보통 $\int \exp(iax^2) dx, a\in \mathbb{R}^+$를 적분할 때는 다음과 같은 극한을 이용해서 풀곤 한다.

\[ \int_{-\infty}^{+\infty} e^{iax^2}dx=\int_{-\infty}^{+\infty} \lim_{\epsilon\to0}e^{(ia-\epsilon)x^2}dx = \lim_{\epsilon\to0} \int_{-\infty}^{+\infty} e^{(ia-\epsilon)x^2}dx \]

\[ \therefore \int_{-\infty}^{+\infty} e^{iax^2}dx = \sqrt{\frac{\pi}{-ia}} = (1+i)\sqrt{\frac{\pi}{2a}} \]


문제는 극한의 적분과 적분의 극한이 같지 않을 수 있다는 것. 물론 위의 적분은 맞는 값이긴 하다. 위 적분을 제대로 구하는 한 가지 방법은 http://www.jstor.org/stable/2588989에서 다루고 있으니 참조. 이 글에서는 조금 다른 방법으로 구할 생각이다. 일종의 컨투어 회전.


아이디어는 복소평면에서  $\exp(iaz^2)$의 절대값을 그리게 되면 안장과 같은 모양을 하게 된다는 것. 원래 적분하는 구간은 다음 그림과 같다.

복소평면에서 적분하고  $\exp(iaz^2)$는 pole이 하나도 없는[각주:1] analytic function이기 때문에 이 적분은 '시작점'과 '끝점'에만 의존한다. 해당 적분을 다음과 같이 바꾸어도 된다는 것.



왼쪽의 붉은 원호 적분이 $\Gamma_a$, 가운데의 녹색 선 적분이 $\Gamma_b$, 오른쪽의 붉은 원호 적분이 $\Gamma_c$이다. 파워포인트로 그리느라 감마를 넣는 과정이 복잡해서(..) 그림에는 넣지 않았는데 대충 알아들으리라 믿으며..


$\Gamma_b$를 +45도로 잡은 이유는 $z^2$의 허수부가 양수가 되도록 만들기 위해서다. 그래야 $a$ 앞의 $i$와 상쇄되어 음수가 만들어지니까. 각 적분을 구해 보자.

\[ \int_{-R}^{+R} e^{iax^2}dx = \Gamma_a+\Gamma_b+\Gamma_c \]

\[ \Gamma_b = \frac{(1+i)}{\sqrt2}\int_{-R}^{+R} e^{-ax^2} dx \]


여기까지는 쉽다. 이제 남은 두 적분이 $R\to\infty$ 극한에서 사라진다는 것을 보일 차례.

\[ \Gamma_a = \int_{0}^{\pi/4} e^{iaR^2\exp(2i\theta)}\left[-Re^{i\theta}\right]d\theta \\= \int_{0}^{\pi/4} -Re^{iaR^2\cos(2\theta)+i\theta}e^{-aR^2\sin(2\theta)}d\theta \]


어차피 크기가 0으로 날아간다는 것을 보이는 것이 중요하므로 크기만 구하면 된다.

\[ \left|\Gamma_a\right| \leq \int_{0}^{\pi/4} \left|-Re^{iaR^2\cos(2\theta)+i\theta}e^{-aR^2\sin(2\theta)}\right|d\theta \\ = \int_{0}^{\pi/4} Re^{-aR^2\sin(2\theta)}d\theta \\ = \int_{0}^{\pi/2} \frac{R}{2}e^{-aR^2\sin(\theta)}d\theta \\ \leq \int_{0}^{\pi/2} \frac{R}{2}e^{-aR^2\frac{2}{\pi}\theta}d\theta \sim O(R^{-1})\]


마지막 줄은 Jordan's lemma를 그대로 이용한 것. $\Gamma_c$도 같은 방법으로 $1/R$ 꼴을 갖는다는 것을 보일 수 있다. 이제 결론만 남은 상태.

\[ \therefore \int_{-\infty}^{+\infty} e^{iax^2}dx = \Gamma_b = \frac{(1+i)}{\sqrt2}\int_{-\infty}^{+\infty} e^{-ax^2}dx = (1+i)\sqrt{\frac{\pi}{2a}}\]


참고로 이 방식을 이용하면 처음 극한을 이용할 때 문제가 되는 $\sqrt{i}$의 부호가 한번에 해결된다. $\left(\frac{(1+i)}{\sqrt2}\right)^2=\left(-\frac{(1+i)}{\sqrt2}\right)^2=i$에서 어떤 부호를 택할 것이냐의 문제. 문제에서 $a$가 음의 실수인 경우에는 -45도로 틀면 똑같은 결론을 얻으니 더 언급할 필요는 없을 듯 하다.

  1. 물론 무한원점은 essential pole에 해당하지만, 여기서는 고려하지 않기로 한다. [본문으로]
Posted by 덱스터

2014. 10. 26. 02:50 Mathematics

로그 항등식?

페이스북 타임라인에 던져졌던 문제. 다음을 미분을 쓰지 않고 증명하시오.

\[ \ln f(x) = - \int _0 ^{\infty} \frac{1}{t}e^{-tf(x)}dt \]

 

 


 

 

그 전에 잠시 다음 적분을 보자.

 

\[ \forall a>0, \int_0^\infty \frac{1}{t}e^{-at}dt = \int_0^\infty \frac{1}{t}e^{-t}dt \]

 

위 식은 간단한 변수치환으로 보일 수 있다. 이제 다음 식을 생각해보자.

 

\[\forall a>0\forall \epsilon>0, \int_0^\infty\frac{1}{t}e^{-(a+\epsilon)t}dt -\int_0^\infty\frac{1}{t}e^{-at}dt = 0\]

 

왜냐고요? 위에서 임의의 변수 $a$를 넣어주어도 값이 같다는걸 보였으니까. 눈치가 빠른 사람들은 내가 왜 $\epsilon$을 넣었는지 감을 잡았겠지만, 이제 미분의 정의를 이용하려고 한다. 적분은 합쳐도 상관없으니 일단 같은 적분으로 퉁치기로 하자.

 

\[\lim_{\epsilon\to0}\frac1{\epsilon}\int_0^\infty\frac1t(e^{-(a+\epsilon)t}-e^{-at})dt=\lim_{\epsilon\to0}\frac1{\epsilon}0 = 0\]

 

한편, 극한을 적분 안에 우선 넣어버리는 방법도 있다.

 

\[\int_0^\infty\frac{1}{t}\lim_{\epsilon\to0}\frac{1}{\epsilon}(e^{-(a+\epsilon)t}-e^{-at})dt=-\int_0^\infty e^{-at}dt=-\frac1a \]

 

넵. 무언가 잘못되었습니다. 이런 문제가 생기는 이유중 하나로 처음 본 식의 적분은 무조건 발산한다는 성질이 있다.(극한과 적분의 순서를 바꾸어도 되는가는 꽤 섬세한 증명이 필요한 과정이긴 하지만 그건 수학과의 일이니 일단 무시하기로 하자)[각주:1][각주:2] 애초에 시작부터 개소리라는 뜻이다. 하지만 우리는 불굴의 물리학도 계산기 공대생, 정의가 제대로 안 되었든 말든 그건 무시하고 일단 계산에 써먹는다!

