 내가 그렇다면 그러려니 해.(눈치가 좋으면 눈치를 깠을거야)

어랏? 그런데 θ가 0으로 가면 힘이 0이 되잖아??

그러니까 볍신아 압력을 따져야지.

먼저 닿는 길이는 2Rcosθtanθ로 근사할 수 있어. 싫으면 4Rsin(θ/2)로 하시던가.

그리고 줄이 닿는 너비는 줄의 두께정도 된다고 가정하자구. 간단하게 d라고 놓자.

그러면 줄이 닿고있는 면적은 2Rdcosθtanθ 또는 4Rdsin(θ/2)가 되겠지.

인제 압력은 F/A라는 간단한 진리를 이용해 볼꺼야.

자 그러면 P=2Tsinθ/2Rdcosθtanθ또는P=2Tsinθ/4Rdsin(θ/2)가 되겠지.

θ를 0으로 보내버리면 P=T/Rd라고 정리가 되네?(이건 극한을 배우고 와)

자 이제 정리를 해보자.

금사를 무기로 쓰는 미친놈들 있잖아. 그게 구라라는게 증명된 셈이라고나 할까??

손가락에 금사를 걸고 적의 목을 뎅강 베어버리는데

그전에 손가락에 더 큰 압력이 걸리니까 손가락이 잘려나간다는 거야.

왜냐하면 손가락의 반지름이 남 목의 반지름보다 작잖아. 트롤이 쥐새끼를 상대로 금사를 쓰는 상황이 아닌 이상.

여기서 끝을 내야 깔끔한 끝을 보겠어. 그럼 이만.

'Physics > Problems' 카테고리의 다른 글

Independent Susceptibilities  (1) 2014.09.18
압력밥솥 기압재기 및 밥 짓는 온도 재기  (10) 2009.03.30
상대론 문제  (2) 2008.07.14
줄로 물체를 묶었을 때 그 물체에 가해지는 압력 구하기  (9) 2008.02.05
나름대로 물리문제2  (0) 2007.10.20
나름대로 물리문제1  (2) 2007.09.24
TAG 물리
Trackback (0) : Comment (9)

댓글을 달아 주세요

  1. Favicon of http://blog.naver.com/luxury_stars BlogIcon 빛나는별  댓글주소  수정/삭제  댓글쓰기

    볍신아 부터 안읽었다
    읽게 좀 만들어 이런건 --

    2008.02.05 12:18
  2. Favicon of http://blog.naver.com/jwkonline BlogIcon 덱스터  댓글주소  수정/삭제  댓글쓰기

    읽지 마세요~~~

    2008.02.05 12:25
  3. Favicon of http://blog.naver.com/luxury_stars BlogIcon 빛나는별  댓글주소  수정/삭제  댓글쓰기

    야 근데 금사가 구라라는건 손가락에 걸고 오직 손가락의 힘만으로 죽일때만 그렇지?

    2008.02.05 13:12
  4. Favicon of http://blog.naver.com/jwkonline BlogIcon 덱스터  댓글주소  수정/삭제  댓글쓰기

    그렇지 근데 보통 금사를 쓸땐 손가락에 몇가닥씩 걸고 쓰더라구

    2008.02.05 13:21
  5. Favicon of http://blog.naver.com/mumbling BlogIcon 잰쏭  댓글주소  수정/삭제  댓글쓰기

    금사가 뭐야? 금실??-_-??

    2008.02.05 18:07
  6. Favicon of http://blog.naver.com/jwkonline BlogIcon 덱스터  댓글주소  수정/삭제  댓글쓰기

    금사=금속실이구 기타줄중에 철로 만들어진거 비슷하다고 생각하면 된답니다 일부 만화에서는 무기로 등장하지요

    2008.02.05 18:47
  7. Favicon of http://blog.naver.com/soar_phoenix BlogIcon soar_phoenix  댓글주소  수정/삭제  댓글쓰기

    나 이런애 싫어

    2008.02.05 21:56
  8. Favicon of http://blog.naver.com/wartron BlogIcon 레키엘  댓글주소  수정/삭제  댓글쓰기

    또라이녀석.. 손가락에 금사감고 하냐? 장비를 쓰지.. ㅉㅉ 장비의 발력이 목을 자를 때 필요한 장력에 따르는 압력보다 크면 될거아니냐

    이런거나 계산하고 ㄱ- 현실과 동떨어진녀석

    2008.02.05 23:41
  9. Favicon of http://blog.naver.com/jwkonline BlogIcon 덱스터  댓글주소  수정/삭제  댓글쓰기

