입자물리에서 표준모형(standard model)이란 현재 우리가 알고 있는 모형 중 가장 자연을 잘 기술하는 모형을 의미합니다. 물리학에 관심이 있으시다면 들어보셨을 네 개의 힘과 쿼크, 중성미자 등등이 이 표준모형을 구성하고 있죠. 그리고 대부분의 (입자)물리학자들의 꿈은 표준모형을 넘어서는 것입니다. 그래야 교과서에도 기록되고 운이 좋으면 노벨상도 받는 영광을 누릴 수 있을 테니까요. 그렇다면 현재 알려진 가장 정확한 자연에 대한 기술이 실패하고 있는 지점은 어디일까요?


표준모형이 자연을 기술하는데 실패하고 있는 지점은 의외로 많으며, 그 중 하나는 뮤온의 이상자기모멘트(anomalous magnetic moment)입니다. 뮤온은 경입자(lepton)의 하나로, 전자의 무거운 형제라고 생각하시면 얼추 맞습니다. 현재(2018년 12월) 위키백과의 해당 페이지에서 인용하고 있는 측정된 뮤온의 이상자기모멘트는 다음과 같습니다.

\[a_\mu = 0.001~165~920~9(6)\]


반면에 표준모형이 예측하는 뮤온의 이상자기모멘트는 다음과 같죠.

\[a_\mu^{SM} = 0.001~165~918~04(51)\]


두 값은 약 3.5 표준편차만큼의 차이를 보입니다. 3.5 표준편차는 두 값이 실제로 같았을 경우 1/1000보다도 작은 확률로 이런 차이를 보여야 한다는 의미로, 실험이 어딘가 잘못되었거나 우리가 가진 이론이 어딘가 잘못되었을 가능성이 높다는 정황증거가 되지요. 현재 페르미랩(Fermilab)에서는 이 차이가 실존하는지 검증하기 위한 정밀측정 실험이 진행되고 있습니다.




이상자기모멘트가 흥미로운 관측량이라는 것은 알겠는데, 그래서 이상자기모멘트란 무엇일까요? 이상자기모멘트를 이해하기 위해서는 각운동량과 자기모멘트에 대한 이해가 선행되어야 하므로, 우선은 이 둘에 대한 이야기를 해보도록 하죠.


물리학은 정량적인 측정량을 정성적인 측정량보다 우선시하는 학문입니다. 그러므로 다루고자 하는 대상의 특성을 숫자로 만드는 것이 중요하죠. 예컨대 운동량(momentum)이란 물체가 얼마나 격하게 일정한 방향으로 움직이고 있는지 그 양을 계량화한 것을 의미합니다. 같은 물체라도 더 빠르게 움직이고 있다면 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 가질 것이고, 같은 속도로 움직이고 있는 두 물체라도 더 무거운 물체가 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 갖는 식이죠. 물론 물체는 일정한 방향으로 움직이지만은 않습니다. 팽이와 같이 한 자리에서 뱅그르르 도는 운동을 하는 경우도 있지요. 이런 회전운동을 계량하기 위해 만들어진 물리량이 각운동량(angular momentum)입니다.


각운동량은 자신이 잡은 기준점에 대해 상대적으로 움직이기 때문에 갖는 오비탈 각운동량(orbital angular momentum)과 그 물체가 스스로 회전하기 때문에 갖는 스핀(spin)이란 두 값으로 분류할 수 있습니다. 흥미롭게도 우리가 아무런 내부구조도 없는 순수한 점으로 취급하는 전자와 같은 기본입자들조차 스핀을 가지며, 기본입자들이 어떤 스핀을 가지는가는 우리가 보고 있는 우주의 형성에 큰 영향을 미치고 있습니다. 물론 아무것도 없는 점이 회전하고 있다고 생각할 수는 없으므로 '전자가 회전하고 있다'는 설명을 너무 곧이곧대로 받아들여서는 안되고, '어떤 이유인지는 모르겠으나 전자는 고유한 각운동량을 갖는다'고 이해하시는 것이 좋겠습니다. 이제 이 모든 이야기의 출발점이 되었던 이상자기모멘트로 돌아오면, 이상자기모멘트는 입자가 갖는 스핀으로부터 예상되는 자기모멘트가 그 측정값으로부터 얼마나 벗어나는지를 나타내는 값입니다. 이제 자기모멘트에 대해 이야기할 시간이 되었군요.


자석 중에는 전기의 힘으로 자력을 발휘하는 전자석이란 물건이 있습니다. 전자석은 전하를 가진 물체가 움직여서 전류를 만들면 그 전류에 의해 자기장이 발생하는 원리를 이용한 자석입니다. 물론 대부분의 전자석처럼 전하가 크게 도는 운동을 해야만 자석이 만들어지는 것은 아닙니다. 전하가 제자리에서 뱅글뱅글 도는 것으로도 자석이 만들어질 수 있지요. 이렇게 회전하는 대전된[각주:1] 물체가 자신의 회전운동으로 만들어내는 작은 자석을 계량화한 값이 자기모멘트입니다. 그리고 자기모멘트는 회전운동으로부터 만들어졌으므로, 어떤 물체의 자기모멘트는 그 물체의 스핀과 비례할 것이라고 예상할 수 있습니다. 이 예상을 반영하여 한 물체의 자기모멘트를 그 물체의 스핀으로 나눈 것을 자기회전비율(gyromagnetic ratio)이라고 부르며, 랑데 g 인자(Landé g-factor)는 자기회전비율을 기본입자를 기술하기에 유용한 단위로 측정한 값을 의미합니다. 물론 이 이야기에는 기본입자인 전자나 뮤온도 포함되며, 앞서 잠깐 이야기했듯이 뮤온 자기회전비율의 이론으로 계산한 값과 실험으로 측정한 값 사이의 불일치는 현대물리가 마주하고 있는 가장 큰 문제 중 하나이기도 합니다.




그렇다면 가장 '자연스러운' 자기회전비율은 얼마일까요? 여기에 답하기 위해서는 기본입자들의 스핀에 대해서 좀 더 이해해야 할 필요가 있습니다.


앞서 우리는 기본입자들 또한 스핀을 가질 수 있다는 사실을 배웠습니다. 그렇다면 기본입자들은 아무런 스핀이나 가질 수 있는 것일까요? 물론 여기에 대한 대답은 '아니오'입니다. 현재 알려진 기본입자들은 스핀이 1(글루온/광자/W,Z 보손)이거나 1/2(쿼크/전자/중성미자 등), 혹은 최근 발견되어 누구나 이름은 들어본 적이 있는 힉스 입자처럼 0입니다. 일반적으로 양자역학에 따르면 스핀은 정수(0,1,2 등)거나 반정수(1/2,3/2,5/2 등)를 가져야만 하죠. 여기에서 스핀을 단순한 숫자로 적기는 했지만, 각운동량은 단순한 숫자가 아니라 어떤 단위로 계량되는 값이기에 실제 스핀은 $\hbar$로 쓰는 디락 상수를 단위로 잰 값이라고 생각하셔야 합니다.


흥미로운 점은 기본입자들이 전자기적으로 상호작용한다는 것을 반영하는 최소한의 조건(이를 minimal coupling이라 부릅니다)을 요구할 경우 스핀 1/2 입자를 기술하는 방정식인 디락방정식으로부터 g 인자의 값이 2여야 한다는 결론을 얻게 된다는 것입니다. 앞서 이야기했던 이상자기모멘트란 실제 g 인자의 값이 2에서 얼마나 벗어나는지를 잰 것으로, g 인자의 값은는 양자역학적인 효과에 의해 예측된 값인 2로부터 벗어나게 됩니다. 이상자기모멘트가 적어도 소수점 셋째 자리에서 시작한다는 것은 그만큼 양자역학적인 효과를 무시해도 좋으며, 많은 경우 g 인자의 값을 2로 취급해도 문제가 없다는 것을 의미하죠. 그렇다면 다른 입자의 경우에는 어떨까요?


Belinfante는 디락방정식의 선례를 따라 minimal coupling을 요구할 경우 스핀이 s인 기본입자는 g 인자의 값으로 1/s를 갖는다는 가설을 내놓은 적이 있습니다. s에 1/2를 대입할 경우 우리가 잘 아는 전자나 뮤온의 g=2라는 결론을 얻게 되죠. 그렇다면 다른 스핀을 갖는 기본입자의 경우는 어떨까요? 현재 표준모형에 남아있는 전하를 가지면서 스핀이 1/2이 아닌 입자로는 W 보손이 있으며, W 보손의 g 인자는 2.11[각주:2]정도인 것으로 알려져 있습니다. 그리고 W 보손의 스핀은 1이죠. 따라서 자연스러운 자기회전비율은 g=1/s란 Belinfante의 가설은 벌써부터 반례와 마주하게 되죠. 그래서, 가장 자연스러운 값은 무엇일까요?


W 보손의 g 인자 값이 2에 가깝다는 실험결과에 대해서 들으신 다음이라면 '가장 자연스러운 g 인자의 값은 2가 아닐까?'란 의심을 해볼 수 있겠지요. 흥미롭게도 이 단순무식한 답이 실제 답일 가능성이 높습니다. Holstein은 다음과 같은 정황근거를 제시합니다.[각주:3]


1) 고에너지 콤프턴 산란(Compton scattering)이 좋은 성질을 갖기 위해서 필요한 값이다.

2) GDH 합 규칙(sum rule)이 자연스럽게 측정하는 값이다.

3) 중력자 산란과 광자 산란 사이의 KLT 관계를 자연스럽게 반영하기 위해 필요한 값이다.

4) 열린 끈이론(open string theory)으로부터 예측되는 값이다.

5) 일반상대론에서 전기장의 영향 아래 움직이는 입자의 스핀을 기술하는 BMT 방정식이 가장 간단해지는 값이다.

6) 전하가 있는 회전하는 블랙홀(Kerr-Newman)을 점입자로 취급하는 극한에서 얻는 값이다.


위 목록의 흥미로운 점이라면 중력이 등장한다는 것입니다. 1번과 2번을 제외하면 모두 중력과 접점을 갖고 있습니다; 중력자 산란이나 일반상대론, 블랙홀은 당연히 중력과 떼려 해도 뗄 수 없는 관계이며, 끈이론의 경우에는 닫힌 끈(closed string)을 자연스럽게 고려하면서 닫힌 끈의 한 상태인 중력자를 이야기할 수 밖에 없게 되지요. 표준모형에서는 일반적으로 중력을 다른 힘들과 같은 위치에 두고 다루지는 않기 때문에 은근슬쩍 나타난 중력은 예상 밖의 등장이라고 할 수 있겠습니다. 하지만 예상 밖의 등장이라고 해서 그것이 우연이라고 단정할 수는 없는 법이죠.




이 포스트의 제목인 중력과 자기회전비율의 관계를 이야기하려면 이 관계가 가장 명확하게 드러나는 새로운 기술법으로부터 출발하는 편이 좋겠습니다. 주인공은 스피너-헬리시티 변수(spinor-helicity variable)입니다.


스피너-헬리시티 변수는 우리가 사는 세계인 3+1차원의 세계에서 회전을 기술하는 군인 $SO(1,3)$군이 행렬식이 1인 $2 \times 2$ 복소행렬들의 집합인 $SL(2,\mathbb{C})$군으로 확장될 수 있다는 사실에서 출발합니다. 표준적인 양자역학을 따른다면 우리가 다루는 모든 상태(state)는 이 $SL(2,\mathbb{C})$군의 표현(representation) 중 하나로 수렴해야 하죠. 스피너-헬리시티 변수는 단순히 모든 상태를 $SL(2,\mathbb{C})$군의 가장 기본적인 표현(fundamental representation)과 그 켤레복소수(complex conjugate)에 해당하는 표현만을 이용해 기술하는 것을 의미합니다. 이 모든 전문적인 내용을 이해하지 못하셨다면 단순히 '최대한 군더더기를 없애고 입자들의 상태를 표현하는 방법'이라고 생각하셔도 좋습니다.


최근까지만 해도 스피너-헬리시티 변수는 질량이 없는 입자에 대해서만 그 기술법이 알려져 있었습니다. 이 변수가 질량이 있는 입자에 대해서도 쓸 수 있도록 확장된 것은 채 2년이 지나지 않았죠. 이 변수를 쓰게 되면 여태 이야기한 g 인자와 중력과의 관계를 더욱 쉽게 이해할 수 있게 됩니다. 이제부터 우리가 주로 다룰 문제는 다음 파인만 도표(Feynman diagram)으로 나타낼 수 있으며, 질량이 있는 입자(검은 선)가 질량이 없는 입자(연파랑 물결선)를 방출하는 과정에 대한 산란진폭(amplitude)입니다. 산란진폭이란 산란실험의 중요한 물리량인 산란단면적을 계산하기 위해 필요한 물리량으로, 자세한 설명을 다루기에는 이 글이 너무 길어지므로 다른 글에서 설명하도록[각주:4] 하겠습니다. 또한 산란진폭 업계의 표준을 따라 모든 운동량은 들어오는(incoming) 방향으로 취급하도록 하겠습니다.

입자 셋을 다루는 파인만 도표


자세한 설명은 논문으로 넘기기로 하고 결과만 적어보면, 위와 같은 일반적인 입자 셋의 산란진폭은 다음과 같은 꼴로 적을 수 있습니다. 여기서 질량이 있는 입자는 질량 m에 스핀 s인 입자라고 가정하였으며[각주:5], 질량이 없는 입자의 헬리시티는[각주:6] h로 가정하였습니다.

\[ M_3^{h} = (mx)^h \left[ g_0 \frac{\langle {\bf 21} \rangle^{2s}}{m^{2s-1}} + g_1 x^{1} \frac{\langle {\bf 21} \rangle^{2s-1} \langle {\bf 2} 3 \rangle \langle 3 {\bf 1} \rangle}{m^{2s}} + \cdots + g_{2s} x^{2s} \frac{\langle {\bf 2} 3 \rangle^{2s} \langle 3 {\bf 1} \rangle^{2s}}{m^{4s-1}} \right] \]


이 산란진폭을 보면 총 2s개의 파라메터 $g_i$가 등장하며, 모두 각자의 해석이 존재합니다. 예컨대 질량이 없는 입자의 헬리시티를 h=1로 둘 경우 이 산란진폭은 입자가 전자기적으로 어떻게 반응하는지를 나타내며[각주:7], 첫번째 파라메터인 $g_0$는 입자의 전하량을 결정합니다. 흥미로운 점은 두번째 파라메터인 $g_1$인데, 이 경우 $g_1$은 g 인자를 결정하는 역할을 하며, $g_1$이 0이여야만 g 인자의 값이 2가 됩니다. 어떤 의미에서는 $g_0$만 남기고 나머지 파라메터를 전부 0으로 결정한 $M_3 = x \langle {\bf 21} \rangle^{2s}$이 가장 단순하고 자연스럽다고 할 수 있으니[각주:8] 이런 관점에서도 g=2가 가장 자연스러운 자기회전비율이라고 주장할 수 있겠지요.


위의 산란진폭에서 질량이 없는 입자의 헬리시티를 h=2로 둘 경우 이 산란진폭은 입자가 중력과 어떻게 상호작용하는지를 나타내게 됩니다[각주:9]. 흥미롭게도 중력이 입자의 질량과 상호작용하는 방식이 정해져 있을 뿐만 아니라 스핀과도 상호작용하는 방식이 정해져 있다는 성질에 의해 $g_1$이 0 이외의 값을 가지는 것은 금지되어 있습니다. g 인자가 자연스러운 값 2를 갖기 위해서는 $g_1$이 0이어야 한다는 사실을 의식할 수 밖에 없는 결과이지요. 그리고 실제로도 둘은 관련이 있습니다.




1986년 Kawai-Lewellen-Tye 세 사람은 (끈이론의 맥락 안에서) 중력자를 포함한 산란진폭을 글루온만 있는 산란진폭의 (적절한 처리를 거친) 제곱으로 쓸 수 있다는 사실을 발견합니다. 이를 KLT 관계라고 부르며, 이 관계를 양자효과를 고려한 경우까지 확장한 것을 BCJ(Bern-Carrasco-Johannsson) 관계라고 부릅니다. 이런 관련성은 색-운동학 이중성(colour-kinematics duality), 중력은 양밀 제곱 (GR=YM^2), 혹은 더블 카피 (double copy) 관계라는 이름을 쓰기도 합니다. 위에서 Holstein이 언급한 g=2에 대한 여섯가지 정황증거 중 세번째 정황증거가 이 관계를 이용하죠.


글루온은 양밀이론(Yang-Mills theory)의 스핀 1인 질량이 없는 입자를 지칭하는 말로, 우리가 아는 전자기력의 광자와 닮은 사촌이라고 생각하셔도 좋습니다. 따라서 KLT 관계는 광자를 포함한 산란진폭을 적절한 처리를 거쳐 제곱하면 중력자를 포함한 산란진폭으로 바꿀 수 있다는 것을 의미한다고 볼 수 있지요. 어째서 KLT 세 사람이 이런 관련성을 알아내게 되었는지 이해하기 위해서는 끈이론에서 중력과 양밀이론이 어떻게 구현되는지 알아야 합니다.