 

 


 

 

본론으로 돌아와서, 양변을 미분하면 처음의 식을 어떻게든 얻지만 다른 해법을 구하라고 한 이상 다른 방법을 찾아야 한다. 우선 위 등식은 이렇게 쓸 수 있다.

 

\[ \ln f(x) = - \int _0 ^{\infty} \frac{1}{t}e^{-tf(x)}dt=-\int _0 ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt \]

 

되든 말든은 걱정하지 않고 식만 그럴듯하면 바꾸고 보는 공대생의 본능을 따라 적분 순서를 바꿔보자. 그러면

 

\[ \ln f(x) = -\int _0 ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt = -\int _{f(x)} ^{\infty}\int _0 ^{\infty} e^{-tf}dt df \\ = \int _{f(x)} ^{\infty} \frac1f df \]

 

적분이 발산한다. 어쨌든 식의 꼴은 대충 맞췄으니, 우리는 어떻게든 비슷한 맞는 증명과정을 가고 있다고 생각할 수 있다. 어디에서 문제가 생긴 걸까? 문제는 정의되지 않는 적분을 억지로 정의했기 때문에 생긴다: 0에서 1/t는 정의되지 않는다.[각주:3] 보다 올바른 표현으로 바꾸려면 위 등식을 다음과 같이 써야 한다.

 

\[ \ln f(x) = - \lim_{\epsilon\to 0+} \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt \]

 

이 식을 끌고가 보자. 적분 순서를 바꾸면 ('과연 바꿀수 있는가?'란 질문은 수학과에게 넘기기로 하자)

 

\[ - \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt=-\int _\epsilon ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt = -\int _{f(x)} ^{\infty}\int _\epsilon ^{\infty} e^{-tf}dt df \\ = \int _{f(x)} ^{\infty} \frac{e^{-\epsilon f}}{f} df = \left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\epsilon\int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df \]

 

문제는 두번째 항의 적분이다. 두번째 항은 입실론이 0으로 갈 때 수렴할까 발산할까? 당연히 발산하지(...). 얼마나 빠르게 발산하는지 확인하기 위해 두번째 항은 라플라스법/안장점법(saddle point method)/최대기울기법(method of steepest descent) 등으로 불리는 다음 기법을 이용해 근사해보자. 우선 다음이 되는 식 g를 계산한다.

 

\[ e^{g(f)}=(\ln f)e^{-\epsilon f} \]

 

이제 좌변을 극대값에서 테일러 전개를 이용해 근사한다.

 

\[ \frac{d}{df}\left[(\ln f)e^{-\epsilon f}\right]_{f^\ast}=\left[\frac1{f^\ast}-\epsilon\ln f^\ast \right]e^{-\epsilon f^\ast}=0 \\\therefore f^\ast\ln f^\ast=\frac1\epsilon \\\\g(f) = \ln\left[(\ln f)e^{-\epsilon f}\right] \simeq g(f^\ast)+\frac12 g''(f^\ast)(f-f^\ast)^2 \\\therefore g(f) \simeq \ln\left[\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}} \right]-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2 \]

 

매우 익숙한 적분이 보이는 것은 착각이 아니다.

 

\[ \int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df \simeq \int_{f(x)}^{\infty}\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}}e^{-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2}df \\\simeq \int_{-\infty}^{\infty}\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}}e^{-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2}df \\=\frac1{\epsilon f^\ast}\sqrt{\frac{2\pi f^\ast}{\epsilon(1+\frac{1}{\ln f^\ast})}}e^{-\frac1{\ln f^\ast}} \]

 

극한을 취하면

 

\[ \therefore- \lim_{\epsilon\to 0+} \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt \\=\lim_{\epsilon\to 0+}\left[\left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\epsilon\int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df \right ] \\=\lim_{\epsilon\to 0+}\left[\left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\frac1{f^\ast}\sqrt{\frac{2\pi f^\ast}{\epsilon(1+\frac{1}{\ln f^\ast})}}e^{-\frac1{\ln f^\ast}} \right ] \\=\ln f+O((\ln f^\ast)^{1/2}) \]

 

마지막의 O는 발산하는 항이다. 위에서의 정의 때문에 $\ln f^\ast$의 1/2승으로 발산하면 $-\ln \epsilon$의 1/2승보다도 느리게 발산한다는 것을 확인할 수 있다( $f^\ast\leq\epsilon^{-1}$). 참고로 $-\ln\epsilon$은 $\epsilon$의 어떤 차수보다도 천천히 발산한다(지금은 $\epsilon$을 0으로 보내고 있다) .

 

\[\therefore \epsilon\to0,-\int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt = \ln f + O((-\ln \epsilon)^{1/2}) \]

 

아, 그리고 뒤쪽의 발산하는 항은 '비물리적이다!'라고 판단해서 날려먹는 일은 자주 있는 일이다. 이로서 증명 끝!(?)

  1. 한 교수님 왈: (무한합과 적분의 순서를 바꾸면 간단해지는 식이 있을 때) "수학과는 적분과 무한합의 순서를 바꾸어도 되는지 고민하느라 시간을 날린다. 공대생은 일단 바꾸고 계산해서 틀린다" [본문으로]
  2. 함수열의 극한의 적분과 함수열의 적분의 극한이 다른 사례로 $f_n(x)=2^{n+1}, 2^{-n-1} \leq x \leq 2^{-n}$ 이 있다(타 구간에서는 0). 이 함수열의 극한은 항등적으로 0인 함수. [본문으로]
  3. 실제로도 적분이 문제가 생기는 영역은 0 근처이다. [본문으로]

 

 

Posted by 덱스터

오늘 퓨리에 급수에 대해 생각하다가 특정 구간에 대해서만 급수전개를 하되 '그 구간이 계속 움직인다면 어떨까?'란 생각을 떠올렸다. 조금만 계산을 하면 유도할 수 있으니 누군가는 했겠지 하고 찾아봤는데 의외로 이 생각을 하는 사람이 별로 없는 모양이다. 하긴 이렇게 연속적으로 들어오는 신호를 변환할 때는 라플라스 변환을 쓰는 것이 일반적이긴 하다. 찾은 관련 내용은 특허 하나와 논문 두 개. 특허는 73년이고, 논문은 99년과 01년에 나온 상당히 최근의 내용.


http://www.google.com/patents/US3778606

http://www.sciencedirect.com/science/article/pii/S0165168498002096

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=913845




위의 내용은 이산퓨리에변환(Discrete Fourier Transform)에 해당하는 내용이라 연속적인 경우에 대해서는 다루지는 않고 있다. 연속적인 경우를 다루기 위해 다음과 같은 '샘플링 구간을 한정지은 함수'를 정의하자.