    몇몇 만화에서는 그냥 손가락에 걸고 쓰거든여

    2008.02.06 13:18

물리 개념 정리

Physics/Concepts 2008.01.15 10:08
1. 변위(displacement)
위치의 변화량. a change in position

2. 속도(velocity)
시간에 따른 변위의 변화량. a change in displacement via time

3. 가속도(acceleration)
시간에 따른 속도의 변화량. a change in velocity via time

4. 질량(mass)
정지한 물체의 관성을 대표하는 물리량. a physical quantity that represents inertia of a motionless body

5. 운동량(momentum)
운동하는 물체의 운동을 대표하는 물리량. a physical quantity that represents a motion of a body

6. 힘(force)
쉽게 변하지 않는 것(현재 물리의 경우 운동량)을 시간에 따라변화시키는 것. a quantity of changing sth which is not easily modified(in case ofpresent physics momentum)via time

7. 충격량(impact)
운동량의 변화량. a change in momentum

8. 에너지(energy)
쉽게 변하지 않는 것(현재 물리의 경우 운동량)을 변화시킬 수 있는 잠재적인 능력. a physical quantity of potential ablity to change sth which is not easily modified(in case ofpresent physics momentum)

9. 일(work)
에너지의 이동. a transmission of energy

10. 열(heat) - 1st law of thermodynamics
계 내부로 유입되는 모든 에너지의 총합. a sum of energy transmitted into the system

11. 전하(charge)
물체의 전기적인 성질을 대표하는 물리량. a physical quantity that represents electric nature of a body.

12. 각운동량(angular momentum)
물체의 회전을 대표하는 물리량. a physical quantity that represents rotation of a body.

언제까지나 개인적인 정의입니다. 생각나는 물리량들은 더 많은데, 그것을 전부 정의하려면 좀 더 걸릴것 같군요.

'Physics > Concepts' 카테고리의 다른 글

K_f 구하기(어는점내림 상수)  (0) 2008.04.03
Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
물리의 차원  (0) 2006.11.26
TAG 물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

나름대로 물리문제2

Physics/Problems 2007.10.20 15:46

이번에는전에 삘이 꽃혀서 만든 문제야

풀이는 내맘대로 생략하도록 하지.

태양은 질량 1.99×10^20kg의 거대한 항성으로, 반지름 6.96×10^8m, 표면온도는 5,800K이라고 알려져 있다.

태양을 탐사하기 위해 발사된 탐사위성 솔라리스는 태양에서 2×10^10m의 거리에서 원궤도를 따라 돌고 있다.

1. 원궤도를 따라 도는 솔라리스의 속도는 태양의 기준으로 보았을 때 얼마인가?

2. 알수 없는 이유로 솔라리스의 속도가 92.5%로 감소하였다. 이때 솔라리스는 타원궤도를 돈다. 이 타원궤도에서 근일점의 거리는 얼마인가?

3. 솔라리스는 단위면적당 10^5w 이상의 열이 가해지면 탐사기구가 고장난다. 탐사기구가 고장나지 않게 하기 위한 태양으로부터의 안전거리는 얼마인가?

4. 솔라리스의 질량은 1.5×10^3kg이다. 빛의 운동량만을 이용할 수 있는 낙하산(반사율 40%)을 펼 때, 탐사기구가 고장나지 않기 위한 낙하산의 최소 크기는 얼마인가?

문제를 푸는데 필요한 상수들

만유인력 상수 G = 6.67 ×10^-11 m^3/s^2 kg

볼츠만 상수σ= 5.67 ×10^-8 w/m^2 K^4

광속 c = 3.00 ×10^8 m/s

1> 8.15 ×10^4 m/s

2> 1.50 ×10^10 m

3> 1.76 ×10^10 m

4> 2.51 ×10^4 m^2

숫자 맞추는데 좀 힘들었어.

'Physics > Problems' 카테고리의 다른 글

Independent Susceptibilities  (1) 2014.09.18
압력밥솥 기압재기 및 밥 짓는 온도 재기  (10) 2009.03.30
상대론 문제  (2) 2008.07.14
줄로 물체를 묶었을 때 그 물체에 가해지는 압력 구하기  (9) 2008.02.05
나름대로 물리문제2  (0) 2007.10.20
나름대로 물리문제1  (2) 2007.09.24
TAG 물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

나름대로 물리문제1

Physics/Problems 2007.09.24 21:22

반나절은 고민한것 같은 문제.