끈이론에서 입자는 끈의 각기 다른 진동 모드로 구현됩니다. 진동 모드란 끈이 얼마나 격하게 진동하는가를 나타내는 것으로, 대체로 진동이 격해질수록 그 진동 모드에 해당하는 입자의 질량과 스핀이 증가하게 됩니다. 둘은 진동이 격해짐에 따라 서로 비례해서 증가하는 모습을 보이는데, 이를 레제 궤적(Regge trajectory)이라고 부릅니다. 레제 궤적은 핵물리 발전 초창기에 강한 핵력을 통해 상호작용하는 입자들의 스핀과 질량 사이에 선형(linear)[각주:10] 관계가 존재한다는 관찰을 바탕으로 세워진 가설인데, 끈이론의 태동기에는 끈이론이 레제 궤적을 만들어낸다는 사실 때문에 많은 사람들이 끈이론을 가망있는 핵물리 모형으로 여기고 뛰어들게 되었죠.


각기 다른 진동 모드. N이 클 수록 격렬하게 진동하고 스핀과 질량이 증가한다.



끈이론에서 다루는 끈의 종류는 크게 두가지로 나눌 수 있습니다; 열린 끈(open string)과 닫힌 끈(closed string)이죠. 열린 끈은 신발끈처럼 양 끝이 이어져 고리를 이루지 않는 끈을 지칭하며, 닫힌 끈은 고무줄처럼 양 끝이 이어져 고리를 이루는 끈을 말합니다. 열린 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 1인 진동 모드가 포함되며, 닫힌 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 2인 진동 모드가 포함됩니다. 따라서 열린 끈의 경우에는 질량이 없고 스핀이 1인 입자가 등장하고 닫힌 끈의 경우에는 질량이 없고 스핀이 2인 입자가 등장합니다. 질량이 없고 스핀이 1인 입자로는 글루온과 광자가 있고, 질량이 없고 스핀이 2인 입자는 중력자로 유일하다는 것이 알려져 있습니다. 따라서 열린 끈을 다루게 되면 질량 없는 스핀 1 입자가 필요한 양밀이론을 포함하게 되며, 닫힌 끈을 다루게 되면 질량 없는 스핀 2 입자가 필요한 중력을 포함하게 되지요.


흥미로운 점은 열린 끈 두 개를 가져다가 양 끝을 이으면 닫힌 끈을 만들 수 있다는 것입니다. 그리고 이런 관계에서 양밀이론의 산란진폭을 제곱하면 중력이론의 산란진폭을 얻을 수 있다는 KLT 관계가 유도됩니다. 닫힌 끈의 산란진폭은 열린 끈의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있으므로, 중력이론의 산란진폭은 양밀이론의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있다는 것이지요.


열린 끈 둘의 끝을 잇는 것으로 닫힌 끈을 만들 수 있으며, 이 성질은 KLT 관계의 근간이 됩니다.


이 모든 이야기가 앞서 도입한 스피너-헬리시티 변수와 무슨 관계가 있을까요? 우리는 입자 셋의 산란진폭에는 총 2s개의 파라메터 $g_i$가 등장할 수 있으며, 그 중 $g_1$은 광자/글루온과의 상호작용의 경우 g 인자와 밀접한 관계를 맺고 중력자와의 상호작용의 경우 항상 사라져야 한다는 것을 배웠습니다. 만약 이 입자가 광자/글루온과의 산란진폭을 제곱하는 것으로 중력자와의 산란진폭을 얻을 수 있는 KLT 관계를 만족하게 된다면 광자/글루온 산란진폭의 $g_1$은 중력자 산란진폭의 $g_1$으로 변하게 됩니다. 그런데 중력자 산란진폭의 $g_1$은 항상 0이어야 한다는 것이 알려져 있으므로 이 입자의 광자/글루온 산란진폭의 $g_1$ 또한 0이어야 한다는 결론을 내릴 수 있으며, 이로부터 이 입자의 g 인자는 항상 2란 값을 만족해야 한다는 사실을 알 수 있습니다. 어떤 의미에서는 중력이 g 인자의 값이 2가 되도록 강제한다고 할 수 있는 것이죠.




우리는 자기회전비율이라는 입자의 전자기장과 상호작용하는 방식을 나타내는 한 파라메터가 전자기력과는 전혀 상관없어 보이는 중력과의 상호작용과 어떻게 연결될 수 있는지 알아보았습니다. 그리고 그 관계를 가장 명확하게 드러내는 방법은 최근에 개발된 표기법인 스피너-헬리시티 변수라는 것도 알게 되었죠. 이 새로운 도구는 우리에게 어떤 도움을 줄 수 있을까요?


미래를 예단하는 것은 멍청한 헛소리를 하는 가장 빠른 지름길이므로 여기서는 무엇을 할 수 있을지 조심스러운 전망을 내놓기보다는 이미 알려진 흥미로운 결과를 이야기해보려고 합니다. 중력과의 가장 '단순한' 상호작용이지요.


스피너-헬리시티 변수로 쓸 수 있는 가장 단순한 중력자와의 상호작용은 다음과 같습니다.

\[ M_3 = x^2 \langle {\bf 21} \rangle^{2s} \]


그리고 중력이 있는 계에서 가장 단순한 물체는 아무런 특징이 없는 (no hair) 블랙홀이라는 사실이 알려져 있죠. 따라서 이 산란진폭이 블랙홀과 중력자의 상호작용을 나타내는 것은 아닐까 가설을 세워 볼 수 있겠죠. Arkani-Hamed는 그 가설이 실제로 밝혀진다면 흥미로울 것이라고 이야기한 적이 있습니다. 블랙홀이 '기본입자'처럼 반응한다는 것을 의미한다면서요. 그리고 실제로도 이 산란진폭이 (고전적인 크기의 스핀을 갖는) 블랙홀의 산란진폭과 일치한다는 것을 보일 수 있습니다. 위에서 Holstein이 언급한 '블랙홀의 g 인자는 2다'란 명제를 생각해본다면, 어쩌면 이 사실은 그리 놀라운 일이 아닐지도 모릅니다. 하지만 스피너-헬리시티 변수라는 새로운 도구가 없었더라면 우리는 이 그렇게까지는 놀랍지 않은 일을 알 길이 없었겠지요. 이 새로운 도구가 어떤 길로 우리를 안내하게 될 지 기대하게 되는 이유이기도 합니다.

  1. 대전된 물체는 전체적으로 전하를 가진 물체를 말합니다. [본문으로]
  2. loop effect라 불리는 양자효과를 고려한 값으로, 양자효과를 제하면 남는 값은 정확히 2입니다. https://arxiv.org/pdf/hep-ex/0209015.pdf [본문으로]
  3. 이 목록에는 등장하지 않지만, 대부분의 초대칭이론의 경우에도 g 인자의 값이 2로 고정된다는 사실이 알려져 있습니다. 또 다른 강력한 정황증거인 셈이죠. [본문으로]
  4. 끈이론 개론 시리즈의 2편이 산란진폭을 다룰 예정입니다. [본문으로]
  5. 때때로 중요하지 않다고 생각되면 수식에서 질량을 나타내는 m을 생략하겠습니다. [본문으로]
  6. 헬리시티는 질량이 없는 입자의 스핀을 말합니다. 질량이 없는 입자의 경우 스핀의 방향을 뒤집을 수 없기 때문에 특별히 헬리시티란 이름을 붙입니다. [본문으로]
  7. 광자의 스핀이 1이기 때문에 일어나는 현상입니다. [본문으로]
  8. 이렇게 $g_0$만 남기고 다른 파라메터를 전부 0으로 날려버리는 선택은 질량이 없는 극한으로 아무런 문제 없이 보낼 수 있는 유일한 선택지이기도 합니다. [본문으로]
  9. 중력자의 스핀이 2이기 때문에 일어나는 현상입니다. [본문으로]
  10. 비례관계를 보다 전문적으로 일컫는 말이라고 생각하시면 됩니다. [본문으로]
Posted by 덱스터

얼마 전에 했던 삽질 관련 내용 정리.



이 잘 알려진(하지만 나는 몰랐던) 상식을 증명하는 방법은 Schwarz-Christoffel transform을 이용하는 것. 이 변환은 복소평면의 윗 반평면(upper half plane)을 다각형의 내부로 보내는 등각변환이다. 완전한 등각변환이라고 하기에는 꼭지점에서의 등각성이 깨지긴 하지만 그 정도는 무시하기로 하고(...). 2차원 이상유체 문제나 도파관 문제를 풀 때 이 변환을 이용하는 경우가 있는데, 요즘 물리과에서는 보통 풀 일이 없는 문제들이라 생소한 사람들도 많을듯. 구체적인 설명은 위키백과의 해당 항목으로 넘기기로 하자.


Schwarz-Christoffel map이 하는 일. 변수 z에서의 upper half plane을 등각성을 유지한 상태로 변수 w에서의 다각형 내부로 보낸다.


이 변환을 통해 증명하고 싶은 것은 'open string disk amplitude에서 vertex operator를 집어넣는 점들 중 일부가 한 점으로 수렴하고 이 점들을 a1, a2, ...으로 쓰기로 하자. 한 점으로 수렴하는 극한의 산란진폭은 a1, a2, ...에 해당하는 입자들이 산란하는 산란진폭과 나머지 입자들이 산란하는 산란진폭에 해당한다'는 주장인데, 다르게 이야기하면 'a1, a2, ... , c가 산란하는 진폭과 c, b1, b2, ...(b1, b2, ...는 vertex operator들 중 a1, a2, ...에 해당하지 않는 나머지)가 산란하는 진폭으로 나누어지며 그 사이를 c에 해당하는 상태가 진행하는 극한에 해당한다'가 된다. 단순히 말하면 c에 해당하는 internal propagator가 on-shell에 가까워져서 먼 거리를 이동한다는 이야기.


편의상 4ptc scattering을 생각하기로 하고 t-channel이 on-shell로 가는 극한을 생각하자. 이때 $SL(2,R)$를 이용해 vertex operator를 집어넣는 점 셋을 고정할 수 있다. 정석적인 선택은 $(0,\sigma,1,\infty)$. 따라서 다음 그림과 같은 형태의 Schwarz-Christoffel map을 찾는 것이 목표가 된다.


t-channel에서 intermediate state가 on-shell에 가까워지면 먼 거리를 이동하는 극한과 동등하다는 것을 보이기 위해 필요한 Schwarz-Christoffel map


여기서 $\bar{\sigma_1}$은 왼쪽의 꺾이는 점(혹은 1번과 4번 string이 intermediate state에 해당하는 string으로 합쳐지는 점)에 해당하고 $\bar{\sigma_2}$는 오른쪽의 꺾이는 점(혹은 intermediate state에 해당하는 string이 2번과 3번 string으로 갈라지는 점)에 해당한다. 이제 위 그림에서 $\sigma \to 1$의 극한이 $f(\bar{\sigma_2}) \to +\infty$로 가는 극한, 즉 $\bar{\sigma_1}$에 해당하는 점에서 $\bar{\sigma_2}$에 해당하는 점까지 이동하는 거리가 무한히 늘어나는 극한과 일치한다는 것을 보이면 된다. 이 변환은 다음 미분방정식의 해로서 주어진다.

\[ f'(z) = A (z-x)^{1}(z-0)^{-1}(z-\sigma)^{-1}(z-[\sigma + a(1-\sigma)])^{1} (z-1)^{-1} \]


이 식은 다음과 같이 분수들의 합으로 정리할 수 있다.

\[ f'(z) = A\left\{ \frac{\alpha}{z-0} + \frac{\beta}{z-\sigma} + \frac{\gamma}{z-1} \right\} \]


약간의 Mathematica 계산을 통해[각주:1] $\alpha = \frac{-x(a\sigma - a - \sigma)}{\sigma}$, $\beta=\frac{a(\sigma - x)}{\sigma}$, $\gamma = (1-a)(1-x)$가 된다는 것은 금방 확인할 수 있다. 영 못 믿겠으면 손으로 계산하는 것도 방법. 여기서 $a$와 $x$가 고정되어 있다면 $\alpha$, $\beta$, $\gamma$ 모두 유한한 값으로 고정된다는 것을 알 수 있다. 적분은 단순한 $1/z$의 적분이므로 바로 계산이 가능하다. 단, 복소변수이기 때문에 약간의 주의가 필요. Argument를 결정하는 branch cut은 편의상 -Im(z)축 방향으로 뻗도록 하는 것이 좋다.

\[ f(z) = A\left\{ {\alpha}\text{Log}z + {\beta}\text{Log}(z-\sigma) + {\gamma}\text{Log}(z-1) \right\} + B \]


state 1은 $-A\alpha$방향, state 2는 $-A \beta$방향, state 3는 $-A \gamma$방향, state 4는 $A(\alpha+\beta+\gamma) = A$방향에 위치한다는 것을 알 수 있다. 그러므로 위의 그림에 맞게 $A$의 값을 정하면 $A<0$이 된다. 이제 string worldsheet이 갈라지는 점들($f(\bar{\sigma_1})$과 $f(\bar{\sigma_2})$)의 위치를 살펴보자. 여기서 중요한 것은 Im(w)축상의 위치가 아니라 Re(w)축 방향의 거리이므로 Log의 argument에 해당하는 항은 잠시 무시해도 좋다. 우선 왼쪽의 합쳐지는 점의 위치를 구하면 다음과 같다.

\[ f(\bar{\sigma_1}) = A \left\{ \alpha \log |x| + \beta \log |x-\sigma| + \gamma \log |x-1| \right\} + i \cdots + B \]


오른쪽의 합쳐지는 점의 위치는 다음과 같이 주어진다.(수식이 약간 깨지는데 중요한 부분은 다음 문단에 있으므로 굳이 편집하지는 않겠다)

\[ f(\bar{\sigma_2}) = A \left\{ \alpha \log |\sigma + a(1-\sigma)| + \beta \log |a(1-\sigma)| + \gamma \log |(a-1)(1-\sigma)| \right\} + i \cdots + B \]


$\sigma \to 1$의 극한에서 발산하는 항만 모아보면 다음과 같다.

\[ f(\bar{\sigma_2}) = A \left\{ \beta \log |(1-\sigma)| + \gamma \log |(1-\sigma)| \right\} + \cdots \]


참고로 이 극한에서는 $\beta + \gamma \to 1 - x$이기 때문에, 오른쪽의 갈라지는 점은 $+\infty$의 방향으로 밀려나는 것이 맞다(부호를 $x<0$와 $A<0$로 결정했기 때문). 여기서 발산하는 항들은 전부 로그에 들어가는 값이 0으로 수렴하는 극한 때문에 등장했으므로, 이런 현상은 4ptc scattering에만 국한된 것이 아니라 일반적인 산란 상황에서도 관찰할 수 있을 것으로 기대할 수 있다. vertex insertion point가 모이게 되면 amplitude factorisation이 되는 극한, 혹은 intermediate state가 long distance propagation을 하는 IR divergence가 있는 극한으로 생각할 수 있다는 의미.


$\sigma \to 1$ 극한은 두 갈라지는 점 사이의 거리가 무한이 멀어지는 극한으로 생각할 수 있다


다만 이 논증은 worldsheet에서의 이야기이고, 실제 target space로 바로 연결되지는 않는다. 하지만 induced metric을 생각해보면 worldsheet상에서의 거리가 무한히 멀어지는 것과 target space상에서의 거리가 무한히 멀어지는 것은 비슷하다고 봐도 무방해 보인다.

  1. Apart 함수를 쓰면 된다. [본문으로]
Posted by 덱스터

지도교수님과 회식을 하던 도중 이런 이야기가 나왔습니다.

최근 들어 논문 원고만 쓰고 블로그는 방치해뒀다는 약간의 자책감과 글을 쓰지 않는 버릇을 들이다가는 생각하는 법도 잊어버린다는 약간의 위기감과 연구에 진척이 나질 않는데 잠시 숨을 돌려볼까 하는 약간의 일탈감에 힘입어 오랜만에 글을 써 볼까 키보드를 잡았습니다. 주제는, 교수님의 이야기에서 아이디어를 얻어, 제 전공이 있는지조차 모르는 사람들을 위한 안내서가 좋겠다 싶었죠. 제가 제 전공에 대해 글을 쓸 정도로 제 전공을 잘 아느냐고 물으신다면 양심의 가책은 느끼겠지만, 그런 것에 전혀 구애받지 않고 배짱으로 들이대는 것이 젊음의 특권 아니겠습니까(?)


이제부터는 나이를 묻거든 얼굴에 철판을 깔고 살기로 했습니다


과거 인기를 끌었던 사극 중 <태양인 이제마>가 있습니다. 사상의학의 개척자 이제마의 일대기를 다룬 드라마였는데, 드라마 중간에는 양의학을 접한 이제마가 다음의 말을 하는 장면이 있습니다.

"양의학은 부분을 깊게 살펴 빠르게 효과를 보지만 전체를 고려하지 않아 근본적인 대책이 되지는 못한다"(기억에 의존한 대사라 정확하지 않을 수 있습니다)

인터넷의 영원한(?) 떡밥 중 하나인 '한의학과 양의학 중 어느 쪽을 믿을 것인가'란 질문은 잠시 제쳐두고, '부분을 깊게 살핀다'는 말에 초점을 맞춰보겠습니다.


'부분을 자세히 파고들어 전체를 이해해보겠다'는 접근방식을 환원주의(reductionism)라 부릅니다. 예컨대 시계가 어떻게 작동하는지 알고 싶다면 시계를 구성하는 톱니바퀴들 사이의 관계를 이해하면 된다는 것이지요. 환원주의는 근대과학의 주된 구심점으로 작동했습니다. 현실 세계는 복잡하지만 현실 세계에서 '중요하지 않은 부분'을 쳐내고 나면 보다 단순한 현상으로 환원되고, 환원된 단순한 현상은 우리가 충분히 이해할 수 있으며, 단순화된 현실을 다루는 것으로 얻은 지식을 현실 세계로 다시 외삽하면 현실 세계를 이해할 수 있다는 것이 과학의 근간이었으니까요. 20세기부터 이어진 근대과학의 눈부신 성장을 보면 이런 접근법이 매우 성공적이었다고 평할 수 있겠죠.