\text{For a function }f\text{ defined on the real line, define} \\\text{the restriction (or the sample) of }f\text{ as;} \\\\f:\mathbb{R}\to\mathbb{R} \\f_{\tau,T}:[0,\tau ]\to\mathbb{R} \\f_{\tau,T}(x)=f(x+T) \\\\\tau\text{ gives the length of the sample, and }T\text{ gives the} \\\text{starting point of the sample.}


그리고 다들 대학 2학년때 지옥을 맛보는 공학수학 시간에 하는 것처럼 신나게 퓨리에 급수를 구한다. 따로 유도과정은 안 적겠다. 그런건 위키백과에도 잘 나오니까.


\text{The Fourier series of }f_{\tau,T}\text{ is given as follows:} \\\\f_{\tau,T}(x)=a_0+\sum_n \left[a_n\cos(\frac{2n\pi}{\tau}x)+b_n\sin(\frac{2n\pi}{\tau}x)\right] \\\\a_0(\tau,T)=\frac1\tau \int_0^\tau f_{\tau,T}(x)dx \\a_n(\tau,T)=\frac2\tau \int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx \\b_n(\tau,T)=\frac2\tau \int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx


이제 할 일은 간단하다. 구간이 계속 움직이는 경우(T가 계속 변하는 경우) 각 급수 성분은 어떻게 변하게 될까? 편미분을 쓰자.


\text{To update the series for continuously changing }T\text{,} \\\text{just calculate the derivatives with respect to }T: \\\\\frac{\partial}{\partial T}a_0(\tau,T)=\frac1\tau \frac{\partial}{\partial T}\int_0^\tau f_{\tau,T}(x)dx \\=\frac1\tau \frac{\partial}{\partial T}\int_T^{T+\tau} f(x)dx=\frac1\tau\left[f(T+\tau)-f(T) \right ]



\\\frac{\partial}{\partial T}a_n(\tau,T)=\frac2\tau \frac{\partial}{\partial T}\int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \frac{\partial}{\partial T}\int_0^\tau f(x+T)\cos(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \int_0^\tau f'(x+T)\cos(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \left[ \left f(x+T)\cos(\frac{2n\pi}{\tau}x)\right|_0^\tau -\int_0^\tau f(x+T)\left[\cos(\frac{2n\pi}{\tau}x)\right]' dx \right] \\=\frac2\tau \left[ f(T+\tau)-f(T)+\frac{2n\pi}{\tau}\int_0^\tau f(x+T)\sin(\frac{2n\pi}{\tau}x)dx \right] \\\\=\frac2\tau \left[ f(T+\tau)-f(T)\right]+\frac{2n\pi}{\tau}b_n



\\\frac{\partial}{\partial T}b_n(\tau,T)=\frac2\tau \frac{\partial}{\partial T}\int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \frac{\partial}{\partial T}\int_0^\tau f(x+T)\sin(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \int_0^\tau f'(x+T)\sin(\frac{2n\pi}{\tau}x)dx \\=\frac2\tau \left[ \left f(x+T)\sin(\frac{2n\pi}{\tau}x)\right|_0^\tau -\int_0^\tau f(x+T)\left[\sin(\frac{2n\pi}{\tau}x)\right]' dx \right] \\=\frac2\tau \left[-\frac{2n\pi}{\tau}\int_0^\tau f(x+T)\cos(\frac{2n\pi}{\tau}x)dx \right] \\\\=-\frac{2n\pi}{\tau}a_n


만약 주기가 그대로 맞아 떨어진다면 예상하는 것과 같이 단순히 위상만 변하는 식을 얻게 된다.


\text{If }f(x+\tau)=f(x)\text{ for }\forall x\text{, the above equations} \\\text{are simplified and shows the phase dependence of Fourier series.} \\\\\frac{\partial}{\partial T}a_n(\tau,T)=\frac{2n\pi}{\tau}b_n \\\frac{\partial}{\partial T}b_n(\tau,T)=-\frac{2n\pi}{\tau}a_n \\\\\therefore a_n(\tau,T)=A\sin(\frac{2n\pi}{\tau}T +\delta) \\b_n(\tau,T)=A\cos(\frac{2n\pi}{\tau}T +\delta)


여기까지는 샘플링 구간을 움직일 때 해당하는 내용. 그렇다면 샘플링 구간을 확장시킬 때 새로운 정보를 어떻게 반영해야 할까? 이건 샘플링 구간의 길이에 대해 편미분하면 된다.


\text{To update the series for newly obtained information at} \\T+\tau\text{, just calculate the derivatives with respect to }\tau: \\\\\frac{\partial}{\partial\tau}a_0(\tau,T)=\frac{\partial}{\partial\tau}\left[\frac1\tau \int_0^\tau f_{\tau,T}(x)dx\right] \\=-\frac1{\tau^2} \int_0^\tau f_{\tau,T}(x)dx+\frac1\tau \frac{\partial}{\partial\tau}\int_T^{T+\tau} f(x)dx \\=\frac1\tau\left[f(T+\tau)-a_0\right]



\\\frac{\partial}{\partial\tau}a_n(\tau,T)=\frac{\partial}{\partial\tau}\left[\frac2\tau \int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx\right] \\=-\frac2{\tau^2} \int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx+\frac2\tau \frac{\partial}{\partial\tau}\left[\int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx\right] \\=-\frac{a_n}{\tau}+\frac2\tau \frac{\partial}{\partial\tau}\int_0^\tau f(x+T)\cos(\frac{2n\pi}{\tau}x)dx \\=-\frac{a_n}{\tau}+\frac2\tau \left f(x+T)\cos(\frac{2n\pi}{\tau}x)\right|_{x=\tau}+\frac2\tau \int_0^\tau f(x+T)\frac{\partial}{\partial\tau}\cos(\frac{2n\pi}{\tau}x)dx \\=-\frac{a_n}{\tau}+\frac{2f(T+\tau)}\tau+\frac{2n\pi}{\tau^2}\frac2\tau\int_0^\tau f(x+T)\sin(\frac{2n\pi}{\tau}x)dx \\=\frac1\tau\left[ 2f(T+\tau)-a_n+\frac{2n\pi}\tau b_n\right ]



\\\frac{\partial}{\partial\tau}b_n(\tau,T)=\frac{\partial}{\partial\tau}\left[\frac2\tau \int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx\right] \\=-\frac2{\tau^2} \int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx+\frac2\tau \frac{\partial}{\partial\tau}\left[\int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx\right] \\=-\frac{b_n}{\tau}+\frac2\tau \frac{\partial}{\partial\tau}\int_0^\tau f(x+T)\sin(\frac{2n\pi}{\tau}x)dx \\=-\frac{b_n}{\tau}+\frac2\tau \left f(x+T)\sin(\frac{2n\pi}{\tau}x)\right|_{x=\tau}+\frac2\tau \int_0^\tau f(x+T)\frac{\partial}{\partial\tau}\sin(\frac{2n\pi}{\tau}x)dx \\=-\frac{a_n}{\tau}-\frac{2n\pi}{\tau^2}\frac2\tau\int_0^\tau f(x+T)\cos(\frac{2n\pi}{\tau}x)dx \\=-\frac1\tau\left[b_n+\frac{2n\pi}\tau a_n\right ]


정리해보면 다음과 같은 관계식을 얻는다.


