'양자물리'에 해당되는 글 9건

  1. 2014.05.22 Constraints on Commutators (5)
  2. 2012.11.08 양자역학의 유래(2)
  3. 2010.01.19 양자역학의 유래 (4)
  4. 2009.12.24 측정의 평균 (2)
  5. 2009.12.15 Fourier 변환의 고유함수
  6. 2009.12.14 운동량 연산자에 대해서(1) (7)
  7. 2009.12.04 요즘 하는 생각
  8. 2009.10.20 Time operator? (2)
  9. 2009.10.17 왜 하필이면 Hamiltonian 연산자인가?

양자역학에서 가장 유명한 commutator를 뽑으라면 누구나 하이젠베르크의 불확정성 원리를 꼽을 것이다. 아무래도 제일 먼저 발견된 교환이 불가능한 물리량이니까.


[x,p]=xp-px=i\hbar


그런데 왜 i가 붙을까? 고민해본 사람? 문제는 의외로 쉽게 풀린다. 두 측정가능한 물리량 A와 B를 가정하자. 따라서 A와 B는 에르미트(Hermitian) 연산자이다. 적당한 양자책을 잘 공부했다면 이를 설명할 필요는 없을 터(간단하게 말하자면 고유값(eigenvalue)이 실수가 나와야 해서). 한번 유도해보자.


\text{For observables }A,B\\A^\dagger=A, B^\dagger=B \\\\\therefore [A,B]^\dagger=(AB-BA)^\dagger\\=B^\dagger A^\dagger-A^\dagger B^\dagger=BA-AB \\\\\therefore [A,B]^\dagger=-[A,B] \\\\\text{or, equivalently;} \\\exists C(C^\dagger=C),\,\,[A,B]=iC


측정 가능한 물리량의 commutator는 항상 반에르미트(anti-Hermitian) 연산자여야 한다는 결론을 얻는다. 반에르미트 연산자는 단위허수 i를 곱하거나 나눠서 에르미트 연산자로 만들어줄 수 있으니 이제 그 미스테리한 i가 어디에서 튀어나왔는지 알 수 있다.


이제 조금 더 재미있는 명제를 도출해보자.


\text{Assume observables }A,B\text{ and an eigenstate of }A\\\\A\left|a \right \rangle=a\left|a \right \rangle \\\\\text{Then, we get the expectation value of the commutator}\\\\ \left\langle a|[A,B]|a \right\rangle=\left\langle a|AB-BA|a \right\rangle = (a^\ast - a)\left\langle a|B|a \right\rangle=0 \\\\\text{or, equivalently;} \\\\ C \equiv \frac1i [A,B],\;A\left|a \right \rangle=a\left|a \right\rangle \Rightarrow\left\langle a|C|a \right\rangle=0 \\\\\text{for any observables }A, B


아직 이상한 점을 눈치 못챘는가? A에 x를, B에 p를 넣어보자.


[x,p]=i\hbar\\\\\therefore \left\langle x\middle|\frac1i[x,p]\middle|x \right\rangle=\hbar\left\langle x|x \right\rangle=0\\\left\langle p\middle|\frac1i[x,p]\middle|p \right\rangle=\hbar\left\langle p|p \right\rangle=0


?!?!


이 비정합성은 commutator가 identity의 배수이기 때문에 나타난다. 다르게 말한다면, 어떤 한 측정량이 다른 측정량과 만드는 commutator가 identity의 배수로 나온다면 그 측정량의 고유상태(eigenstate)는 그다지 예쁜 성질을 갖지 않으며(예컨데 위치 x의 고유상태나 운동량 p의 고유상태는 L2(Square-integrable)공간에 속하지 않는다), 따라서 주의를 기울여 다루어야 한다고 결론지을 수 있다.


참고로 가장 간단(?)한 양자화 방법은 고전역학에서의 Poisson bracket을 양자역학의 commutator로 해석하는 것이기 때문에(Dirac quantisation 혹은 canonical quantisation) 양자역학의 미래가 골치아프다는 것은 확실해졌다. 양자장론이 괜히 머리 뽀개지는게 아니라니까...

Posted by 덱스터

댓글을 달아 주세요

이전에 쓴 글 중 양자역학의 유래라는 글이 있었다. 현대 양자역학의 근간이 되는 파동방정식 풀이법과 행렬을 이용한 선형대수 연산 및 고유값을 사용하게 된 기원 등을 다룬 글인데,[각주:1] 오랜만에 덧붙일만한 내용이 생각나서 새로운 글을 쓰기로 했다.

 

저번 글에서 양자역학이 형성되어 온 두가지 갈래길을 알아보았다. 이번에는 그 두 갈래길이 남아 아직도 영향을 미치고 있는 묘사(picture)에 대해 살펴보자.