Q)질량 m의 구가 높이 b의 문턱에 다가오고 있다. 구의 반지름은 r이고, 중력가속도는 g이다.

1) 구가 미끄러지며 다가올 때와 굴러올 때 문턱을 넘을 최소 속도를 비교하시오.

2) 실제로 구를 굴려보면 구가 튀어오를는 경우가 더 많다. 이처럼 구가 튀어 오를 최소 속도를 미끄러지며 다가올 때와 구르며 다가올 때 두 경우를 비교하여 구하시오. 단, 문턱의 탄성계수는 0이라고 가정한다.

힌트는 각운동량 보존법칙.

해답 쓰기 귀찮은데...ㅋ

먼저, 문턱 모서리에서 구에 대해 측정한 각운동량을 측정한 다음(이것이 포인트), 각운동량 일정 법칙을 이용해서 문턱에 닿았을 때 회전 속도를 구합니다.

이렇게 회전 속도를 구했으면, 문턱의 모서리를 중심으로 회전운동을 한다고 생각해서 일-에너지법칙을 이용합니다.

꼭대기까지 올라가기에 충분한 회전에너지를 갖고 있었으면 올라서는 거죠.

날아갈 조건을 구하는 것은 먼저 문턱에 닿았을 때 질량중심의 속도를 구합니다.

이 질량중심의 속도를 회전속도라고 보고, 이 회전속도를 잡아 줄 중력이 구심력의 역할을 하지 못한다면 날아가는 거죠.

답입니다.

1)√(14r^2bg/5(r-b)^2), √(14r^2bg/5((7/5)r-b)^2)

2)√(49r^2g/25(r-b)), √(49r^2g(r-b)/25((7/5)r-b)^2)

답을 보면 아시겠지만, 공이 떴어도 미끄덩 하고 다시 내려오는 경우도 생김을 알 수 있습니다.

각운동량을 재는 방법.

각운동량을 재는 기준점이 질량중심이 아닌 강체에 대해서 측정한 각운동량은

L=mr_cm×v_cm+Iw 입니다.

r_cm은 질량중심까지의 위치벡터, v_cm은 질량중심의 속도벡터, I는 질량중심에 대한 강체의 회전관성, w는 질량중심에 대한 강체의 회전각속도를 나타냅니다.

증명은 다음 글에 남기도록 하죠.

'Physics > Problems' 카테고리의 다른 글

Independent Susceptibilities  (1) 2014.09.18
압력밥솥 기압재기 및 밥 짓는 온도 재기  (10) 2009.03.30
상대론 문제  (2) 2008.07.14
줄로 물체를 묶었을 때 그 물체에 가해지는 압력 구하기  (9) 2008.02.05
나름대로 물리문제2  (0) 2007.10.20
나름대로 물리문제1  (2) 2007.09.24
TAG 물리
Trackback (0) : Comment (2)

댓글을 달아 주세요

  1. Favicon of http://blog.naver.com/tngud0313 BlogIcon 쿠아  댓글주소  수정/삭제  댓글쓰기

    1번은 탑프린트에서 토크로 풀다가 어디를 기준점으로 해야할지 몰라서 임준기한테 물어봤던 문제다 ㅋㅋㅋ

    2007.09.24 21:29
  2. Favicon of http://blog.naver.com/jwkonline BlogIcon 덱스터  댓글주소  수정/삭제  댓글쓰기

    물론 문제의 차이점은 거기서는 힘이 나오지만 여기서는 운동량으로 쩔어야된다는거

    2007.09.24 21:52

물리문제풀이의 정석

Physics/Concepts 2007.08.11 02:52

물리는 자연에 대한 수학적 모델링이라고 말했던가?

뭐, 일단 그렇다는 가정 하에서 물리 문제를 푸는 데 있어서 가장 중요한 스킬을 하나 올리려고 한다.

다름아닌 기준점잡기.

수학적 모델링에 있어서 가장 중요한 작업은 모든것을 서술할 기준, 즉 기준점을 잡는 것이다.

기준점에는 좌표축의 방향도 포함된다.

또 다른 중요한 작업은 물체의 기준점이다.

어디를 기준으로 물체를 서술하느냐가 문제가 된다.

예를 들어 회전은 물체의 질량중심을 기준으로 한다.

물론, 물체의 병진운동 또한 일반적으로 질량중심을 기준으로 서술한다.

또 다른 중요한 모델링 과정은 방향의 통일이다.