입자물리, 혹은 고에너지물리는 이런 환원주의의 끝에 놓인 학문 중 하나입니다. 예로부터 사람들은 자신을 둘러싼 세계를 이해하고자 노력했습니다. 각종 신화 및 설화를 살펴보면 '왜 번개가 치는가?' 혹은 '왜 무지개가 생기는가?'와 같은 질문에 대한 답을 어렵지 않게 찾을 수 있다는 것이 그 방증이지요. 그리고 (어떤 의미에서는 지나치게) 성공적이었던 환원주의를 이 런 문제들에 적용해보는 사람들이 나타나는 것은 필연이라 할 수 있겠지요. 환원주의에 따르면 우리는 우리를 둘러싼 세계를 보다 작은 부분으로 나누어 그 작은 부분을 이해하는 것으로 원래 이해하고자 했던 세계를 이해할 수 있습니다. 이렇게 계속 세계를 작은 부분으로 나누어 나가다 보면 물질의 구성 요소라 여겨지는 소립자들을 이해하는 문제와 마주하게 됩니다. 소립자물리, 혹은 입자물리를 환원주의의 끝에 놓인 학문이라 부르는 것은 이러한 맥락에서입니다. 입자물리학의 성배를 최종이론(final theory), 혹은 모든 것의 이론(TOE; Theory Of Everything)이라 부르는 것 또한 이 연장선상에 있습니다.




입자물리는 고에너지물리라고도 부릅니다. 물리학자들이 작은 물체들의 행동을 가장 정확하게 묘사한다고 믿는 양자역학에 따르면 보다 작은 것을 보기 위해서는 보다 높은 에너지를 필요로 하므로, 가장 작은 것을 보고자 한다면 가장 높은 에너지를 이용해야만 하기 때문입니다. 그리고 실제로는 입자가 아닌 것들 또한 다룬다는 점에서 고에너지물리라는 명칭이 보다 정확하다고도 할 수 있지만, 용어의 혼동을 방지하고자 이 글에서는 입자물리라는 이름을 계속 사용하도록 하겠습니다.


입자물리는 그 이름이 시사하듯이 입자들의 행동을 다룹니다. 그렇다면 먼저 입자가 무엇인지 정의하는 것이 필요하겠지요. 양자역학이 등장하기 이전까지 물리학자들이 세계를 바라보는 관점에 커다란 영향을 미쳤던 뉴턴의 입장을 따른다면 입자는 하나의 점이고, 따라서 점입자(point particle)이란 용어를 쓰기도 합니다. 기하학에서 다루곤 하는 '크기와 부피를 갖지 않는 추상적인 점'이 바로 입자라는 것이지요. 물론 이 정의는 '얼마나 공간을 차지하는가'의 관점에서 주어지는 것으로, 점입자는 다른 물리적인 성질 즉 질량이나 전하와 같은 성질은 얼마든지 가질 수 있습니다. 또한 우리가 책을 한 권, 두 권 세는 것처럼 입자도 한 개, 두 개 셀 수 있지요. 이런 입자의 정의는 직관적으로는 잘 와닿기는 하지만 실제 연구를 하는 사람들에게 있어서는 충분히 세밀하지 못하다는 단점이 있습니다.


보다 현대적인 입자의 정의는 헝가리 출신 미국 물리학자 유진 위그너(Eugene Wigner)에 의해 정립되었습니다. 위그너 분류법(Wigner classification)은 다음과 같은 아이디어를 따릅니다.


1. 이론상 어떤 물체의 에너지와 운동량은 정확하게 측정할 수 있다. 그러므로 물체의 에너지와 운동량을 기본적인 변수로 잡자.

1'. (특수)상대론에 따라 에너지와 운동량을 조합하여 질량을 정의한다.

2. 어떤 물체든 그 물체를 회전시키면 그 회전에 반응한다[각주:1]. 물체의 운동량을 변화시키지 않고 물체를 회전시켰을 때 물체가 반응하는 방식을 따라 같은 운동량을 갖는 물체를 분류하자.

2'. 회전에 반응하는 방식을 스핀으로 정의한다.


운동량이라는 개념이 생소할 분들을 위해 운동량을 약간 설명해보자면, 운동량이란 말 그대로 '물체가 얼마나 많은 양의 운동을 갖고 있는가?'를 계량화한 것입니다. 같은 속도로 달리는 소형차와 거대한 트럭을 비교하면 거대한 트럭 쪽(무거운, 혹은 질량이 큰 쪽)이 보다 많은 운동을 갖고 있다고 할 수 있습니다. 또한 같은 소형차라고 해도 보다 빠르게 달리는 소형차가 보다 많은 운동을 갖고 있다고 할 수 있지요. 뉴턴의 입장에서는 이 두 관찰 결과를 반영하여 운동량을 질량과 속도의 곱으로 정의합니다. 운동량의 현대적인 정의는 이와는 조금 차이가 있지만 필요 이상으로 길어지게 되므로 이 정도에서 설명을 마치겠습니다.


정리하자면 현대적인 입자의 정의에서는 입자를 다음과 같은 것들에 의해 무엇인지 식별할 수 있는 대상으로 봅니다; 운동량 및 에너지가 몇인가(질량이 몇인가), 그리고 스핀은 몇인가. 이 과정을 통해 분류한 입자 한 개 한 개를 모아 입자 여러개를 묘사하는 것 또한 가능하다고 여깁니다. 물론 이 관점에서는 뉴턴의 입장에서와 마찬가지로 '전하가 몇인가'란 질문을 통해 서로 다른 입자를 식별할 수 있는 여지는 남아 있습니다. 하지만 이 정의에 '입자의 크기는 얼마이고 위치는 어디인가?'란 질문이 비집고 들어올 틈은 보이지 않죠. 그렇다고 입자의 크기나 위치를 묻는 질문이 의미가 없다고는 할 수 없습니다. 분명히 모든 존재하는 것은 어딘가 공간을 조금이라도 차지하고 있으니까요.




'입자의 크기가 무엇인가?'란 질문에 답하려면 '입자의 크기는 어떻게 측정하는가?'를 묻는 것이 더 나을 수도 있습니다. 이렇게 어떤 개념을 그 개념을 얻어내는 과정을 이용하여 정의하는 것을 조작적 정의(operational definition)라 부릅니다[각주:2]. 입자의 크기는 어떻게 측정할 수 있을까요?


우리는 손에 닿지 않는 물건의 크기를 가늠하는데 눈을 사용하곤 합니다. 눈이 하는 역할은 그 물건의 표면에서 반사된 빛을 잡아채는 것이지요. 그리고 이 과정을 다르게 표현하면 빛과 물건이 충돌을 일으킨 뒤 튕겨져 나온 빛을 관찰하는 것이라고 할 수 있습니다. 비슷한 방법을 입자의 크기를 측정하는 데 써볼 수 있습니다. 각기 다른 입자끼리 충돌시켜 보는 것이죠. 이처럼 입자와 입자를 충돌시키는 실험을 산란실험이라고 부릅니다. 가장 기본적이고 가장 투박하면서도 그에 걸맞지 않을만큼 강력한 실험이지요. 최근 힉스 입자의 발견으로 (약간의 희망을 담아 멋대로 수식어를 붙여본다면) 대중에게 널리 알려진 LHC에서 하는 실험도 이런 종류의 실험입니다. 그 이름(Large Hadron Collider; 큰 강입자 충돌기)이 암시하듯 LHC에서는 물리학자들이 강입자라고 분류하는 입자들을 매우 빠르게 가속시켜 서로 충돌시키는 실험을 하고 있습니다. 강입자는 나중에 이야기의 주연으로 등장하게 되지만 강입자에 대해서는 그 때 설명하기로 하죠.


산란실험은 반복수행을 염두에 두고 설계된 실험입니다. 작고도 작아 정확한 제어가 힘든 소립자들을 이용해야 하는 실험이라는 점이 반영된 셈이죠. 이렇게 반복수행을 염두에 두고 설계된 실험에서는 총 반복한 실험 횟수에 대하여 어떤 결과가 몇 번 얻어졌는지 그 비율을 관측하는 것이 실험의 목적이 됩니다. 그리고 이 비율은 입자의 '크기'를[각주:3] 정의하는 기준이 됩니다. '큰 물체일수록 더 많은 빛을 반사한다'란 일상생활에서의 관찰 결과를 소립자의 세계까지 확장한 것이지요. 재미있게도 산란실험은 '입자가 어디에 위치하고 있는가'에 대한 부분적인 답 또한 줍니다. 한 입자가 다른 입자와 충돌을 일으켰다면, 두 입자는 서로 같은 위치를 지나친 것이니까요. 어떻게 보면 당연해 보이는 '같은 위치를 지나쳐야만 충돌을 일으킨다'는 성질은 사실 상당히 강력한 제약이 됩니다. 이에 대해서는 다음 글에서 이야기하도록 하겠습니다.


물리학자들은 산란실험으로 결정되는 '크기'를 산란단면적(scattering cross-section)이라 부릅니다. 현대 입자물리학 역사의 큰 줄기는 산란실험으로 얻은 산란단면적의 정보로부터 이 산란단면적과 일치하는 예측치를 주는 이론을 역추적하는 일과 주어진 이론으로부터 원하는 산란과정에 해당하는 산란단면적을 계산해내는 일로 요약할 수 있을 정도로 산란단면적은 입자물리학에서 거대한 주축을 담당하고 있습니다. 끈이론은 이 거대한 주축으로부터 탄생했습니다.


연관글:


비전공자를 위한 끈이론 개론(2) - 산란행렬의 계산 (작성중)

비전공자를 위한 끈이론 개론(3) - TBA (작성 예정?)


  1. 여기서 반응이라는 것은 '책상 위의 책을 뒤집으면 더 이상 앞면이 보이지 않고 보이지 않던 뒷면이 보이는 것'처럼 그 물체를 기술하는 방법이 바뀐다는 것을 의미합니다. [본문으로]
  2. 보다 물리학, 특히 고전역학에 익숙한 독자들을 위해 약간의 설명을 덧붙이자면, '힘을 받지 않는 물체가 등속운동하는 기준계'가 관성기준계에 대한 일반적인 정의라면 '힘을 받지 않는 물체들을 각기 다른 방향으로 던져 그 물체들이 등속운동을 하는 것으로 보이도록 잡은 좌표계'가 관성기준계의 조작적 정의에 해당합니다. [본문으로]
  3. '크기'에 따옴표를 친 이유는 크기를 (조작적으로) 정의하는 다양한 방법이 있을 수 있기 때문입니다. 대부분의 경우 크기에 대한 각기 다른 정의는 물체의 크기에 대해 다른 답을 줍니다. 다양한 크기의 정의법을 보고 싶으신 분은 이 글을 참고하시면 좋겠습니다(링크된 글에서 전자의 크기를 정의하기 위해 사용하는 조작적 정의들은 이 글에서 사용한 정의와는 차이가 있습니다). [본문으로]
Posted by 덱스터

전하와 자하를 동시에 두면 이로부터 만들어지는 전자기장이 각운동량을 갖는다는 사실은 잘 알려져 있다. 처음으로 이 계산을 한 것이 톰슨이었다던가. 이 계산은 각운동량의 양자화로부터 전하와 자하의 양자화를 유도해내는 과정인 Dirac quantisation 혹은 Dirac-Schwinger-Zwanziger quantisation을 정당화하는데 이용되기도 한다.


여튼, 정석적인 계산방법은 전하를 원점에, 자하를 적당한 z축상의 한 점에 둔 뒤 원통좌표계를 써서 각운동량을 계산하는 것인데 이 방법 말고 벡터미적분학을 적절히 이용해서 쉽게(?) 계산하는 방법이 있다. 이 방법이 있다는 것은 알고 있었는데 정확한 과정을 떠올리는데 만 하루가 걸리고 나니 조금 슬프지만.


먼저 전하를 원점에, 자하를 $\vec{r'}$에 두자. 그리고 다음과 같이 벡터 $\vec{\rho} := \vec{r} - \vec{r'}$를 정의한다. 전하와 자하가 만들어내는 전자기장은 다음과 같이 계산할 수 있다.

\[ \vec{J} = \int \vec{r} \times \vec{P} = \int \vec{r} \times \left( \vec{E} \times \vec{B} \right)  \]


전기장과 자기장을 쓰기 위한 단위계는 cgs를 택하기로 한다.

\[ \vec{E} = \frac{e \vec{r}}{r^3} \] \[ \vec{B} = \frac{g \vec{\rho}}{\rho^3} \]


실제 계산에 문제가 되는 항은 다음 항이다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} \]


벡터 삼중곱을 쓰면 이 항은 다음과 같이 쉽게 정리할 수 있다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = \vec{r} \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} - \frac{\vec{\rho}}{r \rho^3} \]


이제부터 벡터미적분학의 묘미가 시작된다. 다음 등식은 어렵지 않게 증명 가능하다.

\[ (\nabla \phi) \cdot (\nabla \varphi) = \nabla \cdot (\phi \nabla \varphi) - \phi \nabla^2 \varphi \]


이 식을 $\vec{a}/a^3$꼴의 식에 적용한다.

\[ \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} = \nabla \frac{1}{r} \cdot \nabla \frac{1}{\rho} = \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) - \frac{1}{r} \nabla^2 \frac{1}{\rho} \]


다음 항등식은 전자기학을 공부했으면 심심찮게 만날 수 있다.

\[ \nabla^2 \frac{1}{r} = - 4 \pi \delta^3 (\vec{r}) \]


정리하면

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \vec{r} \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) + \frac{1}{r} \nabla \frac{1}{\rho} \]


또는, Einstein summation convention을 도입할 경우,

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) \]


가 되어 total divergence만 남는 것을 확인할 수 있다. 따라서,

\[ \vec{J} = e g \int 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) = 4 \pi e g \hat{r'} + \oint \text{boundary terms} \]


으로 정리할 수 있으며, 약간의 order of magnitude analysis를 통해 boundary term은 0이 된다는 것을 증명하면 정리는 끝난다. 해당 증명은 어렵지 않으니 생략.

\[ \therefore \vec{J} = 4 \pi e g \hat{r'} \]


단위계가 엉망인데 계산과정이 중요한 것일 뿐이니 적당히 알아서 집어넣으시길...

Posted by 덱스터

산란진폭의 재귀적 구성을 다룬 원고로, 그룹미팅 발표용으로 준비했던 자료를 TeX으로 문서화해봤습니다. 연구과목 보고서로 때우기 위해 작성한 불순한(?) 의도도 있긴 한데 뭐 상관없겠지요. 생각보다 길어져서 계산으로 실제 다뤄봤던 예시는 포함하지 않았습니다. 어차피 참고문헌에 다 들어있으니 알아서 찾아보시면 될 듯(무책임).



Posted by 덱스터

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




위상수학에 대해 가장 널리 알려진 예시라고 한다면 도넛과 머그잔이겠지요. 거기에 질세라 노벨위원회에서 올해 수상자를 발표할 때 위상수학을 설명하면서 베이글과 프레츨을 예시로 들었습니다. 이 물체들이 어떻게 위상수학적으로 같고 다른지는 찰흙을 가지고 장난을 치다가 부모님께 혼나본 경험이 있으시다면 이해할 수 있으시겠지요. 아쉽게도 위상론적 물질에서 필요한 위상수학적인 양은 천 숫자(Chern number)라는 값으로, 앞선 예시들과는 달리 쉽게 머리 속으로 그릴 수 있는 것들은 아닙니다.


위상수학에서는 우리가 머리 속으로 그릴 수 있는 평범한 도형들을 다양체(manifold)라는 개념을 이용해 정의합니다. 구체적인 정의는 논의를 괜히 쓸데없이 복잡하게 만들테니 필요없겠지요. 천 숫자는 접속(connection)이란 특별한 종류의 수학적인 물체를 다양체 위에 올려놓았을 때 그 접속에 대한 위상론적인 정보를 담고 있는 값입니다. 그러면 우선 접속이 무엇인지에 대해 알아야 위상수학이 어떤 역할을 하는지 알 수 있겠지요.


그다지 좋은 예는 아니지만[각주:1] 접속을 이해하는데 쓸 수 있는 장난감으로 굴렁쇠가 있습니다. 비록 저 자신은 굴렁쇠를 실제로 굴려본 적이 없고 교과서 사진으로나 봤을 뿐이지만 동전은 자주 굴려봤으니 자신감을 가져도 좋겠지요. 다시 굴렁쇠로 돌아와서, 어떤 위치에서 굴리기 시작한 굴렁쇠를 적당한 경로를 따라 원래 위치로 돌아오는 것을 생각해 봅시다. 만약 굴렁쇠의 각 점에 눈금이 매겨져 있었다면 굴리기 전의 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금과 굴리고 같은 위치로 돌아왔을 때 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금은 다르겠지요. 홀로노미(holonomy)나 모노드로미(monodromy)는 이 눈금이 얼마나 달라지는가를 잡아내기 위해 정의된 수학적인 물체입니다. 하지만 오늘 논의에서는 다루려던 내용이 아니므로 두 용어에 대해서는 이 정도에서 설명을 마치도록 하지요.