 

수업을 듣던 중 교수님께서 에너지나 운동량 등의 측정값이 양자화되는 이유를 질문하셨다. 누군가가 경계조건(boundary condition)으로 고유값이 결정되기 때문이라고 했고 교수님은 공부를 열심히 했다고 칭찬하시고는 넘어가셨는데 필자가 보기에는 반만 맞는 답이었다. 하지만 타과생인지라 물리학과에 반기를 들기보다는 조용히 넘어갔다. 어째서 반만 맞는 답일까?

 

양자역학은 두 경로를 통해 발전했다. 하나는 슈뢰딩거(Erwin R. Schrödinger)의 '파동성을 핵심으로 하는 파동역학'이고, 나머지 하나는 하이젠베르크(Werner Heisenberg)의 '양자성을 핵심으로 하는 행렬역학'이다. 파동역학을 양자역학의 원류로 본다면 물리량이 양자화되는 이유는 경계조건이 존재하기 때문인 것이 맞다. 하지만 행렬역학을 양자역학의 원류로 본다면 물리량의 양자화는 공리(postulate)가 된다. 실제 양자역학은 두 원류가 합쳐진 형태로 발전했기 때문에 이런 의미에서 그 답은 반만 맞는 것이다. 그렇다면 이 두가지 관점은 어떻게 남아있을까?

 

슈뢰딩거의 파동역학은 전자파(electron wave-electromagnetic wave가 아니다!)와 같이 물체에게 파동성이 존재하므로 이미 존재하는 파동광학 등의 결과를 물질로 확장하는 것으로부터 출발하였다. 때문에 시간에 따라 변하는 것은 물질의 상태(state)가 되고, 이것이 반영되어 측정하는 물리량(operator를 말한다)은 시간에 불변하는 것으로 간주되었다. 빛이 화면에 닿아 상을 만들 때 화면의 상태가 변하기 때문에 화면에 그려지는 상이 변화한다고 보기보다는 빛의 상태가 변하기 때문에 상이 변화한다고 생각하는 것이 더 자연스럽지 않은가? 우리가 존재하는 공간이 변화한다고 보는 것보다는 그 공간에 놓인 물질이 변화한다고 보는 것이 아무래도 자연스럽기 때문에 대부분의 학부 양자역학 교재에서는 슈뢰딩거 묘사(Schrödinger picture)를 쓰는 경우가 많다. 슈뢰딩거 묘사를 쓸 경우 운동방정식은 다음과 같다. 잘 보면 고전적인 파동방정식과 닮았다.

 

$$\dot{\left|\psi\right>}=\frac{\mathbf{H}}{i\hbar}\left|\psi\right>$$

 

이번엔 하이젠베르크의 행렬역학을 따라가 보자. 하이젠베르크의 행렬역학은 전 글에서 설명했다시피, 물리량을 측정할 경우 그 값이 양자성을 가진다는 것에서부터 출발하였다. 수소원자스펙트럼은 불연속적으로 분포되어있지 않은가. 그렇기 때문에 하이젠베르크에게 변화하는 것은 물질의 상태가 아닌 물질의 측정값, 즉 물리량이 변화하게 된다. 같은 물질을 다른 시간에 측정하면 다른 물리량을 내놓는 것이므로 물질은 그대로 있고 물리량이 변화해야 한다는 의미이다. 안을 알 수 없는 기계장치가 들어있는 상자가 있고 그 상자의 벽에 화면이 설치되어 있어 시시각각 변화하는 숫자를 보여준다고 상상해보자. 이 경우 상자 자체가 변화한다기 보다는 상자의 화면에 찍히는 숫자가 변화한다고 보는 것이 자연스럽다. 하이젠베르크 묘사(Heisenberg picture)를 쓸 경우 운동방정식은 다음과 같다. 해밀토니안 역학에서 이런 방정식을 본 적이 있을 것이다.

 

$$\dot{\mathbf{A}}=\frac1{i\hbar}\left[\mathbf{A},\mathbf{H}\right]+\frac\partial{\partial{t}}\mathbf{A}$$

 

마지막으로 흔히 상호작용 묘사(interaction picture) 혹은 폴 아드리엔 모리스 디락(Paul Adrien Maurice Dirac)의 이름을 딴 디락 묘사(Dirac picture)를 생각해보자. 이 묘사방법은 양자장론(Quantum Field Theory)이 등장하면서 입자가 만들어지고 사라지기니 특정한 상태를 규정짓기가 힘들어지자 도입한 것으로 볼 수 있다. 물리적인 계(system)의 진화를 규정짓는 것이 해밀토니안(Hamiltonian)인데 이 묘사에서는 해밀토니안을 두가지로 나눈다. 일반적으로 우리가 측정하는 '입자'를 만들어주는 자유장 해밀토니안(free field Hamiltonian)과[각주:2] 이 입자들 사이의 상호작용을 기술하는 상호작용 해밀토니안(interaction Hamiltonian)으로 나누고, 각각 H_0와 H_int로 이름붙인다. 우리가 측정하는 모든 물리량은 자유장 해밀토니안에 따라 변화하고, 우리가 측정할 대상이 되는 상태들은 상호작용 해밀토니안에 따라 변화한다. 하이젠베르크 묘사를 설명하면서 쓴 예제를 사용해 본다면 상자의 화면에 등장하는 숫자가 변화하는데, 상자 자체도 조금씩은 모양을 바꾼다는 것으로 생각할 수 있다. 상자의 모양에 따라 화면에 등장하는 숫자 또한 영향을 받는다면 1. 상자의 모양마다 숫자가 어떻게 나타나는지 2. 상자의 모양이 시간에 따라 어떻게 변화하는지로 나누어 설명하는 것이 편리하다. 때문에 상호작용 묘사에서는 운동방정식이 조금 복잡하다.