\text{For a function }f\text{ defined on the real line, its sample} \\f_{\tau,T}\text{ - which has }\tau\text{ as the length and }T\text{ as the starting point - } \\\text{has the following properties.} \\\\f_{\tau,T}(x)=f(x+T) \\f_{\tau,T}(x)=a_0+\sum_n \left[a_n\cos(\frac{2n\pi}{\tau}x)+b_n\sin(\frac{2n\pi}{\tau}x)\right]



\\a_0(\tau,T)=\frac1\tau \int_0^\tau f_{\tau,T}(x)dx \\a_n(\tau,T)=\frac2\tau \int_0^\tau f_{\tau,T}(x)\cos(\frac{2n\pi}{\tau}x)dx \\b_n(\tau,T)=\frac2\tau \int_0^\tau f_{\tau,T}(x)\sin(\frac{2n\pi}{\tau}x)dx



\\\frac{\partial}{\partial T}a_0(\tau,T)=\frac1\tau\left[f(T+\tau)-f(T) \right ] \\\frac{\partial}{\partial T}a_n(\tau,T)=\frac2\tau \left[ f(T+\tau)-f(T)\right]+\frac{2n\pi}{\tau}b_n \\\frac{\partial}{\partial T}b_n(\tau,T)=-\frac{2n\pi}{\tau}a_n



\\\frac{\partial}{\partial\tau}a_0(\tau,T)=\frac1\tau\left[f(T+\tau)-a_0\right] \\\frac{\partial}{\partial\tau}a_n(\tau,T)=\frac1\tau\left[ 2f(T+\tau)-a_n+\frac{2n\pi}\tau b_n\right ] \\\frac{\partial}{\partial\tau}b_n(\tau,T)=-\frac1\tau\left[b_n+\frac{2n\pi}\tau a_n\right ]





쓸만한 곳이 있는지는 모르겠는데 일단 실시간 퓨리에 변환에 유리하고(FFT를 한 샘플 버리고 한 샘플 채취할 때마다 행하는 것보다 위의 방법으로 업데이트 하는 방식이 더 빠르다. 전자는 N logN인데 이 경우엔 N 정도-위에서 언급한 논문에도 나와 있다.), 또 한 가지 쓸모를 생각해 본다면 FFT에서 생기는 샘플 갯수에 대한 제한 문제를 비껴나갈 방법이 될 지도 모르겠다는 것. FFT를 쓰려면 데이터의 개수가 2^N의 꼴로 나와야 한다고 알고 있는데 거기에서 더 많을 경우 추가 데이터를 날려버리거나 더 적을 경우 0으로 추가 데이터를 만들어 FFT를 실행한다고 알고 있다. 위 관계식은 연속함수에 대해 구한 것이긴 하지만 이산화하면 2^N개의 데이터로 FFT를 한 다음에 데이터를 추가해주거나 빼주는 방식으로 원래 값에 맞도록 보정하는 것이 가능해진다. DFT의 시간이 N^2이라고 알고 있는데 정확한 값을 N logN에서 N^2 사이의 값으로 구하는 것도 가능하다는 것.


샘플 구간의 중심을 0으로 두고 구간의 길이를 점차 늘이는 문제로도 확장해볼 생각이 있다. 이건 양자장론에서 cut-off 문제와도 관련이 있을 것 같아서 풀어보려고 생각중인 문제.


그런데 왜 이 간단한 걸 찾아도 안 보이지... 미분만 잘 하면 되잖아...


Posted by 덱스터

얼마 전부터 보기 시작한 입자물리 기초서에 페르미 황금률 2번(Fermi's Golden rule 2)이 나오길레 한번 증명해볼까 하다가 계속 한 부분에서 막히길레 Sakurai의 Modern QM을 봤다. 증명 없이 나오는 등식(?) 하나가 있길레 증명해봤다.


$$\int_{-\infty}^\infty \frac{\sin^2(xt)}{x^2} dx=\pi t$$


방법은 당연하게도(?) 복소변수를 이용. 양자물리 시간에 대충 배우고 공학수학 시간에 조금 더 배운 것 밖에 없는데 어떻게든 써 먹고 있다. 복소변수함수론을 한번 듣긴 들어야 할텐데...


먼저 sine 함수를 지수로 바꾼다. 그 유명한(?) 오일러 공식이 필요하다.


$$\sin y = \frac1{2i}\left(e^{iy}-e^{-iy}\right)$$


이러면 대충 다음 값이 나온다.


$$\frac{\sin^2(xt)}{x^2}= \frac{(1-e^{2ixt})+(1-e^{-2ixt})}{4x^2}$$


괄호는 편의상 친 것. 저 괄호를 이용해 분수를 둘로 나눈다. 적분 contour가 서로 달라야 하기 때문이다. 그런데 이렇게 무작정 나누어도 되는지를 모르겠네. 어쨌든 이러면 답이 나오기는 한다.


$$\frac{\sin^2(xt)}{x^2}= \frac{1-e^{2ixt}}{4x^2}+\frac{1-e^{-2ixt}}{4x^2}$$


x를 z로 바꾸고, 앞의 것은 위쪽으로 닫힌 반원으로, 뒤의 것은 아래로 닫힌 반원으로 적분한다. residue는 원점에 있으니 이 부분은 포함시킨다. 앞의 항을 로랑전개(Laurent series)해보면 residue를 쉽게 구할 수 있다.


$$1-e^{2izt}=-2izt+2z^2t^2+\cdots \\ \therefore \frac{1-e^{2izt}}{4z^2}=-\frac{it}{2z}+\cdots$$


제대로 써 봅시다. C+는 위쪽 반원 반시계 방향, C-는 아래쪽 반원 시계방향.


$$\int_{-\infty}^\infty \frac{\sin^2(xt)}{x^2} dx=\int_{-\infty}^\infty \frac{1-e^{2ixt}}{4x^2}+\frac{1-e^{-2ixt}}{4x^2} dx \\=\int_{\mathbf{C}^+}\frac{1-e^{2izt}}{4z^2}dz+\int_{\mathbf{C}^-}\frac{1-e^{-2izt}}{4z^2} dz\\=2\pi i\left(\frac{-it}2\right) -2\pi i\left(\frac{it}2\right)=2\pi t$$


마지막 줄의 괄호 안은 원점에서의 residue. 값이 두배가 나왔는데 이건 특이점이 적분하는 구간 위에 있기 때문에 그렇다. 그래서 실제 값은 위 값의 절반.[각주:1] QED!