접속이란 개념을 이해하기 위해서는 굴렁쇠를 굴린 경로 위의 각 점에 굴러가고 있는 굴렁쇠를 관찰하는 관찰자를 올려놓는 것이 좋습니다. 각 점에 앉아있는 관찰자는 굴렁쇠의 눈금 중 어떤 눈금이 바닥과 닿아있는지를 기록할 수 있겠지요. 그리고 한 점에 앉아있는 관찰자가 관찰한 눈금은 바로 옆에 앉은 관찰자가 관찰한 눈금과 일정한 관계를 맺고 있습니다. 굴렁쇠는 미끄러지지 않고 굴렀을테니, 두 관찰자 사이의 거리만큼 굴렁쇠와 바닥이 닿은 눈금이 변했을테니까요. 이처럼 한 점에서 관찰한 무언가의 값을 바로 옆의 점으로 끌고가면 일반적으로는 그 값이 변합니다. 수학에서는 이런 정보를 담은 것을 접속이라고 부릅니다. 한 점에서의 정보를 바로 옆의 점으로 연결시켜 준다는 점에서 더없이 적절한 용어(접속은 영어로 connection이라 부릅니다)라고 할 수 있겠지요. 한 점에서 바로 옆의 다른 점으로 움직이는 방법은 움직일 수 있는 방향만큼이나 다양하기 때문에 접속은 '어떤 방향으로 움직이는가'에 대한 정보도 함께 담고 있어야 합니다. 방향에 대한 정보를 가지고 있다는 점에서 접속은 벡터장과 매우 비슷합니다.


약간은 의외의 사실일 수 있겠지만, 어떤 다양체에는 벡터장을 임의로 올려놓지 못한다는 것이 알려져 있습니다. 가장 간단하고 머리 속으로 그려볼 수 있는 예시로는 털난 공 정리(hairy ball theorem)이 있습니다. '털난 공을 빗을 수 없다'란 표현으로 유명한 이 정리는 공의 표면(2차원 곡면이므로 $S^2$라 부릅니다) 위에 올려놓은 벡터장은 항상 0이 되는 지점이 있어야 한다고 주장합니다. 크기가 0이 아닌 벡터장을 공에 납작하게 붙은 털에 빗댄 것이지요. 실제로 그런지 의심이 드는 분이라면 바람이 부는 지구 표면을 생각해 보시면 좋습니다. 과연 지구 표면의 모든 점에서 동시에 바람이 불 수 있을까요? 털난 공 정리에 따르면 지구의 적어도 한 점에서는 바람이 불고 있지 않아야 합니다.


위의 정리는 위상수학적인 결과입니다. 털난 공이라고는 했지만 그것이 꼭 공일 필요는 없는 것이지요. 공이 조금 찌그러져 있다거나 허리같은 길쭉한 부분이 있다거나 해서 벡터장이 0인 지점이 하나는 있어야 한다는 사실이 변하지는 않는다는 말입니다. 천 숫자는 털난 공 정리와 비슷하게 다양체 위에 올려놓은 접속이 임의로 주어질 수는 없다는 것을 말해줍니다. 천 숫자를 계산하면 정수를 얻지만 이 정수가 정확히 무엇을 세는가에 대해서는 저도 좋은 설명이 없다는 점이 아쉽군요. 다만 한 가지 확실하게 말할 수 있는 것은 두 접속에 대해 계산한 천 숫자가 서로 차이가 난다면 하나의 접속에 작은 변화를 누적시켜서 다른 접속으로 바꾸는 것이 불가능하다는 것이고, 이런 의미에서 천 숫자가 위상론적인 불변량이라는 것입니다.




천 숫자에 대해 이해하려면 우선 접속에 대해 더 자세히 알아야 합니다. 그러므로 접속에 대해 좀 더 이야기해보도록 하죠.


잘 만들어진 굴렁쇠라면 모든 점이 서로 엇비슷하게 생겼을 겁니다. 굴렁쇠에 눈금을 새겼더라도 어떤 눈금을 1로 두고 그 눈금부터 번호를 매길 것인가에 대한 자유가 남아있는 것이지요. 때문에 각 점에 앉아있는 관찰자가 각자 굴렁쇠를 하나씩 들고 '나는 이 눈금을 1로 세겠다'고 주장하는 것을 생각해 볼 수 있습니다. 이 눈금을 1로 세는 점을 기준점이라고 부르도록 하죠. 각 점에 앉아있는 관찰자가 임의로 기준점을 재조정하더라도 실제로 굴렁쇠가 굴러가는 것에는 영향을 미치지 않아야 합니다. 이렇게 기준점을 재조정하는 것을 게이지 변환(gauge transform)이라 부르고, 기준점 재조정에 영향을 받지 않는 것을 게이지 대칭(gauge symmetry)이라 부릅니다. 입자물리에 관심이 있으신 분들이라면 게이지 보존(gauge boson)이란 단어를 들어보셨을텐데, 그 단어에서 말하는 게이지와 지금 여기에서 말하는 게이지는 같은 수학적인 물체입니다. 단지 그 수학적인 물체를 무엇을 나타내기 위해 쓰고 있느냐의 차이 정도만 있을 뿐이지요.


접속은 언제까지나 '한 점에서 읽어낸 값을 바로 옆의 점으로 옮기는 방법'을 결정해주기 때문에 값을 읽어낸 점에서 관찰자가 선택한 기준점과 값이 옮겨질 점에서 관찰자가 선택한 기준점에 영향을 받습니다. 그래서인지 기준점을 재조정하는 과정인 게이지 변환을 할 경우 각 점이 얼마나 다르게 기준점을 재조정했는지의 정보까지 들어가야 해서 보다 복잡하게 변화하지요. 다르게 말하자면 '각 점에서의 기준점 선택'에 영향을 받는다는 의미에서 진짜 물리적인 의미를 갖는 대상이라고 보기는 힘들다고 할 수 있습니다. 게이지 변환에 영향을 받지 않는 것들, 즉 게이지 불변(gauge invariant)인 것만이 실제 물리적인 의미를 갖는 대상이라고 생각해야 한다는 것이지요. 그렇다면 접속으로부터 충분히 물리적인 의미를 갖는 대상을 얻어낼 수 있는지가 문제가 됩니다.


한가지 방법은 아주 작은 폐곡선을 생각하고 그 폐곡선을 따라 굴렁쇠를 원래 위치로 굴린 것과 굴리기 전의 굴렁쇠의 차이를 확인하는 것입니다. 같은 점에서 굴렁쇠를 비교하는 것이기 때문에 기준점을 옮긴다고 해도 눈금의 차이는 변하지 않지요. 마치 12와 16의 차이가 112와 116의 차이와 같은 것처럼 말입니다. 이를 곡률(curvature)이라고 부릅니다.[각주:2] 곡률은 작은 폐곡선의 경우 그 폐곡선을 경계면으로 갖는 곡면의 넓이에 비례해서 눈금의 차이가 커진다는 관찰에 기반을 두고 있습니다. 작은 곡면은 평행사변형으로 근사할 수 있고 평행사변형은 두 방향(마주한 변은 같은 방향이므로 두 방향만 갖습니다)을 갖기 때문에 곡률은 방향에 대한 정보를 둘 가지고 있어야 합니다. 또한 이 두 방향이 겹치게 되면 넓이를 갖는 평행사변형이 만들어지지 않기 때문에 주어진 두 방향에 대해 반대칭적(antisymmetric)이어야 하죠.


곡률은 물리적인 정보를 담습니다. 게이지 이론으로 이해할 수 있는 전자기학을 예로 들자면, 전자기장에 해당하는 접속의 곡률은 우리가 실제로 측정할 수 있는 전기장과 자기장으로 인식됩니다. 또한 실제 천 숫자를 계산할 때는 접속을 이용하는 것이 아니라 접속의 곡률을 이용합니다. 이것을 이용해 여러가지 위상론적인 물체들을 만들 수 있습니다. 예를 들어 3차원 공간의 한 점을 감싸는 구의 표면 위에서 전자기장의 천 숫자를 계산하면 그 표면을 통과하는 총 자기장의 양을 얻는데, 천 숫자는 정수로 주어지므로 그 구 안에 들어있는 자기장의 원천 즉 자하의 총량은 정수로 주어진다는 것을 알 수 있습니다. 전하와 마찬가지로 자하 또한 양자화되어야 한다는 것을 의미하는 것이지요. 약간 원래 논의에서 벗어나기는 했지만, 고에너지 물리학에서는 이런 방식으로 위상수학을 이용해 위상론적인 물체들을 다루곤 합니다. 위상론적인 원인이 있고 입자의 성질을 갖기 때문에 이런 물체들을 위상론적 솔리톤(topological soliton)이라고 부르지요. 다른 위상론적인 물체로는 인스탄톤(instanton)들이 있는데 시간을 허수로 만드는 다소 설명하기 껄끄러운 일들을 해야 하므로 넘어가도록 하겠습니다.


천 숫자가 위상론적인 물질에서 물리적인 의미를 갖는 사례 중 하나는 정수 양자 홀 효과(integer quantum Hall effect)입니다. 금속에 아주 강한 자기장을 수직축으로 걸었을 때 전기장을 수평축으로 걸면 자기장과 전기장에 수직한 방향으로 전류가 흐르는데, 정수 양자 홀 효과는 이때 흐르는 전류와 전기장의 비를 측정한 것(홀 전도도라고 부릅니다)이 폰 클리칭 상수(von Klitzing constant)의 정수배로 나타나는 현상을 말합니다. 정수 양자 홀 효과에서는 이 홀 전도도가 천 숫자로부터 계산할 수 있다는 것이 알려져 있습니다.


정수 양자 홀 효과에서 계산하는 천 숫자는 조금 독특한 공간에서 계산합니다. 2차원 공간을 돌아다니는 전자들을 운동량으로 분류했을 때, 이 운동량이 만드는 공간에서의 적분이죠. 이 공간 위에서도 접속을 정의할 수 있습니다. 특정 운동량을 갖는 전자의 위상을 측정할 때 기준으로 삼는 위상을 운동량마다 다르게 설정해 줄 수 있기 때문이죠. 이를 베리 접속(Berry connection)이라고 부르고, 베리 접속으로부터 얻는 곡률을 베리 곡률(Berry curvature)라고 부릅니다. 양자 홀 효과와 관련된 천 숫자는 베리 곡률로부터 얻어지며, 이를 TKNN 불변량이라고 부릅니다.


정리해보자면, 실제로 위상론적 물질에서 쓰이는 위상수학은 접속과 관계된 천 숫자라는 불변량들이고 천 숫자가 실제로 힘을 발휘하는 경우의 예로 정수 양자 홀 효과를 들 수 있었습니다. 논의를 벗어나기는 했지만 고에너지 물리학에서는 위상수학을 어떻게 이용하는지를 다루면서 솔리톤에 대한 이야기도 꺼냈지요. 위상수학에 대한 이야기만 잔뜩 하고 정작 물리 이야기는 거의 하지 않았다는 점이 조금 마음에 걸리지만, 일단은 여기까지가 현재 할 수 있는 범위 내에서는 최선인 것 같네요.




천 숫자를 중심으로 살펴보긴 했지만 실제로는 더 많은 위상수학이 쓰입니다. 예를 들어 애니온(anyon)의 경우에는 매듭 군(braid group)과 관련이 있지만 잘 알지 못하는 관계로 넘어갔습니다. 글에서 언급된 자기단극자의 경우 한 차원 낮추게 되면 소용돌이(vortex)의 양자화를 얻는데, 이건 천 숫자로 표현하기에는 껄끄러운 점이 있어서 넘어갔죠.


마지막 글은 솔직히 쓰기는 할지 모르겠습니다. 요즘 일이 많아서... ㅠㅠ

  1. 수학적으로 정합적(consistent)인 묘사가 불가능하다는 점에서 좋은 예는 아닙니다. [본문으로]
  2. 참고로 일반상대론에서 말하는 '휜 공간'의 곡률과 이 곡률은 같습니다. 단지 곡률을 정의하기 위해 사용하는 접속이 다를 뿐이죠. [본문으로]
Posted by 덱스터

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


세 번 정도에 걸쳐 다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




기초적인 질문부터 시작해보도록 합시다. 물질의 상은 어떻게 구분할까요? 누구나 물과 얼음은 다르다는 것을 본능적으로 알고 있습니다. 하지만 기계에게 물과 얼음의 차이를 이해시키고자 한다면 "딱 보면 몰라?"보다는 나은 설명이 필요하겠죠.


한없이 투명한 무언가가 담겨 있는 양동이를 생각해봅시다. 양동이가 전혀 움직이지 않는다면, 이 양동이에 담긴 것이 물인지 아니면 얼음인지 구분하는 것은 쉽지 않겠죠. 어떻게 하면 물인지 얼음인지 구분할 수 있을까요? 답은 손을 대보면 됩니다. 액체인 물이라면 손이 한없이 투명한 표면을 뚫고 들어갈 것이고, 고체인 얼음이라면 손은 단단한 벽과 마주한 것처럼 전혀 표면을 뚫을 수 없겠지요. 이 차이를 두고 '얼음과 물의 층밀리기 탄성(shear elasticity)이 다르다'고 합니다. 층밀리기 탄성을 이해하는 좋은 방법 중 하나는 평평한 책상 위에 올려놓은 책을 떠올려 보는 것입니다. 책의 윗면에 손을 놓고 마찰력을 이용해 책의 윗면을 책상과 평평하게 이동시키면 책은 원래의 네모난 모양을 잃어버리고 각 페이지가 층층이 밀린 듯한 모습으로 변해버리겠지요. 이런 변화를 층밀리기 변형(shear)이라고 부릅니다. 우리는 얼음과 같이 층밀리기 변형에 대해 단단하게 저항하는 성질을 갖는 물체를 고체라고 부릅니다. 반대로 물처럼 층밀리기 변형에 대해 전혀 저항하지 못하는 물체는 액체라고 부르지요.


위의 예시처럼 '어떤 계의 상이 변했다'고 말하고자 한다면 그 계의 특징적인 물리량이 어떻게 변했는지를 살펴보면 됩니다. 물과 얼음의 경우에는 층밀리기 변형에 대한 저항이 이런 물리량 중 하나에 해당하겠지요. 이런 특징적인 물리량을 두고 질서 변수(order parameter)라고 부릅니다. 잘 정한 질서 변수는 그 상전이를 완벽하게 묘사해낼 수 있습니다. 이 사실을 바탕으로 만들어진 것이 란다우-긴즈부르크(Landau-Ginzburg) 이론입니다. 란다우-긴즈부르크 이론에서는 '무엇이 상전이를 일으키는가'란 질문보다는 '무엇이 상전이의 특성을 나타내는가'란 질문이 중요합니다. 이제 상전이를 이해하기 위해 우리가 던져야 할 질문은 '어떻게 해야 좋은 질서 변수를 찾을 수 있을까?'가 되겠지요.


물리계 중에는 대칭성을 가진 계들도 존재합니다. 대칭성을 정확히 정의하려면 논의가 복잡해지지만[각주:1] 여기에서는 일상에서 '대칭'이라는 단어가 사용되는 정도로만 이해해도 충분합니다. 정삼각형은 세 꼭지점을 돌리는 것에 대해 회전대칭을 가지고 있고, 대부분의 물고기는 (거의) 좌우대칭입니다. 물리계가 대칭성을 가진다는 것도 비슷한 의미를 지닙니다. 물리계를 전체적으로 돌리거나(회전대칭) 전체적으로 조금 이동시킬 경우(병진대칭) 그 전과 구분되지 않는다는 것이죠. 과거에는 '계가 가진 대칭성이 좋은 질서 변수를 결정한다'고 믿었습니다. 심지어는 계가 가진 대칭성만 가지고도 그 계의 상전이가 완전히 결정된다는 주장도 있었지요. 이것을 보편성(universality)이라고 부릅니다.


보편성은 계가 상전이를 하고 있는 바로 그 순간에는 눈금 바꿈 대칭(scale symmetry)을 가진다는 것에 근거를 둡니다. 어떤 물리계의 어떤 물리량을 측정하고자 한다면 그 물리량을 측정하는데 기준이 되어주는 기준자가 있어야 합니다. 예를 들어 길이를 측정한다고 하면 1cm마다 눈금이 하나씩 그어져 있는 자가 필요하지요. 눈금 바꿈 대칭이란 물리량을 측정하는데 기준으로 쓴 기준자의 눈금을 바꿔도 바꾸기 전과 구분하지 못한다는 것을 의미합니다. 예컨대 어떤 물리계를 한 사람은 a란 크기의 눈금을 가진 기준자로 관찰하고 다른 사람은 b란 크기의 눈금을 가진 기준자로 관찰할 경우 둘은 서로 같은 계를 관찰했지만 다른 상태를 관찰했다고 인식하는 것이지요. 만약 눈금 바꿈 대칭이 없었다면 그 계는 어떤 특성 길이(characteristic length) c를 갖기 때문에 전자는 c/a라는 값이 특별하다는 것을 눈치채고 후자는 c/b라는 값이 특별하다는 것을 눈치채며, 일반적으로 c/a와 c/b는 같지 않기 때문에 둘은 서로 다른 계를 관찰하고 있다고 생각하게 됩니다. 한편 그 특성 길이가 0이거나 무한대가 된다면 두 값은 같으므로 그 물리계는 눈금 바꿈 대칭을 가지고 있다고 할 수 있겠지요.