 

$$\mathbf{H}=\mathbf{H_0}+\mathbf{H_{int}}\\ \dot{\mathbf{A}}=\frac1{i\hbar}\left[\mathbf{A},\mathbf{H_0}\right]+\frac\partial{\partial{t}}\mathbf{A}\\ \dot{\left|\psi\right>}=\frac{\mathbf{H_I}}{i\hbar}\left|\psi\right>\\\\ \text{where }\mathbf{H_I}\text{ is the solution of}\\ \dot{\mathbf{H_I}}=\frac1{i\hbar}\left[\mathbf{H_I},\mathbf{H_0}\right]+\frac\partial{\partial{t}}\mathbf{H_I}\\ \mathbf{H_I}(t=t_0)=\mathbf{H_{int}}$$

 

물리 덕후 소리를 들을 정도로 이곳 저곳 다 파고 들어가며 닥치는대로 공부하다 보니 물리학 개념이 어떻게 발전해왔는가에 대해서도 이것 저것 알게 된 것이 많다. 아무래도 이런 이해가 있다 보니까 정리가 좀 잘 되는듯. 다음 학기 학부 졸업논문이나 잘 써야 할텐데...

  1. 엄청나게 많은 깨져있는 수식을 복구하느라 조금 힘들었다. 이런 글 엄청 많을텐데...ㅠㅠ [본문으로]
  2. 이 '입자들'로 상태공간을 확장(span)하기 때문이다. 아무래도 알기 쉬운 것들로 공간을 나타내는 것이 더 보기 좋으니까. [본문으로]
Posted by 덱스터

댓글을 달아 주세요

양자역학에서 상태는 추상적인 켓(ket)벡터

$$\left|\psi\right\rangle$$

로 나타난다. 이 벡터가 시간에 따라 진화하는 법칙이 슈뢰딩거(E. Schrödinger) 방정식으로, 1926년 처음으로 변위(x)에 대한 식을 유도해낸 이의 이름을 붙인 것이다. 당시 슈뢰딩거가 식을 유도해내었을 때에는 위 벡터를 변위공간에 투영한 것(

$$\psi(x)\equiv\left\langle{x}\middle|\psi\right\rangle$$

)의 시간에 따른 진화를 다루는 방정식이었고, 그 방정식의 생김새를 보고 파동함수라고 이름붙였다. 나중에 상태를 추상적인 벡터로 나타내기 시작한 것은 디랙(P.A.M. Dirac)의 업적이다.

[각주:1]

 
이름에서 알 수 있듯이, 슈뢰딩거는 입자가 보이는 파동적 성질에 착안해서 방정식을 만들었다. 드브로이(L. de Broglie)가 빛의 양자성에서 영감을 얻어 제시한 물질파 가정은 물질에 파동적인 성질이 존재한다는 것을 암시한다. 물질의 파동적인 성질은 이후 전자를 이용한 회절실험과 간섭실험으로 증명되었고, 슈뢰딩거 방정식에 등장하는 2계미분의 근간이 되었다.[각주:2] 1차원 입자 하나에 대해 쓰는 슈뢰딩거 방정식이 다음과 같이 생기게 된 것은 그 때문이다.[각주:3]
 

$$i\hbar\frac\partial{\partial{t}}\Psi(x)=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x)+V(x)\Psi(x)$$

1차원, 입자 하나의 슈뢰딩거 방정식

 
이렇게 슈뢰딩거가 물질이 가지는 파동적인 특성에 집중하고 있던 사이, 하이젠베르크(W. Heisenberg) 등은 물질이 가지는 양자적인 특성(측정값이 불연속적으로 나타나는 특성)에서 영감을 얻어 행렬역학(Matrix mechanics)을 창시했다. 탄생 자체가 측정만 염두에 두고 만들어져서 그런지 양자역학에서 측정에 대한 모든 가정들은 행렬역학에서 유래하였다. 고전역학과 양자역학이 대비되는 대표적인 특징인 '측정의 결과는 고유값(eigenvalue) 중 하나이다'가 행렬역학의 핏줄을 이어받은 것이다.
 