Sakurai 책에서는 맨 처음의 식이 이렇게 나와있다.


$$\lim_{t \to \infty} \frac{\sin^2(xt)}{\pi t x^2}=\delta(x)$$




2012.08.24 수정

찾아보니 절반으로 나누는 이유는 평균내려는 것이 아니라 '반원'을 따라 적분하기 때문. 복소함수 교재 찾아봤더니 조금 다른 이유로 절반으로 만들더라. 그리고 그 책에서는 함수(sine)를 나누기보다는 부분적인 함수(exp.)를 가지고 와서 원래 함수로 만들었다.




  1. 반으로 나누는 것은 특이점을 포함하는 contour와 특이점이 없는 contour 두 적분을 합쳐 평균내기 때문에 그렇다. [본문으로]

'Mathematics' 카테고리의 다른 글

Continuously Updated Fourier Series  (0) 2013.12.06
개드립의 마지막 정리  (0) 2013.10.29
Lagrange Multipliers - 라그랑주 승수법  (7) 2011.01.16
경계조건의 중요성 - Boundary condition  (2) 2010.08.21
Involute 곡선  (10) 2010.05.01
Posted by 덱스터
어떤 n개의 자유도를 가진 scalar 함수 G가 있고, 이 값을 극대화하고 싶다. 물론 그냥 극대화하고 싶다면 gradient가 0이 되는 지점을 찾으면 된다.

\text{To find the maximum of }G=G(x_1,\cdots,x_n)\\\text{Find }(\chi_1,\cdots,\chi_n) \text{ where } \nabla G=0

하지만 상황은 그리 녹녹치가 않다. 대부분의 경우 우리가 취할 수 있는 위치는 제한되어 있기 때문이다. 예를 들어서 어떤 함수 R=0을 항상 만족해야 한다거나 말이다.

\text{But }R=R(x_1,\cdots,x_n)\text{must satisfy the relation }R=0

계산이 좀 귀찮아졌다. 일단은 변수의 개수를 두개로 줄이자. 우선은 완전미분에 대해 생각해보자. 제한조건을 만족하는 상황대로 조금 움직인다면 R의 변화량은 항등적으로 0이어야 한다. 왜? 상수값이니 말이다.

\text{To handle the problem, let }n=2\\\text{The exact differential of }R \text{ becomes}\\dR=\frac{\partial R}{\partial x_1}dx_1+\frac{\partial R}{\partial x_2}dx_2\\\text{when infinitesimal movement does not violate the requirement;}\\dR=0

그리고 편미분량이 취해지는 위치에서 G가 극대/극소값을 취하고 있다면 dR=0를 만족하는 조건 하에서 dG또한 0이어야 한다. 왜냐하면 극대/극소이기 때문이다.

\text{When the function }G\text{ takes the extremum at the point}\\\text{The exact differential of }G \text{ also satisfies}\\dG=\frac{\partial G}{\partial x_1}dx_1+\frac{\partial G}{\partial x_2}dx_2=0\\\text{under the condition that }dR=0

그런데 dR=0이므로 두 자유도 중 하나는 다른 하나에 종속되게 되어 다음과 같이 이 방정식을 풀 수도 있다.

\frac{\partial R}{\partial x_1}dx_1+\frac{\partial R}{\partial x_2}dx_2=0\\\therefore dx_1=-\frac{\frac{\partial R}{\partial x_2}}{\frac{\partial R}{\partial x_1}}dx_2\\\therefore dG=\frac{\partial G}{\partial x_1}dx_1+\frac{\partial G}{\partial x_2}dx_2\\=\left[-\frac{\partial G}{\partial x_1}\frac{\frac{\partial R}{\partial x_2}}{\frac{\partial R}{\partial x_1}}+\frac{\partial G}{\partial x_2}\right]dx_2\\=0\\\text{However, we are free to choose } dx_2 \text{, which implies}\\-\frac{\partial G}{\partial x_1}\frac{\frac{\partial R}{\partial x_2}}{\frac{\partial R}{\partial x_1}}+\frac{\partial G}{\partial x_2}=0

하지만 다른 방법은 없을까? 상수 alpha를 도입해 보자.

dR=0, dG=0\\\therefore dR-\alpha dG\\=\left[\frac{\partial R}{\partial x_1}-\alpha\frac{\partial G}{\partial x_1}\right]dx_1\\+\left[\frac{\partial R}{\partial x_2}-\alpha\frac{\partial G}{\partial x_2}\right]dx_2\\=0

물론 첫번째 변수의 미소변화량은 아직 두번째 변수의 미소변화량에 종속되어 있다.

\text{However, as the restriction is still not removed,}\\\frac{\partial R}{\partial x_1}dx_1+\frac{\partial R}{\partial x_2}dx_2=0\\\therefore dx_1=-\frac{\frac{\partial R}{\partial x_2}}{\frac{\partial R}{\partial x_1}}dx_2

그러므로 우리는 아직 두번째 변수의 미소변화량을 마음대로 변화시킬 수 있다.

\text{Therefore under this restriction, we can freely choose }dx_2\\\frac{\partial R}{\partial x_1}dx_1+\frac{\partial R}{\partial x_2}dx_2=0

그런데 만약 상수 alpha를 잘 잡아서 다음 값이 0이 된다고 가정해보자.

\text{Assume we choose }\alpha\text{ so that}\\\frac{\partial R}{\partial x_1}-\alpha\frac{\partial G}{\partial x_1}=0\\\text{Then }dR-\alpha dG =0 \text{ reduces to}\\\left[\frac{\partial R}{\partial x_2}-\alpha\frac{\partial G}{\partial x_2}\right]dx_2=0\\\text{As we are free to choose }dx_2 \text{, we must conclude that}\\\frac{\partial R}{\partial x_2}-\alpha\frac{\partial G}{\partial x_2}\text{ must be zero as well}

라그랑주 승수법의 원리가 여기에 있다. 대략적인 논의는 여기까지. 변수 2개에서 n개로, 제한조건 1개에서 m개로의 확장은 안 해도 되겠지...

'Mathematics' 카테고리의 다른 글

개드립의 마지막 정리  (0) 2013.10.29
델타 분포 만들기  (6) 2012.08.23
경계조건의 중요성 - Boundary condition  (2) 2010.08.21
Involute 곡선  (10) 2010.05.01
수학의 아름다움  (2) 2010.04.24
Posted by 덱스터
Feynman Lectures 3권의 21-6 소챕터는 The Meissner effect라는 제목을 가지고 있다. 마이즈너 효과라고 초전도체가 모든 자기장을 외부로 밀어내는(?) 현상을 말하는 것인데, 자기부상열차에 응용하려는 움직임도 있다. 하지만 이 챕터를 내가 끌어오는 것은 중간에 잘못된 설명이 있어서이다.