계가 A라는 상과 B라는 상 사이에 끼어서 상전이를 하는 순간에는 계를 A라는 상으로 바꾸려는 작용과 B라는 상으로 바꾸려는 작용이 균형을 이루기 때문에 작은 변화라고 해도 아주 먼 거리까지 영향을 미칩니다.[각주:2] 팽팽하게 당겨진 실에서는 한쪽으로 움직이려는 힘과 반대쪽으로 움직이려는 힘이 균형을 이루고 있기 때문에 한 끝을 튕기면 그 진동이 반대 끝까지 전달되는 것과 비슷하다고 해야할까요? 이렇게 한 계가 눈금 바꿈 대칭을 가진 경우에는 매우 큰 눈금을 가진 자로 측정해도 살아남는 특징이 계의 특징을 결정한다고 생각할 수 있습니다. 통계역학의 관점에서는 매우 큰 눈금을 가진 자로 측정할 경우 물리량을 측정하는데 관여하는 원자의 수가 엄청나게 많기 때문에 각 원자의 상세한 특징은 거대한 숫자에 쓸려나가 버립니다. 따라서 계의 상세한 특징은 상전이를 기술하는데 별로 영향을 미치지 않는다고 생각할 수 있는 것이지요. 한편 계의 대칭성은 작은 눈금을 이용하든 큰 눈금을 이용하든 영향을 받지 않습니다. 따라서 계의 대칭성은 상전이를 기술하는데 중요한 역할을 한다고 추정할 수 있고, 이것이 앞서 설명한 보편성의 근거가 됩니다.


여기까지가 위상론이 상전이를 이해하는데 필요하다는 사실을 깨닫기 전까지의 이야기였습니다. 정리하자면, 여태까지는 계가 가진 대칭성만 잘 이해하면 계의 상전이를 잘 이해할 수 있다고 믿었던 것이죠.




나머지 내용도 언젠가 올리긴 올릴텐데 과연 노벨상 수상식이 있기 전에 올라갈 것인지는 모르겠군요...=-= 다른 할 일이 많아서...




23. Oct. 2016> 생각해보니 중요한 내용 몇가지를 언급하는 것을 잊어버렸는데, 란다우-긴즈부르크 이론에서 대칭성과 함께 중요한 것은 계가 몇차원에 정의되었는가이며 상전이를 두고 나누어진 두 상은 계의 대칭성이 깨졌는가 깨지지 않았는가를 이용해 구분합니다. 계의 대칭성이 깨지지 않았다면 질서 변수가 계의 대칭성을 보존하는 변환에 대해 변하지 않지만 계의 대칭성이 깨졌다면 질서 변수가 계의 대칭성을 보존하는 변환에 따라 변화하게 되지요. 해당되는 질서변수의 구체적인 예로 철의 자화(magnetisation)를 들 수 있는데, 대칭성이 깨지지 않은 고온의 탈자 상태에서는 회전에 대해 자화가 변하지 않지만(0이니까요) 저온의 자화된 상태에서는 회전하게 되면 자화된 방향이 변하게 되죠.

  1. 관심이 있으신 분은 제가 예전에 적은 노트(영문)의 앞부분에 해당 내용이 있으니 참고하세요.2016/08/08 - Particles in Curved Space [본문으로]
  2. 이 설명은 잠열이 없는 상전이, 즉 2차 상전이에 해당하는 설명입니다. 잠열이 있는 1차 상전이에서는 잠열이 작은 변화를 완충해주는 역할을 하기 때문에 이 경우에 해당하지 않습니다. 주로 임계현상(critical phenomena)의 연구가 2차 상전이에 집중되어 있는 것도 이런 이유에서이죠. [본문으로]
Posted by 덱스터

지구가 둥글다는 것을 알았던 옛 사람들은 태양이 지구를 도는 것에서 낮과 밤이 생기는 이유를 찾았습니다. 이를 천동설이라고 합니다. 갈릴레오 갈릴레이가 "그래도 지구는 돈다"라고 말했을 때는 '지구의 태양에 대한 회전'과 '태양의 지구에 대한 회전'이 서로 충돌하던 시절이었죠. '회전과 우주의 구조'라고 말했으니 이 대립을 생각하시는 분들도 많을 것입니다. 하지만 이 글에서는 조금 다른 이야기를 해 보려고 합니다.




회전을 정의하기


우선은 다루기 쉽게 회전을 수학적으로 정의해 보도록 하겠습니다. 중학생 수준을 넘는 수식은 쓰지 않을 예정이니 수학이라는 단어에 겁을 먹지 않으셔도 됩니다. 다만 얼마 전까지만 해도 고등학교 정규교육과정에 포함되어 있던 행렬 이야기는 할 예정이니 '행렬이 무엇인가' 정도는 알고 계셔야겠군요.


가장 먼저 필요한 것은 '공간을 수학으로[각주:1] 나타낼 방법'입니다. 이걸 '좌표'라고 부르죠. 어떤 물건의 위치를 문자(여기서는 숫자와 문자를 구분하지 않겠습니다)로 나타내는 규칙입니다. 토런트같은 P2P에서 파일의 위치를 나타내는 주소나 인터넷 페이지의 DNS 주소를 구할 때 "좌표 찍어줘"라고 말하는 것을 생각하시면 되겠습니다.


우리가 사는 공간에서는 세 숫자면 공간상의 모든 점을 표현할 수 있습니다. 예컨데 '내가 앉은 위치에서 동쪽으로 세 칸, 북쪽으로 두 칸, 위로 네 칸'으로 한 위치를 특정지을 수 있지요. 이를 두고 '우리는 3차원 공간에 산다'라고 말합니다. 한 물건의 크기를 적을 때 높이x너비x깊이 이 세 숫자로 크기를 적을 수 있는 것은 같은 이유에서입니다. (변위)벡터는 이 세 쌍의 숫자를 말합니다. 많은 경우 벡터를 시각화하기 좋도록 원점(내가 앉은 위치)에서 목표점(특정지을 위치)까지 이은 화살표로 생각하는데, 벡터의 크기는 이 화살표의 길이가 되지요.


이제 수학적으로 회전을 정의할 수 있겠네요. 회전이란 3차원 공간상의 벡터들을 1. 벡터의 크기를 보존하고 2. 벡터간 각도를 보존하는 3. 선형변환 입니다.[각주:2] 선형은 다른 의미가 아니고 $a$를 $f(a)$로 보내는 변환 $f$에 $a+b$를 집어넣으면 $f(a+b)=f(a)+f(b)$를 만족한다는 뜻입니다. 직선의 방정식처럼 결과가 단순하게 더해진다는 뜻이지요.


'선형'이라는 말이 나오는 순간부터(무한차원이 아닌 한) 우리는 행렬을 생각해야 합니다. 모든 선형변환은 행렬로 나타낼 수 있기 때문입니다. 여기서는 세 숫자를 세 숫자로 보내는 행렬이 되어야 하므로 우리가 생각해야 할 행렬은 3x3 행렬이며, 위에서 말한 세 조건들을 만족하는 회전을 나타내는 행렬들의 집합에는 O(3)라는 이름이 붙어 있습니다. 이 집합에는 거울상 변환에 해당하는 행렬도 들어있는데, 거울상 변환이란 거울에 비추었을 때 상이 뒤집어지는 것처럼 왼손을 오른손으로 보내는 변환들을 말합니다. 일반적으로는 이를 제거한 행렬들의 집합인 SO(3)를 주로 고려합니다. 어떻게 회전하든 오른손이 왼손과 포개어지지는 않으니까요.


SO(3) 집합이라는 표현할 대상을 찾았으면 표현할 방법을 구상해야겠지요. 이 집합의 한 원소(회전을 나타내는 어떤 행렬이 되겠죠)를 나타내는 한 가지 방법은 위도와 경도를 이용해 지구 위 위치를 나타내듯 두 각도를 이용해 회전의 중심으로 잡을 축을 찾고 그 축에 대한 회전각도를 적어주는 것입니다. 여기에는 숫자 셋이 필요하죠(위도, 경도, 회전각). 중요한 것은 숫자 셋이면 충분하다는 것입니다.


더 보기 쉽게 SO(3) 집합의 한 원소를 나타내는 방법은 오일러 각입니다. 오일러 각은 축 세 개를 지정하면 각 축에 대한 회전만으로 모든 회전을 구현할 수 있다는 것에서 출발합니다. 마찬가지로 숫자 셋(회전각 세 개)으로 모든 회전을 나타낼 수 있지요. 흔히 보는 자이로스코프에 회전축이 단 세 개만 존재하는 것과도 관련이 있습니다.


http://en.wikipedia.org/wiki/File:Gimbal_3_axes_rotation.gif


학부 2학년 역학 시간이나 동역학 시간에는 보통 zxz 오일러 각을 배웁니다. z축을 중심으로 전체를 한번 돌린 뒤 x축을 중심으로 한번 더 돌리고 다시 z축에 대해서 돌리는 것이죠. 보통은 팽이의 움직임이나 인공위성의 자세를 묘사하기 위해서 사용합니다. 반면 항공동역학 시간에는 xyz 오일러 각을 배웁니다. z축을 중심으로 돌린 뒤 y축으로 돌리고 다시 x축으로 돌리는 방법이죠. 다른 각을 쓰는 이유는 이 조합이 항공기의 세 횡운동(yaw, pitch, roll)을 나타내는데 더 편해서입니다.


오일러 각의 문제점은 특이점이 존재한다는 것입니다. 회전 전체의 집합 SO(3)에 대해서 우리는 '비슷한 회전'이란 것을 생각해 볼 수 있겠죠. 대부분의 회전에 대해서는 비슷한 회전으로 바뀔 때 오일러 각이 연속적으로 변합니다. 하지만 특정 회전에 대해서는 오일러 각이 불연속적으로 변합니다. 이를 두고 Gimbal lock이라 부릅니다. 이 문제가 생기면 제어 프로그램이 맛이 가기 때문에 이 문제를 피하는 것이 중요합니다.


문제가 있으면 해결하는 방법도 있어야겠죠. 이 문제를 해결하는 한 방법은 위에서 처음 제시한 (위도, 경도, 회전각) 조합을 이용하는 것입니다. 이 방법을 택할 경우 3x3 행렬들의 곱셈, 즉 아홉 숫자의 곱을 계산해야 합니다.


다른 방법은 사원수(quaternion)를 이용하는 것입니다. 이 방법은 단 네 숫자의 곱셈만을 이용합니다.




회전을 나타내는 다른 방법: 사원수


사원수는 간단하게 말하자면 복소수의 확장입니다.[각주:3] 복소수에 단위허수 두개를 더해서 숫자'처럼' 만든 물건이죠. 숫자'처럼'이라고 하는 이유는 행렬처럼 교환법칙( $ab=ba$)이 성립하지 않기 때문입니다.(다만 실수에 대해서는 교환법칙이 성립) 해밀턴 경이 아일랜드 왕립학회에 가다 떠올렸는데 마땅한 적을 곳이 없어서 지나가던 다리 위에다 사원수의 기본 아이디어를 새겼다는 일화가 전해지죠.


다리 위에 새긴 공식은 $i^2 = j^2 = k^2 = ijk = −1$ 으로, 단위허수 $i,j,k$ 간의 관계식입니다. 이 관계식으로부터 단위허수 사이의 관계식을 얻을 수 있는데, 가령 $ijk=-1$의 양 변 좌측에 $-i$를 곱하면

\[jk=(-ii)jk=(-i)(ijk)=(-1)(-i)=i\]


를 얻습니다.비슷한 과정을 반복하면 $ij=-ji=k, ki=-ik=j, jk=-kj=i$라는 관계식을 얻습니다.[각주:4]



회전은 크기가 1인 사원수(단위 사원수라 부릅니다)를 이용해 나타낼 수 있습니다.[각주:5] 벡터 $(e,f,g)$를 사원수 $v=ei+fj+gk$로 나타내면 단위 사원수 $q$를 이용해 회전된 벡터 $(e',f',g')$를 $e'i+f'j+g'k=qvq^{-1}$로 나타낼 수 있습니다.[각주:6] 구체적인 방법은 http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation를 참조하시는 편이 낫겠네요.


여기에 재미있는 점이 하나 있는데, 크기가 1인 사원수의 집합은 4차원 공간에서 원점으로부터 거리가 1인 구면, 그러니까 3차원 구면이 됩니다( $a^2+b^2+c^2+d^2=1$. 3차원 구면은 $S^3$란 기호를 써서 나타냅니다.) 따라서 우리는 회전의 집합 SO(3)가 3차원 구면 $S^3$의 구조를 가지리라고 예상할 수 있습니다. 정말로 그럴까요?


애석하지만 조금 다른 구조를 갖습니다. 왜냐하면 $q$를 이용한 회전과 $-q$를 이용한 회전이 같거든요. '3차원 구면의 대척점 쌍'에 대해 하나의 회전이 정의된 것이죠. 이는 다음 식으로부터 알 수 있습니다.

\[(-q)v(-q)^{-1}=(-1)qv(-1)q^{-1}=(-1)^2 qvq^{-1}=qvq^{-1}\]


SO(3)란 집합은 '3차원 구면의 대척점 쌍'을 원소로 갖는 것이죠. 이런 공간을 사영공간(projective space) $RP^3$로 부릅니다. $RP^3$는 '4차원 공간의 원점에서 직선을 쏘는 방법'들의 공간이기도 합니다.


회전을 나타내는 사원소들의 집합과(3차원 구면 $S^3$의 구조) 실제 회전을 나타내는 행렬의 집합 SO(3)는(사영공간 $RP^3$의 구조) 구조상 미묘한 차이를 보이는 것이지요. 놀랍게도 이 차이는 우리가 보는 세상이 우리가 보는대로 구성되는 것과도 관련이 있습니다.




회전의 미묘한 차이와 우주의 구조


지금까지 회전을 나타내는 두 가지 방법(오일러 각/사원수)이 있으며, 이 중 사원수를 이용한 방법은 오일러 각을 이용한 방법보다 실제로는 더 많은 경우의 수를 가지고 있다는 것을 보여드렸습니다. 재미있게도 이 차이는 물리학에서 입자를 구분하는 방식, 그리고 우주의 모습이 지금 이 모습인 것과 관련이 있습니다.


우선은 회전의 집합을 제대로 규정해야겠지요. 먼저 말씀드렸다시피 3차원 공간에서 회전의 집합은 SO(3)가 됩니다. 하지만 실제 회전에 대응되는 사원수가 나타내는 집합은 SU(2)라고 부릅니다. SU(2)는 3차원 구면 $S^3$의 구조를 가지며, '일반적인 회전 집합' SO(3)에 대해 SU(2)의 두 원소가 SO(3)의 한 원소에 대응되겠죠(사원수 $q$와 $-q$가 같은 회전이므로). 어떤 면에서는 SU(2)라는 집합이 SO(3)라는 집합을 '두 번 덮는다'고 표현할 수 있습니다. 이런 경우를 두고 'SU(2)가 SO(3)의 덮개공간(covering space)이다'라 합니다.



이런 수학적인 장난(?)을 하는 이유는 보통은 느끼기 힘들지만 회전은 분명 흔적을 남기기 때문입니다. 이 흔적은 다음과 같은 실험으로 확인할 수 있습니다. (머플러나 리본처럼) 면을 가진 끈을 준비해 책에 한 끝을 붙이고 다른 끝을 공중 어딘가에 고정합니다. 책을 바닥에 평평하게 두고 한 바퀴 돌리게 되면 끈은 꼬이겠지요. 하지만 '같은' 방향으로 한번 더 돌리면 끈이 풀립니다. 이를 Balinese plate trick이라고 부릅니다. 다음 동영상에서 컵이 계속 위쪽으로 향하도록 한 뒤 회전시킬 때 한 번 회전하면 팔이 꼬이지만 두 번 회전하면 팔이 다시 풀리는 것으로 확인할 수 있죠.



SU(2)와 SO(3)의 2대 1 대응은 '이 차이를 보는가/보지 못하는가'를 나타낸다고 생각하시면 됩니다. 홀수 번 회전과 짝수 번 회전을 구분할 수 있으면 SU(2), 구분하지 못하면 SO(3)가 되는 것이지요.


전자나 양성자와 같은 페르미 입자(fermion)는 홀수 번 회전과 짝수 번 회전을 구분하는 입자들입니다. 이 입자들은 한 바퀴 회전할 때 마다 -1이란 부호를 획득합니다. 광자나 중력자(아직 관찰되지 않았습니다)와 같은 보즈 입자(boson)는 둘을 구분하지 못합니다. 이 차이는 상당히 중요한 결과를 가져옵니다. 두 입자의 자리바꿈과 두 입자의 회전이 동등하기 때문에 페르미 입자의 '회전을 구분하는 특징'은 파울리 배타원리로 나타나게 됩니다. 파울리 배타원리는 '구분할 수 없는 페르미 입자가 같은 상태에 존재하는 것'을 금지합니다. 구분할 수 없는 페르미 입자 두 개가 자리를 바꾸면서 얻는 -1이란 부호가 파동함수의 상쇄간섭을 일으키기 때문입니다.[각주:7] 반면 보즈 입자에 대해서는 파울리 배타원리가 적용되지 않기 때문에 '구분할 수 없는 보즈 입자가 같은 상태에 존재하는 것'이 얼마든지 가능합니다. 극단적인 경우에는 모든 구분이 불가능한 보즈 입자들이 한 상태에 밀집하며, 이를 보즈-아인슈타인 응축이라 부릅니다.


파울리 배타원리의 가장 중요한 결과는 주기율표입니다. 다른 종류의 원자가 서로 다른 화학적 성질을 갖는 이유는 전자가 페르미 입자라서 같은 상태에 두 입자가 존재할 수 없기 때문에 서로 다른 궤도를 갖고 원자핵을 돌기(물론 엄밀하게 말할 때 '도는 것'은 아닙니다만 다른 궤도를 갖고 있다는 것이 중요합니다) 때문입니다. 만약 전자가 보즈 입자였다면 전자는 모두 가장 낮은 에너지를 갖는 궤도에 안착할 것이고(파울리 배타원리가 이런 '붕괴'를 막습니다) 모두 같은 궤도에 있기 때문에 화학 반응이 일어나지 않겠지요.