두 접근법을 잘 드러낼 수 있는 고전역학적인 예는 1차원상에서 두 질점이 후크의 법칙(Hooke's law)에 따라 상호작용을 하는 경우다. 다음 그림을 보자.
 

x가 이상하게 쓰인건 무시하자

 
평형거리를 s라고 둔다면, 위 상황에서 운동방정식은 다음과 같다.
 

$$m_1\ddot{x_1}=k(x_2-x_1-s)\\m_2\ddot{x_2}=-k(x_2-x_1-s)$$

또는,

$$m_1\ddot{y_1}=k(y_2-y_1)\\m_2\ddot{y_2}=-k(y_2-y_1)\\y_1\equiv{x_1},~ y_2\equiv{x_2-s}$$

 
슈뢰딩거의 해법은 위 두 방정식을 더하고 빼서 각각 하나의 변수에만 의존하는 방정식으로 만드는 것이다. '직접적인 해법'이라고 할 수 있을 것이다.
 

$$\ddot{(m_1y_1+m_2y_2)}=0 \\\ddot{(y_1-y_2)}=-\frac{k(m_1+m_2)}{m_1m_2}(y_1-y_2)$$

 
윗식은 운동량 보존에 해당하고, 아랫식은 환산질량으로 쓴 운동방정식이다. 한편, 행렬을 이용한 해법도 존재한다. 이 방법이 하이젠베르크가 도입한 행렬역학의 아이디어이다. 첫 식을 이렇게 변형하면
 

$$\ddot{y_1}=\frac{k}{m_1}(y_2-y_1)\\\ddot{y_2}=-\frac{k}{m_2}(y_2-y_1)$$

 
행렬을 이렇게 쓸 수 있다.
 

$$\ddot{X}=AX \\X=\left( \begin{array}{c}y_1\\y_2\end{array} \right) \\A=\left( \begin{array}{cc} -\frac{k}{m_1} & \frac{k}{m_1} \\ \frac{k}{m_2} & -\frac{k}{m_2} \end{array} \right)$$

 
이 경우 해가되는 벡터 X는 A의 고유벡터(eigenvector)의 선형조합으로 쓸 수 있다. 기본적인 아이디어는 해를 정상상태를 나타내는 벡터들을 조합해 나타내자는 것이다. 우린 먼저 조화진동자의 (정상상태의) 해가 다음과 같은 꼴로 쓰일 수 있다는 것을 알고있다.[각주:4]
 

$$y=A\cos(\omega{t})+B\sin(\omega{t})$$

 
이 해를 추상화(?)하면 이렇게 쓸 수도 있다.
 

$$y=Re[Ae^{i\omega{t}}]$$

 
여기서 A는 복소수이다. 그리고 미분은 복소수를 켤레복소수로 만드는 과정과는 무관하므로(그러니까 어떤 복소함수를 미분한 다음 켤레복소수를 취하는 것이나 켤레복소수를 취한 복소함수를 미분하나 결과는 같으므로) 시간에 대한 2계미분은 다음과 같이 쓸 수 있다.
 

$$\ddot{y}=\frac{d^2}{dt^2}Re[Ae^{i\omega{t}}]=Re\left[\frac{d^2}{dt^2}\{Ae^{i\omega{t}}\}\right]=Re[-\omega^2Ae^{i\omega{t}}]$$

 
전기공학에서 쓰는 phasor 기법이라고 생각하면 된다. 어쨌든 이 과정에서 힌트를 얻자. 먼저 해 벡터 X를 시간과 관련된 부분만 따로 빼낼 수 있다고 생각하는 것이다.
 

$$X=\chi{e^{i\omega{t}}}~,\frac{d}{dt}\chi=0$$

 
여기서 $\chi$는 시간에 무관한 열벡터이다. 어찌되었든 이런 형태를 취하고 나면 위의 미분방정식은 고유값 문제(eigenvalue problem)가 된다.
 

$$\ddot{X}=-\omega^2X=AX\\(A+\omega^2I)X=0$$

 
그렇다면 고유값은? 고유값은 바로 각진동수의 제곱이다(부호는 반대). 고유값을 계산해보면 0과 $$\frac{k(m_1+m_2)}{m_1m_2}$$을[각주:5] 얻고, 각자 평행이동과 서로에 대한 진동을 나타낸다는 것을 알 수 있다. 물론 해는 전의 방법과 전적으로 일치한다.
 
한가지 의문인 것은, 왜 측정하면 그 측정값의 고유벡터중 하나로 수렴할 확률이 그 고유벡터 계수의 절대제곱(absolute square)에 비례하냐는 것이다. 지금 당장은 신호를 퓨리에(Fourier)변환을 통해 주파수에 따라 분류하면 그 주파수대가 갖는 에너지가 절대제곱에 비례하기 때문에 거기에서 유래했으리라 추측하고 있지만 확실하지는 않다. 아무래도 조금 더 공부를 해야 할 것 같다.
 