[...] Now the only way that \nabla^2\theta can be zero everywhere inside the lump of metal is for \theta to be a constant. [...]
-Feynman Lectures III, 21-9

어느 스칼라 함수의 라플라시안(Laplacian)이 항등적으로 0일 조건은 그 스칼라 함수가 상수일 때가 아니다. 먼저 가장 간단한 반례.

f(x,y)=e^y\cos x\\\nabla^2f=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)f=0

물론 라플라시안이 0인 스칼라 함수는 이것 말고도 엄청나게 많다. 만약 위에서 사용된 금속 덩어리가 원통형이라면 다음과 같은 분포도 라플라시안이 0이 됨을 보일 수 있다. 보이는 계산은 다소 복잡하지만 말이다.

\theta(\rho,\phi,z)= J_1(\rho)\cos\phi\cosh z

J_1은 1종 베셀함수(Bessel function)에서 1차(order 1)인 경우이다. 수많은 공대생의 적 베셀함수가 등장하기는 했지만 용서하시길.(...) 그리고 위의 식은 원점 부근에서 발산하지 않기 때문에 충분히 사용 가능하다. 그렇다면 어째서 파인만이 저런 말을 한 것일까? 사실, 완전히 틀린 말은 아니다. 경계조건을 상수로 주면 라플라시안이 0이 되는 방법은 스칼라 함수가 상수인 경우밖에 없기 때문이다. 이 수학적인 특징은 정전기학(electrostatics)에서 정전차폐를 설명하는 근거가 된다.


정전차폐를 제대로 이용해먹는 사례

그렇다면 여기서 증명되어야 할 것은, 경계조건을 상수로 두어도 좋다는 주장이다. \theta는 상태함수의 위상이라 그 절대적인 값은 의미가 없어 임의의 지점에 임의의 값을 대응시켜 주는 것은 자유롭지만 문제는 그 자유도는 한 점에 국한된다는 것이다. 다시 한번 말하면, 금속 표면의 한 점에서 위상을 0으로 주었다고 금속 표면 전체의 위상이 0이라는 근거는 없다. 나는 파인만씨가 다음 식(21.19)만 만족하면 되기에 게이지 자유도(gauge freedom)를 이용해 \theta를 벡터포텐셜 A로 흡수시켰다고 추측할 뿐이다.

mv=\hbar\nabla\theta-q\bold A~~~~~~~~\text{(21.19)}

'Mathematics' 카테고리의 다른 글

델타 분포 만들기  (6) 2012.08.23
Lagrange Multipliers - 라그랑주 승수법  (7) 2011.01.16
Involute 곡선  (10) 2010.05.01
수학의 아름다움  (2) 2010.04.24
Power set, again  (0) 2010.04.17
Posted by 덱스터

2010. 4. 24. 16:00 Mathematics

수학의 아름다움



Nature by Numbers from Cristóbal Vila on Vimeo.



몇몇은 새로 보기도 하고 몇몇은 이렇게 보니까 이해되기도 하고...

조금은 다른 이야기지만, 우리가 일반적으로 아는 것과는 달리 자연현상에 수학을 도입했던 것은 뉴턴이 처음이 아니라 고대 그리스까지 거슬러 올라간다고 한다. 그때는 4원소설이 지배하던 시기였는데, 각각의 원소마다 정다면체 하나씩을 배정하고(그때까지만 해도 정12면체는 발견이 안 되었다고 한다) 그 원소들이 움직이는 성질에 따라 자연을 설명하려고 했던 것이다.[각주:1] 실제로 아래 그림과 같이 신이 컴퍼스를 들고 있는 그림이 중세에도 있었다는 것은 이런 전통이 상당히 오래되었다는 것을 알 수 있다. 어떻게 보면 인간 추상능력의 최극단에 서 있는 수학이 자연을 기술하는데 사용되지 않는다는 것이 더 이상할지도 모른다.


그러면 뉴턴이 한 일은 무엇인가? 뉴턴이 한 일은 자연현상을 설명하는데 수학적인 설명에서 그친 것이 아니라 '직접 숫자를 도입'한 것이다. 별 것 아닌 것처럼 보이지만 사실 여기에서 물리가 출발했다. 그리고 '숫자를 가지고 자연을 설명한다'는 아직도 물리라는 학문의 정의이다. 그런데 왜 수학을 이야기하다가 물리로 넘어온거지?
  1. Max Jammer, Concepts of Space. 책을 읽다 말은데다가 위치도 기억이 안 나는데 구글신은 15페이지라고 하신다. 찬양하라 구글! [본문으로]

'Mathematics' 카테고리의 다른 글

경계조건의 중요성 - Boundary condition  (2) 2010.08.21
Involute 곡선  (10) 2010.05.01
Power set, again  (0) 2010.04.17
무한대와 무한대가 만났을 때  (4) 2010.04.13
Power Set에 대한 잡담  (10) 2010.03.15
Posted by 덱스터
당장 수중에 책이 없어서 확인하지는 못하겠지만, 동화(?) 『수학귀신』의 9번째 장에는 아픈 아이의 방에 무한히 많은 숫자들이 몰려드는 이야기가 나온다. 이때 수학귀신이 한마디 던진다. '여기 중에서 제일 많은 숫자는 누구일까?'

이제 와서 돌이켜보면 무한히 많은 원소를 가지는 집합들의 크기를 비교하는 방법을 다룬 이야기였다. 1부터 5까지의 범위 안에 있는 자연수의 수와 홀수의 수는 확실히 비교할 수 있다. 하지만 우리가 다루는 구간이 무한히 나아간다면 어떨까? 얼핏 생각한다면 홀수가 더 적어 보인다. 홀수의 집합은 자연수의 집합의 부분집합이기 때문이다. 그런데 문제는 무한이라는 수(?)는 그 자체로 대소를 비교할 수 없다는 것이다.

문제를 조금 바꾸어서, 셋까지만 셀 수 있는 사람이 수만명으로 이루어진 두 집단의 크기를 비교하는 것으로 바꾸어 보자. 어떤 방법을 쓰면 두 집단을 비교할 수 있을까? 가장 간단한 방법은 서로 다른 집단의 한 사람과 손을 잡도록 시킨 후, 손이 빈 사람이 있는지 살펴보는 것이다. 두 집단을 편의상 갑과 을이라고 부른다면, 갑 집단의 사람이 많다면 갑 사람 중 손이 을 사람을 찾아 헤메는 사람이 있을 것이고 을 집단의 사람이 많다면 그 반대일 것이다.

물론 우리는 꽤 큰 숫자까지 셀 수 있다. 하지만 그 수를 무한과 비교해본다면, 수만 중 셋조차도 되지 못한다. 따라서 숫자 집합의 크기를 비교할 때에는 고민할 수 밖에 없다. 어떻게 해야 그 둘을 비교할 수 있을까? 앞선 문제에서 이미 눈치를 챈 독자도 있겠지만 나처럼 눈치가 매우 없는 사람들을 위해서 설명하자면, 그 숫자를 서로 묶어주는 것이다. 한 집단의 모든 원소에 대해 다른 집단의 원소를 묶어줄 수 있다면, 두 집단의 크기는 동일하다. 간단하게 자연수와 홀수를 비교해보자.