또 다른 중요한 결과는 항성 핵과 중성자별의 존재입니다. 연소가 끝난 항성 핵은 가장 안정적인 철 원자로 구성되어 있고 철 원자의 전자들은 페르미 입자이기 때문에 '열운동에 의한 압력' 및 '파울리 배타원리의 효과'를 받아 중력으로 붕괴하지 않습니다. 중성자별은 연소가 끝난 별들의 원자핵이 페르미 입자인 중성자로 변해 마찬가지의 원리로 붕괴하지 않지요. 만약 파울리 배타원리의 효과를 받지 않는다면 이 천체들은 연속적으로 붕괴하여 블랙홀이 됩니다.


우리 모두는 별의 잔해에서 태어났습니다. 우리 몸을 구성하는 탄소나 산소와 같은 원소들은 별들의 핵에서 생성되었으니까요. 파울리 배타원리의 효과로 천체들이 불연속적으로 붕괴하는 것이 중요한 이유는 별들이 불연속적으로 붕괴하면서 핵에서 만들어진 원소들을 우주 공간으로 날려보내고, 이로부터 생명이 시작되기 때문입니다. 철 원자로 이루어진 항성의 핵을 지탱해주는 파울리 배타원리의 효과가 중력을 이겨내지 못하는 순간 항성의 핵의 철 원자 핵은 전자를 흡수하며 중성자가 되고, 이 과정에서 부피가 줄어들기 때문에 항성 핵은 붕괴하기 시작합니다. 하지만 중성자도 부피를 갖기 때문에 무한히 붕괴하지는 않지요. 원자 핵 밖에서 항성의 중심으로 낙하하던 물질들은 새롭게 만들어진 중성자 핵이라는 벽에 부딪치고 별 밖으로 튕겨나가게 됩니다. 이 과정을 초신성이라 부릅니다. 항성이 연속적으로 붕괴했다면 일어나지 않았을 일들이지요.


우리가 보는 세상이 우리가 보는 모습대로 있는 이유는, 그리고 우리가 존재할 수 있는 이유는 얼핏 보면 드러나지 않는 회전의 미묘한 차이를 구분할 수 있는 소립자들의 존재 때문인 셈입니다.





트위터에 날린 융단폭격을 조금 정리해봤습니다. 융단폭격의 우두머리(?)는 다음 세 트윗:


https://twitter.com/AstralDexter/status/568795182709125120

https://twitter.com/AstralDexter/status/568802072251887616

https://twitter.com/AstralDexter/status/568809524733222912


자이로스코프 이야기를 하려다 하려던 자이로스코프 이야기는 안 하고 샛길로 새어버렸네요 -_-;; 해당 내용을 추가하기는 늦은 듯 해서 다음에 기회가 생기면 이야기하기로 했습니다.

  1. 정확히는 숫자입니다. 앞으로 각주를 달 내용은 글의 내용과 관련만 있고 흐름과는 상관없는 내용들만 쓸 예정이므로 읽지 않으셔도 좋습니다. 어느 정도 배경지식이 있는 사람들을 위한 이야기라서요. 접어둔 내용은 글을 이해하시는 데 필요할 수 있는 정보들입니다. [본문으로]
  2. 3은 사실 연속성(비슷한 벡터는 비슷한 벡터로)과 같이 생각해야 하는 조건입니다. 연속성이란 조건을 날려버리면 '구 하나를 쪼개고 잘 합쳐 둘로 만드는' 것도 가능합니다. Banach-Tarski 역설을 참조: http://en.wikipedia.org/wiki/Banach-Tarski_paradox [본문으로]
  3. 복소수에서 사원수로 확장하는 과정을 이용해서 수 체계를 계속 확장하는 것이 가능합니다. http://en.wikipedia.org/wiki/Cayley-Dickson_construction [본문으로]
  4. 사원수의 경우 Gibbs가 벡터 연산을 개발하기 전까지 물리학의 기본 언어로 쓰일 정도로 물리에 영향을 많이 미쳤습니다. 이후 사원수와 같은 방향으로 나아간 것에는 geometric algebra란게 있는 모양입니다만 공부해보진 않았네요. 참고로 xyz 단위벡터를 쓸 때 ijk를 쓰는 것은 사원수의 흔적입니다. [본문으로]
  5. 바로 다음 파트에서 다룰 예정이지만, 단위 사원수의 집합은 SU(2)와 동일합니다. [본문으로]
  6. 앞선 각주를 읽으셨고 게이지 장론을 공부하셨다면 회전을 나타내는 방법 중 SO(3)는 fundamental representation에, SU(2)는 adjoint representation에 해당한다는 것을 확인할 수 있습니다. [본문으로]
  7. 공간이 2차원이 되면 한 바퀴 회전할 때 얻는 부호가 1 또는 -1로 제한될 필요가 없습니다. Anyon이 이런 경우를 다룹니다. [본문으로]
Posted by 덱스터

P. A. M. 디락의 생일 기념으로 The Second Creation(Robert P. Crease, Charles C. Mann, Rutgers University Press, New Jersey, 1996)의 5장 The Man Who Listened의 발췌번역입니다. 디락의 일화를 소개하는데 무게를 두었습니다.


[..]


젊은 과학자들이 첫 논문으로 과학계를 흥분시키고 모든 박사논문이 새로운 분야를 열어젖히던 때, 가장 많은 영향을 미친 것은 디락이었습니다. 양자이론에 대한 반감을 가졌던 아인슈타인이 마지막 고전물리학자라면, P. A. M. 디락(그는 항상 이렇게 서명했지요)은 첫 완전한 현대물리학자였습니다. 1984년 디락의 죽음 직전에 물리학자 실판 슈베버(Silvan Schweber)는 이렇게 평가했습니다. "디락은 양자역학의 주요 저자 중 하나일 뿐 아니라 양자전기역학의 개척자이며 양자장론의 주된 설계가이기도 합니다. 삼사십년대의 양자장론의 중요한 발전은 모두 디락의 작업에서 출발하고 있습니다"


환경은 그가 지독히 내성적이고 과묵하게 자라나도록 짜인 것처럼 보입니다. 디락은 1902년 8월 2일 영국 브리스톨(Bristol)에서 스위스 출신의 아버지 밑에 태어났습니다. 그의 아버지는 반사회적이라고 할 수 있을 정도로 활동이 없었습니다; 디락의 가족은 손님이 없었고, 놀러 나가지도 않았습니다. 자리가 부족했기 때문에 다른 가족들은 부엌에서 식사할 동안 디락은 아버지와 함께 식사했습니다. 아버지는 그가 불어를 배우기 좋을 것이라 생각해 자신과 불어로만 대화하도록 규칙을 만들었는데, 불어로는 자신을 표현할 방법을 못 찾아 조용했다고 디락은 회상했습니다. 대부분의 시간을 야외에서 홀로 산책하며 보냈던 디락은 질서와 대칭을 좋아했습니다. "내 대부분의 작업은 그냥 공식을 가지고 논 뒤 어떤 결과가 나오는지 본 것입니다. 다른 물리학자들도 같다고 생각하지는 않습니다; 물리적으로 전혀 의미가 없을지도 모르는 공식을 가지고 놀며 어떤 아름다운 수학적 관계가 있는지를 살피는 것은 제 특성인듯 합니다. 가끔은 물리적 의미가 있기도 합니다"


디락의 아버지는 사회성의 중요성을 무시했지만 좋은 교육의 필요성은 인식했고, 디락의 수학적 재능을 장려했습니다. 역사의 우연으로 이 재능은 더욱 클 수 있었습니다: 나이에 비해 이르게 전쟁으로 징집되어 텅 빈 고등반에 진학했거든요.[각주:1] 디락은 브리스톨 공과대학과 일부를 공유했던 머천트 벤처러 학교(Merchant Venturer's School)을 좋아했습니다. 부분적으로는 그가 거의 평생 이해할 수 없었던 철학과 미학을 중요히 여기지 않았기 때문이지요. 디락은 대학에 진학하면서 수학으로는 직업을 가질 수 없으리라 생각해 공학을 전공하기로 했습니다. 그는 좋은 학생이었으나 분야의 이론적인 부분에만 관심을 가졌습니다. 실무 훈련은 최악이었죠.


1921년 가을 공학 학위를 끝낸 디락은 직업을 구할 수 없었습니다. 재능있는 수학자가 공학과정을 밟는다는 것에 낙담했던 브리스톨 대학의 수학과 교수들은 수업료를 면제해주겠다고 제안했습니다. 달리 할 일이 없었던 디락은 그러기로 했지요. 명예 수학과정을 밟던 다른 유일한 학생은 물리에 사용될 수 있는 응용수학을 공부하기로 단단히 결심한 여학생이었습니다. 딱히 확신이 없었던 디락은 그녀의 목표를 따라갔고, 세기의 대 물리학자중 하나는 이렇게 활동을 시작했습니다.[각주:2]


디락은 물리를 무계획적으로 시작했던 때부터 말년까지 수학이 물리 발전의 열쇠라고 보았습니다. 그의 마지막 연설들 중 하나에서 그 신조가 드러납니다. "사람은 수학이 이끄는 방향을 따라야 합니다. [...] 사람은 그 끝에서 시작한 것과 전혀 다른 곳에 도착하더라도 수학적인 착상을 좇아야 합니다. [...] 수학은 물리적인 생각만 따라갔을 때 택하지 않았을 길도 갈 수 있게 해 줍니다"


디락은 브리스톨에서 상대론을 배웠고 매료되었습니다. 이학사를 취득한 후 1925년 케임브리지의 성 요한 대학(Saint John's College)에 진학하였고, 1927년 25세가 되었을 때의 양자역학에 대한 기여로 그가 세계에서 가장 중요한 물리학자중 하나라는 것이 확실해졌습니다.[각주:3]


명성은 그를 크게 변화시키진 못했습니다; 계속 과묵했던 디락을 만난 사람들은 자주 무례하다고 생각했습니다. 디락은 케임브리지 물리학 그룹의 명예회원이었으나 적은 학생을 키웠고, 학풍을 세우지도 않았으며, 실험가들과 드물게 대화했습니다. 1930년대 말을 실험실에서 보낸 새뮤엘 데본스(Samuel Devons)는 우리에게 말했습니다. "캐번디시 물리학회 모임이란 준격식적인 모임이 격주로 있었어요. 한 강연자가 들어오면 디락은 첫 줄에 앉아 듣곤 했죠. 그는 매우 드물게 입을 열었어요. 가끔 러더포드가 '그래서 이론하는 사람들은 어떻게 생각하나?'라고 찔러보곤 했죠. 러더포드는 이론이 일종의 사색에 불과하고 진짜는 실험에 있다고 믿었죠.[각주:4] 그리고 디락은 앉아 아무 말도 안 했습니다."


디락은 매우 정확하고 조심스럽게 말했기 때문에 매우 난해했습니다.[각주:5] 양자역학을 강의할 때 그는 강연대 뒤에 서서 그가 쓴 책을 읽어주었는데, 책에 더 이상 명료할 수 없게 적었다고 믿었기 때문입니다.1928년 라이덴(Leiden)에서 몇 개의 강연을 했을 때 폴 에렌페스트는 디락의 태도에 질려버렸습니다. 그 자리에는 H. B. G. 캐시미어도 있었는데, 회상하길 "(각 강연은) 완벽했습니다. 디락은 버릇대로 누군가 이해하지 못한다면 별 다른 설명을 하는 대신 매우 침착하게 정확히 동일한 내용을 반복했습니다. 보통은 충분했지만, 에렌페스트가 선호하는 방법은 아니었죠." 에렌페스트는 항상 사람이 어떻게 작업하는지를 보고 싶어했습니다. 캐시미어는 이어서 말했습니다. "한번은 에렌페스트가 디락에게 질문했고, 디락은 곧바로 답이 떠오르지 않았습니다. 그래서 디락은 칠판에 풀어보기 시작했죠. 그는 온 칠판을 자그마한 글씨로 채웠고, 에렌페스트는 그의 바로 뒤에 서서 무엇을 하고 있는지 보며 외쳤습니다. '애들아, 애들아-이걸 봐라! 이제 그가 뭘 하는지 알겠네!'[각주:6]"


[...]




이 이후는 디락의 작업에 대한 이야기입니다. 하이젠베르크가 발견한 불확정성 원리를 고전역학의 푸아송 괄호와 연결지어 해석하는 것과(더 보편적인 결과입니다) 양자전기역학의 발견, 디락방정식의 발견을 다루고 있고 디락방정식의 중요한 예측인 반전자의 존재에 대해 다루고 있습니다. 디락은 처음엔 디락방정식의 음에너지 해를 보고 양성자(당시만 해도 양전하를 가진 입자는 양성자 뿐이었습니다. 심지어 중성자도 발견되지 않았을 시기죠.)라고 생각했다고 하죠. 그리고 당시만 해도 미국은 예일대의 조시아 깁스[각주:7]를 제외하면 유럽에 비해 급이 떨어졌다고 하네요.

  1. 역주) 시기상으로는 일차대전인데, 이 당시만 해도 전쟁에 참여하는 것에 대한 낭만(?)같은 것이 있던 시절이라 학생들이 적었을 수도 있겠다는 생각이 드네요. [본문으로]
  2. 역주) 하고 싶은걸 하는게 아니라 할 수 있는걸 하는게 중요하다는 교수님의 일갈이 생각나는군요. 하... [본문으로]
  3. 역주) 디락은 1926년 봄 박사학위를 취득했습니다. 1년만에 박사라니... [본문으로]
  4. 역주) 책의 다른 부분을 보면 러더포드는 '간단하면서 본질적인 속성을 드러내는 실험'을 중요시했다고 나옵니다. 러더포드 산란 실험은 대표적인 '간단하고 본질적인 속성을 드러내는 실험'이죠. [본문으로]
  5. Dirac spoke so precisely and carefully that he approached the Delphic; (번역이 힘드네요) [본문으로]
  6. Kinder, Kinder! Schaut jetzt zu! Jetzt kann man sehen, wie er es macht! [본문으로]
  7. 사원수 대신 벡터미적분학을 도입했고 통계역학을 완성했다고 보시면 됩니다. [본문으로]
Posted by 덱스터

'과학과 기술 글쓰기' 수업 과제. 초고 제출한지 한 서너주 되었으니 블로그에 올려 본다. 다음주까지 수정본 제출인데 수정본은 천천히 올리게 될 듯. 쓰고 나서 비평을 맡은 조원들에게 왜 이렇게 길게 쓰냐고 욕먹었다(...). 그런데 내용에 빈 틈이 없게 하려다 보니 이렇게 길어져 버렸(...) 오히려 비평 받은 다음에 내용을 추가해야겠다는 생각이 들어버려서 문제인데, 면담 가면 어떻게 고쳐야 할 지 방향이 잡히지 않을까.


설마 블로그에 올렸다고 카피처리하지는 않겠지?(김광식 교수님 이거 제 블로그입니다 =_=;;)




나무 하나 없는 황량한 벌판을 한겨울의 매서운 칼바람이 가득 채우고 있었습니다. 그리고 벌판 한 가운데 사나운 겨울바람에 맞서며 거대한 구조물을 계속 손보는 형제가 있었습니다. 가문비나무 막대를 복잡하게 얽고 그 위에 얇고 질긴 면직물을 덮어씌운 구조물에 형제는 직접 깎은 프로펠러와 체인으로 연결된 가볍지만 강력한 엔진을 얹었지요. 형제는 세세한 주의사항 모두를 꼼꼼하게 점검하였습니다. 마침내 점검이 끝났습니다. 동생은 그 구조물 안에 탔고, 엔진 시동음이 바람 사이로 퍼져나갔습니다. 구조물은 맞바람을 받으며 달려나갔습니다.


1903년, 12월 17일, 10시 35분. 노스캐롤라이나의 키티 호크. 라이트 형제는 플라이어 1호를 타고 첫 공기보다 무거운 비행(heavier-than-air)에 성공하였습니다.


비행기는 우리 일상에 많은 영향을 미치고 있습니다. 여객기와 화물기는 빠른 운송 수단으로 이 곳과 해외 사이에 가로놓인 높은 장벽을 낮추어 주는 역할을 하며, 전투기는 끔찍했던 전쟁 이후 강력한 전쟁억지의 수단으로 자리잡았습니다. 이렇게 비행기 한 번 탄 적 없는 사람이라도 비행기가 가져온 세계의 변화에 휩쓸리지 않은 사람은 없습니다. 그리고 닿을 수 없는 자유의 상징으로만 여겨졌던 하늘은 더 이상 잡을 수 없는 밤하늘의 별이 아니게 되었지요. 비록 기계의 도움을 받기는 했지만요.


비행기는 어떻게 날까요? 실제 비행기를 가지고 여러 가지 실험을 해 볼 수는 없으니 더 싸고 더 쉽게 볼 수 있는 대용품을 찾아보기로 하겠습니다. 가장 간단한 대용품은 아무래도 종이비행기겠지요. 만들어지는 재질과 크기에서 차이가 나기는 하지만, 종이비행기가 잘 날기 위해서 가져야 할 조건은 비행기가 날기 위해서 가져야 할 조건과 같습니다. 그렇다면 종이비행기가 잘 날려면 무엇이 필요할까요? 이 질문에는 모두가 공통적으로 떠올리는 한 단어가 있지요.