첨언하자면 파동함수의 절대제곱이 확률밀도함수로 해석되게 된 이유 또한 행렬역학의 핏줄을 따라 내려온 것이라는 점이다. 왜 그런지는 독자의 몫으로 남겨 둔다.[각주:6] 쓰기 귀찮아서...

2012.11.08
추가할 내용은 새 글로 올리기로 했다. 다음 글도 읽어보시길.

2012/11/08 - 양자역학의 유래(2)

 

  1. 이 표기법을 이용하게 되면서 상태를 더욱 다양한 방식으로 나타낼 수 있게 되었고, 상태를 더욱 직관적으로 인식할 수 있게 되었다. [본문으로]
  2. 파동을 e와 허수 i를 이용한 지수함수로 나타낼 경우 진동수(파수)는 미분으로 얻어진다. 슈뢰딩거 방정식을 쓸 경우 허수의 도입이 절대적인 이유이기도 하다. [본문으로]
  3. 원래 슈뢰딩거는 이 방정식이 시간에 대해서는 1계미분방정식이라는 것을 못마땅해했다고 한다. 그것도 그럴 것이, 위 형태의 방정식은 로렌츠 변환에 일정하지 않기 때문이다.(더불어 고전적인 파동을 나타내는 방정식은 시간에 대해 2계미분항을 가지고 있다.) 상대론적 양자역학으로 넘어가면 클라인-고든 방정식(Klein–Gordon equation)이 이 대칭을 갖기는 하지만, 이 경우는 2계미분방정식이라는 것이 문제이다. 자세한 내용은 다른 곳을 참조하시길. [본문으로]
  4. 잠깐 이 문제를 벗어나고 있다. 일반적인 하나의 물체가 용수철로 벽에 연결된 상태를 생각하시길. [본문으로]
  5. 부호는 반전시켰다. [본문으로]
  6. 힌트: 함수는 무한한 행을 가진 열벡터로 쓸 수 있다. 아마 교재를 가지고 공부한다면 거기에 잘 나와있을 것이다. 그런데 실수라는 연속체를 그렇게 쓰기는 힘들텐데 -_-;; [본문으로]
Posted by 덱스터

댓글을 달아 주세요

2009. 12. 24. 04:29 Physics

측정의 평균

자려고 누워서 틀렸을 가능성이 매우 높은 5번 문제를 생각하다가(여기서 블로그 주인장의 정신나간 덕후끼를 느낄 수 있다) 왜 뻘짓을 하고 있었는지 깨달았다.

5번 문제는 Bell's inequality를 실제로 만족하는지 보이는 문제였다. 세 각은 두 벡터(a, b)가 직각을 이루고, 그 사이에 하나의 벡터(c)가 끼어들어 45도로 배치된 상태. Griffith책의 426페이지에 나오는 배치와 동일하다. 이 벡터의 방향으로 스핀을 측정한다.

주어진 Bell의 부등식은(동일한 책 425페이지)

\left|P(\bold{a},\bold{b})-P(\bold{a},\bold{c})\right|\le1+P(\bold{b},\bold{c})

주어진 Quantum state는(e는 전자, p는 양전자)

\left|\chi_1\right\rangle=\sqrt{\frac13}\left|\uparrow\right\rangle_e\left|\downarrow\right\rangle_p-\sqrt\frac23\left|\downarrow\right\rangle_e\left|\uparrow\right\rangle_p \\\left|\chi_2\right\rangle=\sqrt{\frac13}\left|\uparrow\right\rangle_e\left|\uparrow\right\rangle_p-\sqrt\frac23\left|\downarrow\right\rangle_e\left|\uparrow\right\rangle_p

먼저 1번 상태에 대해서 풀면, 계산은 다음처럼 하면 된다. 난 이렇게 풀고 있었다.

P(\bold{a},\bold{b})=\left|\left\langle\chi_a^+\chi_b^+\middle|\chi_1\right\rangle\right|^2+\left|\left\langle\chi_a^-\chi_b^-\middle|\chi_1\right\rangle\right|^2-\left|\left\langle\chi_a^+\chi_b^-\middle|\chi_1\right\rangle\right|^2-\left|\left\langle\chi_a^-\chi_b^+\middle|\chi_1\right\rangle\right|^2

간단하다. a방향과 b방향의 spin up 상태와 down 상태를 각각 구한다음에, 각각으로 붕괴할 확률을 구하고, 값이 +가 나오는 경우를 더하고 -가 나오는 경우를 뺀다. 얼마나 간단한가? 계산이 더럽긴 하지만. 결국 그래서 못 풀고 말았다. P 하나 계산하는데 30번은 가뿐히 뛰어넘는 계산이 필요하더군. 그런데 더 쉬운 방법이 있다.