우리의 직관은 이렇게 홀수(아랫줄)구간에 빈 자리가 생기기 때문에 홀수가 당연히 더 적을 것이라고 생각한다. 하지만 과연 그럴까? 이번에는 이렇게 줄세워보자.


이번엔 자연수(윗줄)이 적어 보인다. 보이는 것이 전부는 아닌 것이다. 어떻게 해야 크기를 제대로 비교할 수 있을까? 답은 이렇다. '어떻게 줄을 세우더라도 한 쪽이 남는다면, 그 쪽이 크다' 자연수와 홀수는 이렇게 줄세우면 양쪽이 하나도 남지 않게 할 수 있다.


이런 식으로 끝까지(?) 나아갈 때, 나오지 않는 자연수와 홀수는 존재하지 않는다. 따라서 자연수와 홀수 집합의 크기는 동일하다. 이런 식으로 모든 소수의 집합과 모든 정수의 집합, 모든 유리수의 집합과 모든 제곱수의 집합 등이 전부 자연수 집합과 동등한 크기를 갖는다는 것을 증명할 수 있다.

유리수를 세는 방식. 2/2는 지워야 하겠지만 규칙성을 볼 수 있도록 놓아두었다.
분모와 분자의 합을 일정하게 하고 분모를 하나 뺀 뒤 분자를 하나 더하는 방식이다.

하지만 실수가 출동하면 어떨까?

나는 구식이다 OTL

실수 전체와 자연수를 비교하려면 힘이 매우 많이 든다. 먼저 0과 1 사이에 존재하는 모든 실수에 대해서만 자연수와 비교하도록 하자. 시작할때는 널럴하게 아무 실수나(전에 나온 것을 빼고) 골라서 자연수와 연결해준다. 다음처럼 말이다.


이대로라면 모든 실수를 연결해 줄 수 있을것만 같다는 기분이 든다. 과연 그럴까? 다음 실수가 자연수와 연결되었는지 확인해보자.

소수점 첫 째 자리는 1과 연결된 실수의 소수점 첫 째 자리와 다르고
소수점 둘 째 자리는 2와 연결된 실수의 소수점 둘 째 자리와 다르고
소수점 셋 째 자리는 3과 연결된 실수의 소수점 셋 째 자리와 다르고
소수점 넷 째 자리는 4와 연결된 실수의 소수점 넷 째 자리와 다르고
[...]
위에서의 예: 0.32436....

실수는 소수점 아래 무한한 자리의 숫자가 있고, 위의 실수는 지금 연결된 모든 실수와 최소한 한 자리는 차이가 나기 때문에 자연수와 전혀 연결되지 않았다. 그렇다면 이 수를 먼저 연결해주면 될 것 아닌가? 그런데 그러면 위와 같은 방법으로 구한 또 다른 수가 생길 것이고, 결국 어떤 방법을 쓰더라도 실수와 자연수를 연결하면 실수가 남는다는 것을 알 수 있다.(지금 실수는 0과 1 사이에서만 생각하고 있었다는 것을 생각하면 까마득하다.) 더군다나 이런 방식을 응용해서 찾을 수 있는 소수는 무수히 많다. 어떻게 연결해 주더라도 실수 중에서는 자연수 짝을 찾지 못한 솔로부대가 존재해야만 한다는 것이다.(그것도 매우 많이) 우리는 결국 실수의 집합은 자연수의 집합보다 크다는 결론을 내릴 수 밖에 없다.[각주:1]

우리는 지금까지 무한대의 크기를 비교했다. '실수 집합의 원소의 수'라는 무한과 '자연수 집합의 원소의 수'라는 무한 사이에는 같은 무한이더라도 분명한 크기 차이가 존재한다는 것을 보였다. 그렇다면 두 무한 사이에 존재하는 무한도 있을 수 있을까? 이 문제는 힐베르트의 난제중 하나(1번)이다. 이미 그 해답은 얻어졌지만, 공부를 안해서귀찮은 관계로 이 문제는 기약없는 다음으로 미루어두기로 한다.



20100304 추가
이 정리는 칸토르의 작품이었다고 한다. 좀 더 엄밀한 정리.
  1. 첨언하자면 무리수의 집합 중 근(root)으로 나타낼 수 있는 수들의 집합은 자연수의 집합과 같은 크기를 갖는다. 왜 그런지는 독자들의 몫으로 남겨둔다. 힌트: 모든 근으로 이루어진 수들은 정수를 계수로 갖는 다항식의 해이다. [본문으로]

'Mathematics' 카테고리의 다른 글

선형대수와 행렬  (0) 2010.02.04
루빅스로 배우는 군론  (0) 2010.01.27
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
Fourier 변환의 고유함수  (0) 2009.12.15
Posted by 덱스터

2009. 12. 15. 19:36 Mathematics

각종 변환들

좌표변환과 같이 물리적인 의미가 있는 변환 말고 수학적인 변환 위주로 정리.

1. Legendre 변환
고전역학에서는 Hamiltonian에 쓰인다. 열역학에서도 Enthalpy나 Gibbs 자유에너지, Helmholtz 에너지 등에서 나타난다. 미분방정식에서 변수를 바꾸는 데 이용한다.

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=d%5Ceta%3DFd%5Cphi%2BGd%5Cpsi%5C%5CF%5Cequiv%5Cfrac%7B%5Cpartial%5Ceta%7D%7B%5Cpartial%5Cphi%7D%2C~G%5Cequiv%5Cfrac%7B%5Cpartial%5Ceta%7D%7B%5Cpartial%5Cpsi%7D

여기서 http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cpi%5Cequiv%5Ceta-G%5Cpsi라고 정의해주면

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=d%5Cpi%3Dd%5Ceta-d(G%5Cpsi)%3DFd%5Cphi%2BGd%5Cpsi-%5Cpsi%7BdG%7D-Gd%5Cpsi%5C%5Cd%5Cpi%3DFd%5Cphi-%5Cpsi%7BdG%7D

이처럼 변수가 바뀌게 된다.


2. Fourier 변환
파동역학 쪽에서 주로 쓰는듯. 양자역학에서는 basis를 위치에서 운동량으로(또는 역으로) 바꿀 때 이용한다. FFT(Fast Fourier Transform)이라고 해서 소리 정보를 디지털 정보로 변환해 저장하는 데 응용하기도 하는 것 같다. 진동 쪽에서도 공명주파수를 구하기 위해 쓰이는 것 같으나 자세한 것은 불명.

기본적으로는 Fourier series에서 주기를 무한대로 확장한 것이다. 때문에 전체구간에서 적분한 값이 존재하지 않으면 쓸 수 없다. 변수는 실수.