“추락하는 것은 날개가 있다”는 말이 있습니다. 소설 제목과 영화 제목으로도 사용된 말인데, 이 말에는 얼핏 보아서는 못 보기 쉬운 삼단논법이 숨어있지요.


가. 추락하기 위해서는 날아올라야 합니다.

나. 그리고 날아오르기 위해서는 날개가 있어야 합니다.

다. 그렇기 때문에 추락하는 것은 날개가 있습니다.


그런데 날기 위해서는 날개가 있어야만 할까요? 확실히 흔히 볼 수 있는 날짐승들을 살펴보면 모두 날개가 있습니다. 참새, 잠자리, 메뚜기, 쏙독새, 비둘기에 이르기까지(비둘기는 다시 생각해야 할지도 모르겠네요.) 모두 날개를 갖고 있지요. 날려면 날개가 있어야만 할 것 같습니다. 실제로 많은 비행 연구는 ‘어떻게 해야 효과적으로 날 수 있는 날개를 만들 수 있는가’에 초점을 맞추고 있습니다.


날개가 어떻게 날 수 있는 힘을 만들어 주는지에 대한 설명은 이미 많은 좋은 글이 나와 있으니, 여기서는 날개 자체에 대해서만 생각해보겠습니다. 날려면 날개가 있어야 하는데, 반대로 날개가 있기만 하면 날 수 있을까요? 날개가 있지만 뛰어다닐 뿐 날지는 못하는 타조와 같은 새가 있는 것을 떠올려보면 날개가 있다고 무조건 날 수 있는 것은 아닌 것 같지만, 실제로 실험해보기 전까지는 알 수 없겠지요. 그러면 다음 그림처럼 비행기를 접어봅시다.




종이비행기를 많이 접어 보신 분들은 아시겠지만, 이런 형태로 접은 비행기는 날지 못합니다. 종이비행기를 접어 본 적이 없는 분들은 이 종이를 접어 바로 실험해보시면 되겠지요(대신 다시 읽을 수 있도록 땅바닥이 더러운 곳에서 실험하는 것은 피해주세요). 분명히 날개가 있는데 왜 날지를 못할까요? 그러면 다음과 같이 종이비행기를 접어봅시다.



이렇게 접은 비행기는 자주 보셨겠지요. 실제로 날려보면 이렇게 접은 비행기는 아주 잘 날지는 않더라도 최소한 날개만 만들어주었던 그 전의 종이비행기보다는 비행기같이 행동합니다(이 종이로 실험하시는 분들은 너무 멀리 날아가지 않게 조심해주세요). 날기 위해서 날개가 그렇게 중요하다면 분명히 날개가 클수록 더 잘 날아야 합니다. 그런데 실제로는 날개의 크기가 줄어든 두 번째 종이비행기가 훨씬 잘 날지요. 이 실험에서 알 수 있는 것은, 날기 위해서 중요한 것은 날개만이 아니라는 것입니다. 여태 날기 위해서 가장 중요한 것이 날개라고 생각하고 있었는데, 이 현상은 다소 이해하기가 힘들지요.


물리학자들은 한 어려운 현상을 이해하기 위해 좀 더 잘 아는 다른 현상에 견주어보고 그 사이의 공통점을 이끌어내는 버릇이 있습니다. 이 버릇으로 전기와 자기가 하나의 힘이라는 것과, 더 나아가서는 수많은 자연현상들이 단 네 가지 힘으로 설명할 수 있다는 것을 알아내게 되었지요. 그러면 이 글에서도 물리학자들의 버릇을 따라 잠깐 동안 종이비행기와는 조금 달라 보이는, 하지만 이해하기는 더 쉬운 예시를 끌어들여 보도록 하겠습니다.


넓은 공원이나 뜰에 나가면 부메랑이나 원반던지기를 하는 사람들을 쉽게 볼 수 있습니다. 그 사람들이 원반을 던질 때, 던지는 방향과 어떤 모양을 이루도록 던지나요? 보통은 원반을 날아가는 방향과 평행하도록 맞추어 던지지 날아가는 방향과 원반의 면이 수직이 되도록 던지지는 않습니다. 왜 수직으로 던지지는 않는 것일까요? 실험해보면 평행하게 던진 원반은 잘 날지만 수직으로 던진 원반은 꽤 큰 저항이 느껴지며 평행하게 던진 원반보다 잘 날지 못한다는 사실을 알게 됩니다. 이 큰 저항이 원반이 날아가는 것을 방해합니다. 모래주머니를 차고 달리면 더 금방 지치는 것처럼, 원반도 더 큰 저항에 더 빨리 날아갈 에너지를 잃는 것이지요.


종이비행기에서도 이와 같은 일이 일어납니다. 첫 번째의 날개만 있는 종이비행기는 날릴 경우 조금 나아가다가 머리가 수직으로 들려버리는 것을 보실 수 있습니다. 원반에 비유하자면, 평행하게 던진 원반이 갑자기 수직으로 바뀌어 버리는 것이지요. 이 상태를 실속(stall)이라고 부릅니다. 실속 상태에서는 날개가 비행기가 날기 위해 필요한 힘을 충분히 만들어내지 못하고 커다란 저항만 일으키게 되며, 때문에 비행기에서는 실속이 일어나면 추락할 위험이 매우 높아집니다. 비행기 사고가 가장 일어날 확률이 높은 때가 이륙할 때와 착륙할 때라고 하는데, 그 이유는 비행기가 이착륙할 때 실속이 간신히 일어나지 않을 정도의 한계에서 비행하기 때문이지요. 한편 두 번째 비행기는 머리를 들기는 하지만 그렇게 높이 들지는 않습니다. 날아가는 도중에 자세가 흐트러질 법도 한데, 절대 실속이 일어나지는 않도록 잘만 자세를 유지합니다. 두 번째 비행기는 어떻게 자세를 유지할 수 있는 것일까요?


이번에도 물리학자들의 버릇을 따라 좀 더 이해하기 쉬운 다른 예를 보겠습니다. 약수터의 가장 인기 있는 스포츠종목 중 하나로 배드민턴이 있습니다. 배드민턴은 셔틀콕이라는 특이한 공을 사용하는데, 코르크에 거위 깃털을 고르게 꽃아 놓은 것이지요. 그런데 셔틀콕이 날아가는 것을 잘 보면 특이한 점을 하나 알 수 있습니다. 편의상 셔틀콕의 코르크 부위를 앞, 깃털이 꼽힌 부위를 뒤라고 부른다면, 셔틀콕은 항상 앞으로 날아간다는 것이지요. 두 번째 종이비행기도 한 방향으로만 나는데(실제로 충분히 강한 힘으로 종이비행기를 뒤쪽으로 날려 보면 어느새 방향을 바꾸어 바른 방향으로 날아가는 것을 볼 수 있습니다), 우연의 일치일까요?


셔틀콕과 두 번째 종이비행기는 둘 다 앞쪽은 날렵하고 뒤쪽은 부피가 크며 둔하게 생겼다는 공통점이 있습니다. 이것은 무엇을 의미할까요? 바람 부는 날에 바람에 떠밀려 본 분은 아시겠지만, 공기는 물체에게 힘을 줄 수 있습니다. 이런 힘을 압력이라고 부르는데요, 압력은 물체의 모든 표면에 동시에 작용하기 때문에 그 총합을 직접 계산하기는 매우 까다롭습니다. 그래서 물리를 하는 사람들은 이 힘이 한 점에 집중되어 있다고 가정하여 계산을 단순화한 뒤 현상을 설명하고는 하는데, 이 점을 압력중심이라고 부릅니다. 압력중심은 바람이 불어오는 방향과 그 세기, 그리고 물체의 모양에 영향을 받아 그 정확한 위치를 결정하는 것은 매우 힘들지만, 대체적으로 부피가 큰 쪽에 있다는 사실이 알려져 있습니다. 앞쪽 보다는 뒤쪽이 부피가 크고 둔하게 생긴 물체는 앞쪽보다는 뒤쪽에 압력중심이 위치한다는 것이지요.


그렇다면 압력중심은 어떻게 자세를 유지하는 역할을 할까요? 이제는 이 표현이 식상해지려고 하지만, ‘물리학자들의 버릇을 따라’, 조금 더 생각하기 쉬운 예를 떠올려 보겠습니다. 우리 주변에서 원래 자세로 돌아가려고 하는 물체 중 가장 자주 볼 수 있는 것은 진자입니다. 진자는 살짝 건드리면 한 점을 중심으로 왔다 갔다 하다가 결국에는 건드리기 전의 원래 위치로 돌아옵니다. 진자와 종이비행기의 압력중심은 어떤 관계가 있을까요? 진자는 고정된 축과 추 두 가지로 이루어져 있습니다. 축을 중심으로 회전하도록 만들어진 진자의 추에 작용하는 중력은 진자를 원래 자세로 돌아가게 합니다. 진자의 비유에서 추와 중력은 압력중심과 압력에 대응합니다. 그러면 진자의 비유에서 고정된 축에 대응하는 것은 무엇일까요?


답부터 말하자면 비행기의 질량중심이 고정된 축의 역할을 합니다. 질량중심이란 압력중심과 마찬가지로 한 점에 한 물체의 모든 질량이 있다고 가정했을 때 그 점입니다. 좀 더 많은 질량을 가진 쪽에 위치하며, 압력중심과 같이 물리학자들이 계산을 좀 더 편리하게 해 보자는 의도에서 생각해내었지요. 두 번째 종이비행기의 경우 앞 쪽을 접어주었기 때문에 더 많은 질량이 앞쪽에 몰려 질량중심이 보다 앞 쪽으로 움직이게 됩니다. 그런데 질량중심은 어떻게 축의 역할을 하는 것일까요?


물리학이라는 학문(혹자는 과학이라는 학문 체계라고도 하더군요)의 개척자인 아이작 뉴턴은 처음으로 물리학이 제 모습을 갖추기 시작한 책 『프린키피아Principia』에서 세 가지 법칙을 제시하였습니다. 그 중 첫 번째가 바로 ‘관성의 법칙’입니다. 관성의 법칙이란 쉽게 말한다면 (외부에서 힘을 주지 않는 한) 움직이던 물체는 움직이던 그대로 움직이려 하고, 멈춰있던 물체는 멈춰있는 그대로 있으려 한다는 것이지요. 우리가 한 물체를 던지고 그 물체를 따라가면서 본다면, 그 물체는 상대적으로 멈춰 있는 것처럼 보인다는 것을 의미합니다.


하지만 연필만 던져보아도 던져진 물체는 회전까지 한다는 것을 알 수 있습니다. 그러면 회전하는 던진 물체를 따라가면서 볼 때, 그 물체는 어떻게 움직이는 것처럼 보일까요? 아무래도 물체는 가만히 있고 한 축을 중심으로 계속 회전하는 것처럼 보이겠지요. 이 축이 지나는 점이 질량중심입니다. 질량중심은 한 물체의 질량 전부를 대표하는 점이어야 하기 때문에 관성의 법칙을 더욱 철저하게 지켜야 합니다. 따라서 던진 물체를 따라가면서 보는 동안 질량중심은 가만히 정지해 있는 것처럼 보여야만 합니다. 고정된 축의 역할을 하게 되는 것이지요.


다시 잘 나는 두 번째 종이비행기로 돌아와서, 날린 종이비행기를 날아가는 속도 그대로 따라가면서 본다면 종이비행기의 한 점은 정지해 있는 것처럼 보입니다. 그 점은 위에서 설명한 질량중심이 되지요. 그리고 앞서 설명했던 것처럼 압력중심은 종이비행기의 뒤쪽에 위치하게 되며, 궁극적으로는 질량중심보다도 뒤에 위치하게 됩니다. 마지막으로 종이비행기는 날아가는 동안 공기가 날아가는 방향의 반대 방향으로 힘을 줍니다. 가슴이 터질 것처럼 뛰어보신 분들이라면 앞으로 내달릴 때 바람이 얼마나 세게 더 이상 못 달리게 하려는지 경험으로 알고 계시겠지요. 전체적인 그림을 다시 한 번 살펴본다면, 흔히 보는 진자를 옆으로 뉘어놓은 구도가 된다는 것을 알 수 있습니다. 중력이 진자를 원래 자세로 되돌리려는 것처럼, 공기의 압력이 종이비행기를 원래 자세로 되돌리려고 하는 것이지요.


이 비유는 첫 번째의 못 나는 종이비행기에게도 적용할 수 있습니다. 첫 번째의 종이비행기는 날개만 접어주었기 때문에 질량중심이 종이비행기의 한 가운데에 위치합니다. 압력중심 또한 특별히 부푼 부분이 없기 때문에 종이비행기의 한 가운데에 위치하지요. 회전의 중심이 되는 점과 되돌리려는 힘을 받는 점이 일치하게 된 것인데, 이는 진자의 축을 고정하는 축에 다는 것과 같습니다. 추의 정중앙에 못을 꿰어 벽에 박아놓으면 아무리 돌려보아도 원래 자세로 돌아오려 하지 않습니다. 마찬가지의 이유로 첫 번째 종이비행기는 처음 날린 자세 그대로 돌아오려 하지 않습니다. 조금 날다가 머리를 들어 그대로 실속을 맞이하는 것이지요.


우리는 이 글에서 종이비행기처럼 주변에서 흔히 보이는 아주 사소한 물건에도 복잡한 물리법칙이 작용해서 균형을 이루도록 한다는 것을 살펴보았습니다. 그리고 갖가지 비유를 통해 이 물리법칙들은 매우 달라 보이는 원반, 셔틀콕, 진자에게도 작용한다는 것을 알게 되었지요. 이 글을 읽고 잘 나는 종이비행기를 접는 법을 익힌다고 해도 라이트 형제처럼 내가 타고 날 수 있는 비행기를 만들 수는 없겠지만, 이 글이 물리학이 어떤 학문이고 얼마나 보편적으로 작용하는지 엿보는 기회가 되었으면 합니다. 그리고 이 글을 통해 여러분이 물리학이 어렵기만 한 학문이 아니라 실제로는 매우 재미있고 아름다운 학문이라는 것을 느끼신다면 그것만큼 큰 보람은 없겠지요. 지금까지 이 글을 읽어주셔서 감사합니다.





p.s. 실제로는 공기에 의해 힘을 받기 때문에 뉴턴의 제1 법칙은 완벽하게 적용되지 아니하나, 그 힘이 상대적으로 작아 무시할 수 있기 때문에 논의를 그대로 진행하였습니다. 또한, 실제 항공기 설계에서는 압력중심보다는 공력중심(aerodynamic centre)라 부르는 점을 이용합니다. 하지만 공력중심은 과도하게 논의가 어려워진다는 문제가 있어 압력중심으로 글을 이끌어간 점 양해 부탁드립니다.

Posted by 덱스터
덧글에 찔려서 시작하는 백만년만의 물리 포스팅. 물리 포스팅은 수식 쓰는 시간이 길어서 조금 힘들다. 이번에는 Sakurai의 Modern Quantum Mechanics 140페이지에 등장하는 벡터 포텐셜을 구해보자.

$$\mathbf{A}=\frac{1-\cos\theta}{r\sin\theta}\hat\phi$$

시작은 curvilinear orthogonal coordinate system에서(특히 구면좌표계)의 curl에 대한 표현이다.

$$\nabla\times\mathbf{A}=\frac1{uvw}\begin{vmatrix} u\hat{x_1}&v\hat{x_2} &w\hat{x_3} \\ \partial_1&\partial_2 & \partial_3\\ uA_1&vA_2 &wA_3 \end{vmatrix}\\d\mathbf{s}=udx_1\hat{x_1}+vdx_2\hat{x_2}+wdx_3\hat{x_3}$$

구면좌표계에서는 $u=1, v=r, w=r\sin\theta$인데, 우리가 원하는 curl의 형태는 $\frac1{r^2}\hat{r}$이기 때문에 해를 구하기 위해 다음과 같이 어느 정도 단순화된 해를 가정할 수 있다.[각주:1]

$$\mathbf{A}=A_\phi \hat\phi\\r\sin\theta{A_\phi}=f(\theta)\\\partial_\theta[{r\sin\theta{A_\phi}}]=\sin\theta$$

물론 이 방정식을 풀면(적분상수 C는 남겨둔다)

$$ f(\theta)=C-\cos\theta\\\therefore{A_\phi}=\frac{C-\cos\theta}{r\sin\theta}$$


을 얻는다. C=1로 두면 위에서처럼 음의 z축에서만 폭발하는 vector potential을 만들 수 있고, 내가 구했던 경우는 C=0이었는데 이건 z축에서는 사용이 불가능했다.

$$ \mathbf{A}=-\frac1{r}\cot\theta\hat\phi $$

자기 단극자는 흥미로운 현상이다. 원래 없다는 공리에서 세워진 이론 체계에서 있다는 결론을 도출할 수 있다니 어찌 재미없다고 할 수 있겠는가. 요즘 부대에서 하는 물리 생각의 80% 이상은 이 녀석 생각이다. 잠정적인 결론은 "자기 단극자가 있다면 질량이 없을 것이다"이지만.(그래서 광속으로 이동하는 전하의 전기장에 대해 생각하고 있다.)
  1. 역으로 theta방향 성분만 있는 벡터 포텐셜을 생각할수도 있다. 하지만 이 경우 생기는 문제는 특이점의 집합이 평면이 되어버린다는 것이다. [본문으로]
Posted by 덱스터
일단 이 내용은 09년 봄학기 항공역학 기말고사 시험문제였죠. 기초적인 읽을거리 들어갑니다.