P(\bold{a},\bold{b})=\left\langle\chi_1\middle|\bold{\sigma_a}\otimes\bold{\sigma_b}\middle|\chi_1\right\rangle

얼마나 간단한가! 이건 8번 정도만 계산하면 된다.


....

나 여태 뭐 공부한거니 ㅠㅠ



동등함을 보이기는 '매우' 쉽다.

\bold{\sigma_a}=\left|\chi_a^+\middle\rangle\middle\langle\chi_a^+\right|-\left|\chi_a^-\middle\rangle\middle\langle\chi_a^-\right|\\ \bold{\sigma_b}=\left|\chi_b^+\middle\rangle\middle\langle\chi_b^+\right|-\left|\chi_b^-\middle\rangle\middle\langle\chi_b^-\right|

direct product를 이용해서 둘을 곱해버리면 맨 위의 식과 동등한 식을 얻는다.

'Physics' 카테고리의 다른 글

양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Posted by 덱스터

댓글을 달아 주세요

수학적 변환에 대해서 글을 쓰다가 재미있는 것을 발견했다. Hermite 다항식이 Fourier 변환의 고유함수라는 것. http://en.wikipedia.org/wiki/Fourier_transform#Eigenfunctions

H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2}\,\!
n번째 Hermite 다항식. Wikipedia: Hermite polynomials

Hermite 다항식은 조화진동자 문제에서 등장하는 파동함수라는 것을 생각해보면 재미있다.[각주:1] 하긴, Hamiltonian은 운동량을 기준으로 쓰든지 위치를 기준으로 쓰든지 생김새 자체는 동일하고, 양자물리에서 Fourier 변환이 basis를 바꾸어주는 변환이라는 것을 생각해보면 이해가 갈 것 같기도 하다. 닮은 방정식의 해는 분명히 닮았을테니 말이다.

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=H%3D%5Cfrac%7Bp%5E2%7D%7B2m%7D%2B%5Cfrac%7Bm%5Comega%5E2%7D2x%5E2
p의 제곱과 x의 제곱으로만 이루어진 Hamiltonian.
http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cleft%5Clangle%20x%20%7C%20%5Cpsi_n%20%5Cright%5Crangle%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7B2%5En%5C%2Cn!%7D%7D%20%20%5Cleft(%5Cfrac%7Bm%5Comega%7D%7B%5Cpi%20%5Chbar%7D%5Cright)%5E%7B1%2F4%7D%20%20e%5E%7B%0A-%20%5Cfrac%7Bm%5Comega%20x%5E2%7D%7B2%20%5Chbar%7D%7D%20H_n%5Cleft(%5Csqrt%7B%5Cfrac%7Bm%5Comega%7D%7B%5Chbar%7D%7D%20x%20%5Cright)%2C%20%5Cqquad%20n%20%3D%200%2C1%2C2%2C%5Cldots.
위 Hamiltonian의 x공간 해. H_n은 n번째 Hermite 다항식
  1. 정확히는 여기에 Gaussian 분포를 덧씌워야 하지만. [본문으로]

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
적분놀이  (0) 2009.12.05
Tensor(1)  (2) 2009.10.16
Posted by 덱스터

댓글을 달아 주세요

양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
Posted by 덱스터

댓글을 달아 주세요

드디어 그리피스 양자책을 돌파했습니다 -_-v(이제 12단원 배우는 중)

지금 복사불가능성과 양자적 얽힘에 대해서 배울 차례인데, 보다 보니 재미있는 아이디어가 하나 떠오르더군요. 복사불가능은 어쩔 수 없지만 양자적 얽힘은 피해가는 방법이 있을지도 모르겠다는 생각이 듭니다. 기본 아이디어는 이거죠.

eq=a^\star a =0 \\ b^\star b = 0 \\ a^\star b \ne 0 \\b^\star a \ne 0

인 a와 b를 찾는 겁니다. Dirac equation의 motive와 비슷하네요. 당연하지만, 이 a와 b는 행렬들이죠. 그런데 행렬이면 좀 처리하기 귀찮아지고 더군다나 그 크기를 정하는 것도 애매해지니까(Dirac이 이 항들을 어떻게 해석했는지는 아직 공부를 안 해 보아서 모르겠지만...) 차라리 벡터로 보는 것은 어떨까 생각해 보았습니다.

문제는, 벡터의 coefficient가 벡터라는 것이네요. 더군다나 하나는 bra벡터여야 하기 때문에 direct product를 제대로 정할 수 있을지가 의문이고, direct product를 하는 과정에서 bra벡터가 ket벡터와 반응해서 사라질 수 있느냐가 문제입니다.