 \hat{f}(\omega) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) e^{- i\omega\cdot x}\,dx f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \hat{f}(\omega) e^{ i\omega \cdot x}\,d\omega.
Wikipedia: Fourier transform

위는 일반적인 n차원에서 Fourier 변환을 나타낸다.[각주:1] 위의 것은 Fourier 변환, 아래 것은 역 Fourier 변환이라고 불린다. 변환시킨 것을 다시 되돌려 놓는다는 의미. 기타 다른 방법으로 쓸 수도 있지만, 이 방법이 대칭성이 보기 좋아 주로 쓰이는 것 같다.

미분방정식을 푸는데 쓸 수 있다. 역변환이 더럽긴 하지만. 여기를 참조.

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cmathcal%7BF%7D%5Cleft%5C%7B%5Cfrac%7Bd%5Enf(x)%7D%7Bdx%5En%7D%5Cright%5C%7D%3D(i%5Comega)%5En%5Chat%7Bf%7D(%5Comega)

위의 관계식을 이용해서(부분적분으로 증명할 수 있느나 생략) 미분방정식을 단순한 대수방정식으로 바꾸는 것이다. 경우에 따라서는 convolution도 이용해야 하는 것 같지만...

예시:
http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cfrac%7Bd%5E2%20f(x)%7D%7Bdx%5E2%7D%20%2BA%5Cfrac%7Bdf(x)%7D%7Bdx%7D%2BBf(x)%3Dg(x)%0A%5C%5C(-%5Comega%5E2%2BAi%5Comega%2BB)%5Chat%7Bf%7D(%5Comega)%3D%5Chat%7Bg%7D(%5Comega)


3. Laplace 변환
신호쪽에서 쓴다고는 하지만, 사실 어디서 쓰는지 잘 모른다(...). 듣기로는 Fourier 변환의 확장이라고... 특징이라면 Fourier 변환이 함수가 무한대에서 발산하지 않을 것을 요구하지만 여기서는 그런거 없다는 것 정도? 대신 적분구간이 음의 무한이 아니라 0부터 무한이다.(일반적인 경우는 그렇지만, 전체 구간으로 확장하는 경우도 있는듯 하다.)

F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt.
Wikipedia: Laplace transform

s는 복소수라고 한다.(그런데 난 그렇게 배운 기억이 없다. 뭐지?)[각주:2]

마찬가지로 미분방정식을 푸는데 쓸 수 있다. 역시 여기 참조. 따로 역변환이 있다고 배운 기억이 없기 때문에 얻어진 변환의 함수꼴을 보고 원래 함수를 추정한다.(적어도 Kreyzig 책에서는 그렇게 푼다.)[각주:3]

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cmathcal%7BL%7D%5C%7Bf%27(t)%5C%7D%3Ds%20F(s)%20-%20f(0)

예시는 귀찮으니까 여기로...
최근 글인 2009/12/17 - Laplace 변환을 이용한 미분방정식 풀이참조.


4. Gauge 변환
전자기에서 등장. 듣기로는 핵력에서도 쓰인다는데, 배우지 못한 관계로 생략. 일종의 '기준점을 선택할 자유도'이다. 자세히 적는건 나중에... 그동안은 여기서..



시간나는 대로 추가할 생각이다.
  1. 귀찮아서 복소 Fourier변환만 다루었다. cosine이나 sine만 쓰는 경우도 있으니 조심. 그런데 사실 복소로 다 해먹을 수 있어서(...) [본문으로]
  2. s가 복소수라면, s가 허수부를 따라서만 이동할 때 확실히 Fourier변환이 맞기는 하다. [본문으로]
  3. 그런데 실제 역변환이 존재하는 것으로 보아서 복소변수함수의 적분을 배우지 않았기 때문인지도 모르겠다. 하지만, 역변환에서 contour 적분이 필요한 것으로 보아서는 계산 자체는 동일한듯. [본문으로]

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
Fourier 변환의 고유함수  (0) 2009.12.15
적분놀이  (0) 2009.12.05
Tensor(1)  (2) 2009.10.16
Posted by 덱스터
1시간 15분짜리 시험을 보았습니다. 수학 시험이죠.

행렬을 더럽게 꼬아서 낸 문제는 그렇다고 칩시다.(계산하는데 시간이 좀 걸리긴 했지만...)

Euler angle을 이용한 회전행렬을 구하는 문제도 뭐 그럴 수 있다고 합시다.(3x3 행렬 셋을 곱하는 것 정도야...(?))

6번 문제: 다음 미분방정식을 풀어라.

 (1-x^2)(d^2y)/(dx^2)-2x(dy)/(dx)+l(l+1)y=0,

(실제 식에서는 전체에 -1이 곱해져 있고 y가 R로, x가 r로 바뀌어 있었음)


Rodrigues' formula는 알고 있었지만 이걸 풀라고요?(결국 시간 부족으로 GG)[각주:1]

파워시리즈 문제(무려 한 문제나 더 있었다!) 두개가 1시간 15분짜리 시험에 나온다는게 말이 되냐고요 OTL

그런데 조교 曰 '교수님이 푸시는데 걸린 시간을 보고 시간을 정한겁니다'


역시 교수님들은 인간이 아니었던건가 OTL

1학년때부터 느끼는 거지만, 교수님이 작정하시면 학생은 죽어야 합니다 OTL
  1. 그런데 생각해보니까 저 공식은 l이 자연수일때만 되잖아? 우린 안될꺼야 아마... [본문으로]

'Daily lives' 카테고리의 다른 글

책을 읽다가  (0) 2009.12.21
불태웠어...  (4) 2009.12.18
구 안밖 뒤집기  (2) 2009.12.04
AIDS와 자연선택, 그리고 간단한 통계  (0) 2009.12.02
레알 우로보로스  (0) 2009.12.01
Posted by 덱스터

2009. 12. 5. 01:04 Mathematics

적분놀이

Griffith 양자책은 수학적인 설명은 살짝 불친절한것 같다. 하긴, 양자역학 책인데(...)

오늘 살펴볼 적분.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi

Time dependent perturbation에 등장하는 적분이다.
먼저, 부분적분.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx - \left[\frac{\sin^2 x}x \right]_{-\infty}^\infty

뒷항은 안드로메다로 날려버리고 나면(0이니까)

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx

그런데 잘 보면

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx =\int_{-\infty}^{\infty}\frac{\sin 2x}x dx = \int_{-\infty}^{\infty}\frac{\sin y}y dy

(y=2x) 이다. 이제 문제는 Dirichlet integral이다.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty}\frac{\sin y}y dy = 2\int_{0}^{\infty}\frac{\sin x}x dx = \pi

Diriclet integral의 증명은 생략. 부분적분을 잘 꼬으면 Residue를 쓸 수 있을 것 같기도 한데....

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
Fourier 변환의 고유함수  (0) 2009.12.15
Tensor(1)  (2) 2009.10.16
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.3
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

최근에 올라온 글

최근에 달린 댓글

글 보관함