식이 방향이 각기 다르다면 그건 말 그대로 혼돈만 가져올 뿐이다.

본인의 예를 들자면, 본인은 구면에서 구르는 구슬의 마찰력이 작용하는 방향을 반대로 잡은 적이 있다.

마찰력이 일반적으로 작용하는 것으로 알려진 방향과 다르게 나오자 당황했던 기억이 있다.

'Physics > Concepts' 카테고리의 다른 글

Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
물리의 차원  (0) 2006.11.26
물리학 개요  (0) 2006.11.26
TAG KPhO, 물리, 물리올림피아드
Trackback (0) : Comment (2)

댓글을 달아 주세요

  1. Favicon of http://blog.naver.com/forevers2boa BlogIcon 리리  댓글주소  수정/삭제  댓글쓰기

    ㅋㅋㅋ 물리학 강의라....ㅋㅋㅋㅋ 귀여운 정욱이ㅋㅋㅋ 딸이나 이기고 와ㅋㅋㅋㅋ

    2007.08.11 15:26
  2. Favicon of http://blog.naver.com/wartron BlogIcon 레키엘  댓글주소  수정/삭제  댓글쓰기

    오.... 이게 너의 물리정석 프로젝트의 서문인가- _-ㄲㄲ

    2007.08.19 23:08

물리란 무엇일까?

Physics/Concepts 2007.08.05 00:23
물리라는 학문의 목적은 자연을 관찰하고 이 자연을 수학적인 모델로 구축하여 구축된 모델 내에서 경향성을 파학하는 학문이다. 이 경향성이라 함은 과거의 상태에 대한 자료에서 일정한 변환을 통해 미래의 상태를 예견할 수 있음을 말한다. 이러한 점에서 근본적으로 물리는 수학과 관련이 깊다. 또한, 이러한 특성으로 인해 물리는 아무리 아름다운 이론이라도 현실에 부합하지 못하면 버려지는 학문이기도 하다.

내가 물리를 좋아한 이유는 과학을 좋아했고, 외우는 것을 싫어했기 때문이다. 물리는 단순함을 추구한다. 이는 단순한 것이 수학적으로 모델링하게에 간편하기 때문이기도 하다. 또한, 물리는 서로 서로 얽혀있다. 그물의 한쪽만 들어 올려도 모든 그물을 들어 올릴 수 있는 것과 같이, 물리라는 학문은 한 부분은 거의 항상 다른 부분과 이어지게 되어 있다. 이것이 다른 과학 학문과 유별난 점이기도 하다.

물리라는 학문은 이름에서도 알 수 있듯이 물질의 이치를 탐구한다는 학문이다. 다시 한번 강조하지만 이러한 이치는 수학적인 모델링을 통해 분석될 수 있다. 물리라는 학문에서는 개념과 마찬가지로 수학적인 모델링이 가능한가가 중요하다. 예를 들어 물체는 아래로 떨어진다는 것은 누구나 아는 개념이다. 하지만 물리학에서는 이것은 그다지 중요한 명제가 아니다. 물리학에서 중요한 명제는 '물체는 아래로 일정한 가속도를 받으며 떨어진다'이다. 여기서 중요한 단어는 "일정한" 이다. 일정한이라는 단어에서 수학적인 모델링이 이루어졌기 때문이다.

그래서 나는물리를 잘하려면 개념만큼이나 수학적으로 모델링 하는 능력도 중요하다고 생각한다. 물리가 원래 수학적인 모델링 능력이 중요했던 것은 아니다. 아리스토텔레스의 시대까지만 해도 원리가 중요했다. 하지만 현재에는 수학적인 모델링이 매우 중요해지고 있다. 켈빈경의 격언으로 이 포스팅을 끝낸다.

"When you can measure what you are speaking about, and express it in numbers, you know something about it, But when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginning of knowledge, but you have scarcely. . . advanced to the state of science."

'Physics > Concepts' 카테고리의 다른 글

Freezing point depression  (0) 2008.04.03
물리 개념 정리  (0) 2008.01.15
물리문제풀이의 정석  (2) 2007.08.11
물리란 무엇일까?  (0) 2007.08.05
물리의 차원  (0) 2006.11.26
물리학 개요  (0) 2006.11.26
TAG 물리
Trackback (0) : Comment (0)

댓글을 달아 주세요

1 2 3 4 5 

글 보관함

카운터

Total : 654,568 / Today : 10 / Yesterday : 49
get rsstistory!