물리학적으로 해석하자면 '하나의 측정량을 포기하는 것으로 불확정성 원리를 깰 수 있다' 정도 되겠네요. 'EPR 역설이 실제로 일어날 수도 있지 않을까' 라고 보아도 무방합니다. 대신에 이 포기하는 측정량이 다른 측정량과 먼저 얽힘 상태에 있어야 한다는 것이 문제랄까... 제 3의 입자를 도입하면 해결될지도 모르겠군요.

p.s. 문제는, 왜 난 내 전공 공부보다 다른 과 전공공부가 더 재미있는가 정도...-_-;;;

'Physics > Speculations' 카테고리의 다른 글

복소수의 필연성  (0) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
복소수 대칭과 시간대칭  (23) 2009.04.30
Posted by 덱스터

댓글을 달아 주세요

2009. 10. 20. 20:37 Physics/Speculations

Time operator?

뉴턴의 고전역학에서 아인슈타인의 상대론으로 넘어오면서 뉴턴역학의 많은 부분이 바뀌었는데, 그중 대표적인 것은 시간의 공간화이다. 시간에 일정한 상수(광속)을 곱하여 거리로 취급하게 된 것이다. 공간과는 다른 성질을 갖기는 하지만(예를 들어 시간상에서 앞뒤로 움직이는 것은 불가능하다.)[각주:1] 일반상대론에서는 시공간거리(Spacetime interval)를 정의하여 쓸 정도로 시간은 공간처럼 인식하는 것이 보편화되어 있다.

그렇다면 양자역학에서는 어떨까? 애석하게도 시간은 공간과는 다르다는 독특한(?) 취급을 받고 있다. 좌표를 나타내는 x, y, z 연산자는 있지만, 시간을 나타내는 t 연산자는 없다. 왜 없는지 한번 생각해보자.

먼저 x, y, z는 위치를 나타낸다. 위치의 평균값은 다음과 같이 쓸 수 있다.



(파동함수는 규격화되었다고 하자.) 그리고 각 위치를 나타내는 연산자인 x, y, z는 고유벡터(eigenvector)를 가지며, 고유벡터들은 다음과 같은 성질을 갖는다.



(편의상 x에 대해서만 식을 썼다.) 아래쪽의 식은 파동함수를 x라는 ket 벡터들의 집합에 투영(project)한 것이라고 생각할 수 있다. 연산자 x의 고유벡터는 무한하기 때문에(x 좌표의 수를 생각해보라), 파동함수를 다시 완전하게 구성하고 싶다면 다음처럼 하면 된다.



그렇다면 다음과 같은 방법도 생각해 볼 수 있지 않을까? 시간에 해당하는 t라는 연산자를 가정하고, x 연산자에 대해 행한 일을 다시 해 보는 것이다.



(이 의문은 1학기에 필자가 가졌던 의문이다.) 애석하게도, 이것은 불가능하다. 왜냐하면, 다음 식이 정의되지 않기 때문이다.[각주:2]



시간의 평균은 무엇인가? 지금 파동함수를 쓰는 시점 이전에 존재했던 시간은 너무나도 거대하기에 무한하다고 할 수 있고, 앞으로 남은 시간도 상상할 수 없을 정도로 막대하기에 무한하다고 쓸 수 있다. 적분구간이 음의 무한대에서 양의 무한대로 발산하는 것이다. 위치를 나타내는 x, y, z의 평균을 구할 때에도 적분구간은 음의 무한대에서 양의 무한대이지만, 음과 양의 무한대로 갈 때 파동함수의 크기는 0으로 수렴했기 때문에 평균이 박살나는 일은 없었다. 하지만 지금은? 파동함수가 가리키고 있는 입자의 존재가 영구적이라고 한다면, t라는 변수에 대해 파동함수의 크기는 1로 일정하다. 왜냐하면 어떤 시간에서라도 입자는 관찰되어야 하기 때문이다. 그리고 모두가 알다시피, 숫자 1을 음의 무한대에서 양의 무한대까지 적분하면 무한대밖에는 얻을 것이 없다.[각주:3]

하지만 잠깐. 우리는 공간이 무한하다고 가정하고 위치의 평균을 구하고 있었다. 그런데 실제 우주는 무한한가? 우주의 크기는 상상할 수 조차 없이 크지만, 분명히 그 크기는 130억 광년이라는 유한한 값을 가지고 있다. 시간도 마찬가지이다. 우주가 생멸(生滅)하는 기간은 겁(劫)이라는 겁나도록 긴 기간이지만, 유한하다.[각주:4] 그렇다면 시간을 나타내는 연산자를 도입할 수 있지 않을까?[각주:5]
  1. 물론 실제로는 가능할 수도 있다. 단지 우리가 시간 속에서 의식을 만들어내기에 시간이 단방향으로만 흐른다고 생각하는 것일수도 있으니. 하지만 시간이 양방향으로 흐르면 열역학 제 2법칙에 문제가 생기게 된다. 열역학 제 2법칙에서는 엔트로피가 늘어난다는 말만 했지, 시간의 흐름에 대한 엔트로피는 말하고 있지 않기 때문이다. 시간이 역으로 흐른다면 역으로 흐르는 시간 상에서 엔트로피가 증가하고, 결국 우리 눈에는 엔트로피가 감소하는 것처럼 보일 수 있다는 것이다. 물론, 열역학 제 2법칙을 확률적인 법칙으로만 인정한다면 이런 충돌은 피할 수 있다. [본문으로]
  2. 최근에 떠오른 재미난 생각이 있어서 검증해보려다가 오래된 의문을 해결하게 되었다. [본문으로]
  3. 물론 영구적인 입자의 존재를 부정한다면 입자의 연대기를 통해 평균적인 삶을 생각해볼 수 있을 것이다.(사람이 태어나고 죽은 년도의 평균을 구해 그 사람의 평균적인 존재연도를 구하는 것처럼) 그런데 입자가 언젠가는 소멸한다고 가정하는 것은 조금 이상하지 않을까? 최소한 전자는 사라질 것 같아 보이지 않는다. [본문으로]
  4. 이 때 유한하다는 말은 우주가 팽창하다가 수축하는 경우, 즉 빅 크런치(Big Crunch)라는 종말을 가정할 경우이다. 다른 경우 총 시간을 유한하다고 할 수는 없을 것이다. [본문으로]
  5. 물론 시간에 대응하는 추상적인 연산자 t를 도입할 수 있을지도 모른다. 하지만 이 연산자가 실질적으로 의미를 지닐 수 있을지는 매우 회의적이다. 우리는 겁이라는 시간을 잴 수 있을만큼 오래 살지 못한다는 것이 문제이다. [본문으로]
Posted by 덱스터

댓글을 달아 주세요

Shankar 책을 산지 좀 되었습니다.

심심해서(하라는 시험공부는 안하고) 이전에 Liboff 책에서 재미있게 보았던 대칭성과 보존에 관한 부분을 보았습니다. 보다 보니 이런 부분이 나오더군요.

[...]

We define translational invariance by the requirement



[...]
Principles of Quantum Mechanics 2nd Ed., R. Shankar, Springer, 1994, p. 285

저기서 T(epsilon) 연산자는 입실론만큼 전체를 +x 방향으로 옮기는 연산자입니다. 그건 그렇다 치고, 왜 불변성을 Hamiltonian 연산자를 이용해 정의하는 것인지 좀 생각해 보아야겠더군요.

현재는 그저 '기본법칙이 Schrödinger 방정식이기 때문'이라고 결론내렸습니다. 저 항등식을 만족시킨다면 상태함수에 T 연산자를 마음껏 들이대어도 기본법칙에 어긋나지 않거든요.



왜 왼쪽에 다른 임의의 상태를 들이대냐면, 측정은 저렇게 이루어지기 때문입니다. 양자물리에서 모든 측정량은 저렇게 bra를 붙여서 얻어야 하니 말이지요. (그런데 써놓고 보니 아직도 논리에 구멍이 있는 것 같네요. 좀 더 엄밀하게 해보는 것은 나중에...)[각주:1]

어찌되었든, T 연산자로 모든 상태를 이동시켜 놓았을 때 임의의 연산자 A는 어떻게 변해야 하는가 생각해 보았습니다. 생각해보니 쉽더군요.



이니까



하지만 T 연산자의 역함수(역연산자?)는 T 연산자의 hermitian conjugate 입니다. 왜 그런지는 A 대신에 I(Identity - 1이라고 생각하시면 됩니다)를 넣어보면 됩니다. I 연산자가 좌표와는 상관있을 리가 없겠죠. 그러면 결국



이 됩니다. 어째 어디선가 본 행렬형식의 2계텐서 변환방식이 떠오르는군요.

그나저나 시간대칭은 역시 허수의 성질을 이용하는군요. i나 -i나 구분할 수 없다는 그 성질 말입니다. 이건 예전에 적어둔 것이니 링크만 간단히...

2009/04/30 - 복소수 대칭과 시간대칭

ps. 뭐 아실 분들은 아시겠지만 사실 저 T 연산자는 P 연산자, 즉 운동량과 관련이 있습니다. 그래서 운동량 보존이 균일성(위치에 대해 변하지 않음-translational symmetry/invariance)과 동치인 것이구요. 정확히는



입니다. Taylor 전개를 해 보면 알 수 있는데 그것까지 하기는 귀찮네요. Griffith 책의 연습문제로도 나오니 제가 할 필요는 없겠지요.
  1. 이렇게 엄밀한 거 좋아하다가 서너줄이면 끝날 숙제 문제를 한두페이지가량 써제끼는 일이 한두번이 아니네요 -_-;; [본문으로]

'Physics > Speculations' 카테고리의 다른 글

요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
Posted by 덱스터

댓글을 달아 주세요

이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday41
Today0
Total734,280

달력

 « |  » 2023.2
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28

글 보관함