한줄로 요약하면 앞에서 나는 새가 상승기류를 만들고, 그 상승기류를 탄 뒤쪽의 새는 편하게 날아간다는 겁니다. 그러면 그 상승기류는 어디서 나오는 것일까요? 다음 비행기 사진을 살펴 보겠습니다.


Wingtip vortex라 부르는 비행기 날개 끝의 소용돌이입니다. 전투기가 나오는 영화나 애니메이션이라면 항상 등장하는 단골 손님이기도 하구요. 이 소용돌이를 잘 보면 날개 아래 쪽에서 시작해서 밖을 선회하며 날개 위 쪽으로 돈다는 것을 알 수 있습니다. 이 소용돌이가 바로 상승기류의 원인이 되는 것이지요.

Regions of upwash and downwash created by trailing vortices

그렇다면 이 소용돌이가 왜 생기는지 알아야 상승기류에 대해 더 잘 이해할 수 있겠지요. 이 소용돌이는 날기 위해 생기는 어쩔 수 없는 현상입니다. 먼저 비행기가 나는 원리를 생각해 보도록 하겠습니다. 비행기가 나는 원리는 간단합니다. 날개 위 아래로 압력차이를 발생시켜서 날개에 뜨는 힘을 유도하는 것이죠. 압력밥솥 위에 달린 종처럼 생긴 물건이 밥을 할 때 치카치카 거리면서 흔들거리는 이유와도 동일합니다.


이를 위해 비행기 날개의 단면은 위쪽으로 살짝 둥근 형태를 취하게 됩니다. 둥근 모습을 하게 되면 위쪽에 더 빠르게 공기가 흐르게 되는데, 이건 날개가 공기를 위쪽으로 더 많이 밀어내어 그 공기가 뒤로 빠져나가기 위해서는 더 빨리 흘러야 하기 때문입니다. 물이 흘러 나오는 호스의 끝을 쥐어 짜면 물이 엄청나게 세게 튀어나오는데, 그 원리와 비슷합니다.

Watering Plants Fallujah.jpg

그리고 베르누이의 법칙(Bernoulli's Principle)에 따르면 유체는 속도가 빠를수록 낮은 압력을 갖습니다. 같은 밀도라고 하더라도 한 방향으로 흐르면 상대적으로 그 유체의 분자 하나하나가 압력을 전달하는 면에 작용하는 운동량이 적어지기 때문이라고 생각하면 됩니다. 그래서 윗면에는 빠른 공기와 낮은 압력이 분포하게 되고, 아랫면에는 느린 공기와 높은 압력이 분포하게 됩니다. 압력 차가 생겨났기 때문에 비행기는 뜨게 되는 것이지요. 그리고 그 압력 차이 때문에 앞서 나온 소용돌이 또한 발생하게 됩니다.


공기는 높은 압력에서 낮은 압력의 방향으로 흐릅니다. 위 그림을 보시면 비행기의 아래쪽에는 높은 압력이, 위쪽에는 낮은 압력이 형성되었다는 것을 보실 수 있습니다. 공기는 그 압력 분포를 따라 이동하는 것이지요. 그리고 그 이동이 날개 끝에서는 소용돌이가 되어 나타나는 것입니다. 바로 이 소용돌이가 선두를 날아가는 새에게서 상승기류를 얻는 원천이 되는 것이지요.

하지만 그렇다고 해서 선두의 새는 손해만 보는 것은 아닙니다. 선두의 양 옆을 날아가는 새들은 선두를 나는 새에게 날개가 더 커지는 효과를 부여합니다. 선두의 새가 느끼는 소용돌이가 감소하게 되는 것이지요. 소용돌이는 진공을 가져오고 진공은 비행시 저항으로 작용하기 때문에 V자 대열은 선두의 새에게도 이득이 되는 셈입니다.

이것으로 글을 마치도록 하겠습니다. 마무리는 역시 멋진 비행기 사진으로... 태양을 날다!!

Posted by 덱스터
물리는 어렵지 않습니다. 단지 관심과 그에 맞는 시간을 요구할 뿐...

특별기획 물리의 벽을 깨라!-제 2회 기획글입니다.

먼저 연당선생의 홈페이지에는 실체진실의 장이라는 코너가 있습니다. 이번 글에서는 이에 대해 무엇이 잘못되었는지 지적을 하면서 반론을 하게 될 것입니다. 먼저, 특수상대론이 무엇인지 알 필요가 있으니 잘 모르시는 분은 전 글을 참고하시길 바랍니다.

[물벽깨-1] 특수상대론은 무엇인가



동시성의 상대성 - 나에게 동시에 일어난 일은 남에게 동시에 일어나지 않았다?


특수상대론이 상식을 야멸차게 배신하는 경우의 대표적인 예는 동시성의 문제입니다. 동시성의 문제란 쉽게 말하면 "나에게는 동시에 일어났는데, 왜 너한테는 다르게 일어났냐"라고 할 수 있지요. 일단 그 이전에 물리에서 중요한 개념 중 하나인 "사건"에 대해 명확히 하고 넘어가야겠습니다.

"사건"이란 "하나의 점(공간을 지정합니다)에서 하나의 시간에 일어난 것"을 말합니다. 그러니까 '대한민국 서울, 2008년 11월 20일. 덱스터가 블로그에 글을 올리다'가 사건의 일례입니다.('대한민국 서울'이라는 공간을 지정하는 점과 '2008년 11월 20일'이라는 시간을 지정하는 점, 그리고 이때 '덱스터가 블로그에 글을 올렸다'라는 일까지 전부 합친 것이 사건이지요.) 물리에서는 이 사건이 중요합니다. 왜냐하면, 물리는 "일어난 사건들을 통해서 일어날 사건들을 예측하는 학문"이거든요. 또, "사건은 누가 보더라도 같게" 일어나야 합니다. A라는 사람과 B라는 사람이 하나의 사건을 서로 다르게 보았다고 한다면(예를 들어 개와 고양이가 싸우는 사건[각주:1]이 일어났는데 A는 개가 이기는 사건으로 끝났다고 하고 B는 고양이가 이기는 사건으로 끝났다고 한다면), A와 B는 다른 세계에 사는 것이란 말입니까?(평행우주? 생각해 보니 재밌네요 -_-;;) 당연히 일이 일어났으면 일어난 거고 일어나지 않았으면 일어나지 않은 것이지요.

이제 동시성의 상대성이란 말은 여기서 등장하는 말입니다. 두 사건이 동시에 일어났다고 생각할 수 있지만, 다른 사람에게는 그게 동시에 일어나지 않은 사건일 수 있다는 것입니다. 이게 무슨 뚱딴지같은 소리냐고요?

다음과 같은 상황을 생각해 봅시다. 제가 기차 플랫폼에서 기다리고 있는데 기차가 자기를 막 지나 가는거예요. 편의상 이 기차는 제가 보기에 일정한 속도로 가고 있다고 합시다. 그런데 이 기차의 한가운데에는 기차의 양 끝 벽으로 빛을 쏘는 장치가 설치되어 있습니다. 갑자기 이 장치가 빛을 쏘게 된다면 기차 안에서는 이런 모습을 보게 되겠지요.

File:Traincar Relativity1.svg

당연하지요. 빛의 속도는 일정하니까, 한 가운데에 있으면 장치가 빛을 쏘기 시작하는 점에서부터 양 끝까지의 거리가 같으니까 둘 다 도착하는데 걸리는 시간은 같을 것입니다. 당연히 동시에 이루어져야 할 것 같은데, 무엇이 문제인 걸까요?

문제는 제가 보고 있는 현상입니다. 전 플랫폼에 서 있어요. 제가 보는 현상은 이렇습니다.

File:Traincar Relativity2.svg

뒤에 먼저 빛이 도달합니다. 왜냐하면, 기차의 뒷 벽은 다가오는 빛을 '마중나가기 때문'이지요. 반대로 앞쪽 벽은 도망갑니다. 그래서 시간이 더 걸리지요. 결국, 기차 안에서는 빛이 벽에 도달하는 두 사건이 동시에 일어났지만, 제가 보기엔 벽 뒤에 도달하는 것이 먼저 일어난 것으로 느껴지게 됩니다. 이렇게 한 사람이 보기에는 동시에 일어났던 사건이 다른 사람이 보기에는 다른 시각에 시작한 것처럼 느껴지는 것을 동시성의 상대성이라고 부릅니다. 이런 현상이 일어나는 데에는 특수상대론의 첫 가정인, 모든 관성계는 동등한 물리 법칙을 갖는다가 놓여 있습니다.

그래프를 보실 줄 아시는 분들을 위해 깜짝 준비한 선물입니다 ^^(사실 위키피디아에 가면 있긴 하지만...-_-;;) 민코프스키 다이어그램이라는 그래프입니다. 이 그래프는 특수상대론에서 여러 사건들을 다루기 쉽도록 하기 위해서 고안된 그래프이며, 보통 가로축에 공간상의 좌표를 세로축에 시간상의 좌표를 놓습니다. 이 그래프의 가장 큰 특징은 축의 기울기를 일정하게 바꾸어 주면 다른 이동하는 사람이 어떻게 사건을 보고 있는지 서술해준다는 것입니다. 이 변형 방식은 조금 독특해서, 축을 한 방향으로 몰아주는 형태를 취하지요. 자 그러면 그래프 나갑니다 ^^

File:Relativity of Simultaneity Animation.gif

아래 쓰인 숫자가 변하는 것 보이시죠?? ^^ v는 속도를 나타내는데(velocity의 첫 글자), c는 잘 아시다시피 빛의 속도입니다(어원은 불분명하다고 하지요.). 처음에 속도가 0이었다가(정지한 입장이었다가) 0.3c(+ 방향으로 광속의 30%로 이동하는 사람이 보는 좌표), -0.5c(-방향으로 광속의 50%로 이동하는 사람이 보는 좌표) 이렇게 변하는 것을 보시면 그래프가 특이하게 변하시는 것을 보실 수 있습니다. 물론 사건 자체는 그대로 있는데, 왜냐하면 관측자가 움직이면서 변하는 것은 그 관측자가 측정할 때 쓰는 자이기 때문이지요(이것이 축이 저렇게 이리저리 움직이는 원인입니다). 잘 보시면 속도가 0일 때에는 동시에 일어났던 일들이(즉, 같은 시간값을 갖던 사건들이) 보기에 따라서 다른 시간값을 갖는 것을 보실 수 있습니다. 이게 물리학에서 말하는 동시성의 상대성입니다.




실체진실의 장 1 - 동시성의 상대성은 존재하지 않는다?


자 이제 실체진실의 장 1에 대해 반론해 봅시다. 먼저 연당선생의 글을 보도록 하지요.


이를 이해하기 쉽게 설명하면 두대의 로켓 문제가 되겠습니다.[각주:2] 상황 설명에 대한 것은 자세히 하지 않고, 여기서 오류만 지적하려고 합니다. 아니, 오류라기보다는 빼먹은 논의를 지적해야겠군요. 위에서 말한대로 당연히 K'이 보는 빛은 동시가 아니며, 이건 고전역학적인 범위에서도 당연한 말입니다. 그런데, K'이 보는 빛이 동시가 아니라면 K'은 빛이 동시에 발사된 것이 아니라고 느낀다는 것이 핵심입니다. 왜냐하면, K'이 보는 원점과 광원 사이의 거리는 K에서 보고 있는 원점과 광원 사이의 거리와 똑같거든요. 그러니까, 빛이 발사되는 사건이 K에서는 동시에 일어났다고 할 수 있지만 K'에서는 동시에 일어나지 않았다는 것입니다. 왜냐하면, (다시 말하다시피) 빛의 속도는 누가 어떤 속도로 이동하고 있어도 보기에 똑같고, 거리가 같다면 그 거리를 빛이 이동하는데 걸린 시간은 같기 때문이지요.

그냥 제가 보기엔 연당선생께서는 특수상대론에 대해 완전한 이해를 못 하신 것 같습니다.



덧1. 어익후.. 벌서 해를 넘겼네요;;; ㄷㄷㄷ 앞으로도 쓸 말이 많은데...
덧2. 특별기획이 이거 아무리 비정기포스팅이라고 해도...-_-;;; 다음엔 노력하도록 하겠습니다 ㅠㅠ
  1. 이때는 엄밀히 말해 사건'들'이 맞겠지요. 개가 앞발을 휘두르는 사건 하나, 고양이가 꼬리로 후려치는 사건 하나, 뭐 이런 식으로 여러 사건들을 전부 일컫는 것이니까요. [본문으로]
  2. 일반물리학을 공부하는데 기본 지침서중 하나로 애용되는 Halliday의 Fundamentals of Physics에 잘 나와 있답니다. [본문으로]
Posted by 덱스터
물리는 어렵지 않습니다. 단지 관심과 그에 맞는 시간을 요구할 뿐...

특별기획 물리의 벽을 깨라!-제 1회 기획글입니다.

먼저 연당선생의 홈페이지에는 실체진실의 장이라는 코너가 있습니다. 이에 대해 반론하기 전에, 특수상대론이 무엇인가를 알아봐야 하겠지요. 먼저 특수상대론이 무엇인지 알아봅시다.



특수상대론은 무엇인가요?


특수상대론은 '특별한 상황에서 적용되는 상대론'입니다. 특별한 상황이란 우리가 지구위에 서 있도록 해 주는 중력이 없는 경우를 말하지요. 여담이지만 물리학자들에게 이 중력이란 놈처럼 여러곳에 산재하면서 골치아픈 녀석도 없습니다. 과학쪽에 관심이 있는 사람이라면 다 알고 계실 통일장이론에서 유일하게 마지막까지 해결하지 못한 녀석이 중력이지요. 지금은 해결 되었는지 모르겠습니다만...

다시 돌아와서, 특수상대론이 등장하게 된 이유는, 빛(전자기파)의 속도가 일정하게 관측되어야 한다고 전자기학이 예측하였기 때문입니다. 자, 상식적으로 생각해 봅시다. 100키로로 달리고 있는 도주차량이 있습니다. 이 자동차를 50키로로 쫓아가는 경찰차에서 바라보면 당연히 이 도주차량의 속도는 50키로로 보여야 하겠지요. 그런데 빛의 경우에는 그렇지 않더라는 말입니다. 50키로로 쫓아가서 바라보더라도 여전히 100키로로 도망가고 있는 것처럼 보인다는 것이지요.(경찰관 입장에서는 통탄할 노릇이군요) 더 나아가서, 이 도주차량을 1키로로 쫓아가던지, 99키로로 쫓아가던지 이 도주차량은 계속 100키로로 도망가는 것처럼 보인다는 것입니다. 그러니까, 누가 쫓아가더라도 이 도주차량을 잡을 수 없다는 것이 전자기학이 예측한 현상입니다.(전자기학에서는 이 도주차량이 빛입니다.)

여기까지는 이해하셨죠??

원래 전자기학이 예측한 상황은 이게 아니었습니다. "누군가가 측정하기에 빛의 속도는 항상 c이다"였지요. c는 초속 299,792,458미터로, 우리가 자주 쓰는 키로미터 단위로 환산하면 초당 약 삼백만 키로미터가 됩니다. 이 속도는 1초만에 지구 둘레의 일곱배 하고도 반을 돌 수 있을 정도로 빠른 속도입니다.(80일간의 세계일주에서 포그씨가 80일동안 지구 한바퀴를 겨우 돈 것을 생각하면 이건 그야말로 혁명적(?)인 속도이지요.) 그래서 '광속'이란 단어는 매우 빠른 속도를 일컫는 일반명사로 쓰이기도 합니다. '광속으로 갔다와라'는 말에서처럼 말이지요. 그런데, 이 광속이 "누가 측정하기에 항상 c인가?"라는 의문이 남습니다. 누구일까요?

옛 사람들은 이 누군가가 "완전히 정지해 있는 사람"[각주:1]이라고 생각했습니다. 초등교육때부터 계속적으로 주입된 과학교육으로 아시다시피, 지구는 멈추어 있지 않아요. 지구는 태양 주위를 돕니다(이를 서로 돌고 있다고 해서 공전이라고 부릅니다.). 자체적으로 돌고 있기도 하구요(이를 스스로 돈다고 해서 자전이라고 부르지요.). 그래서, 옛 사람들은 지구 위에서 빛의 속도를 측정할 수 있다면 이 빛의 속도는 c가 아닐 것이다라고 결론내렸습니다. 100키로로 달리는 자동차들만 가득한 고속도로에서 90키로로 달리고 있을 때, 반대편의 차는 매우 빠르게 지나가지만 주변의 차는 천천히 앞으로 지나가는 것처럼, 빛의 속도도 방향에 따라 다르게 느껴질 것이라는 것이었지요. 논리적으로는 전혀 문제될 부분이 없어 보입니다. 하지만, 실제 자연 현상은 그럴까요?

이런 느낌입니다.
(스캐너가 없어요...ㅠㅠ 디카 사진입니다.)

실제로는 그렇지 않았습니다. 마이켈슨-몰리 실험에서 "지구에서 측정한 빛의 속도는 방향에 상관없이 일정하다"는 결론이 내려진 것입니다.(이 실험에 대한 자세한 설명은 다음에 다른 글에서 하겠습니다. 이게 할 말이 상당히 많은 흥미로운 주제이거든요.) 패닉이지요. 쉽게 설명하자면, 위의 고속도로에서 달리고 있는데 이쪽의 자동차나 저쪽의 자동차나 같은 빠르기로 지나가는 것처럼 느낀다는 것입니다. 여기서 상식이 깨지기 시작합니다. 왜 빛은 쫓아가도 그 속도 그대로 도망갈까?(여담이지만, 빛이 도둑이었다면 치안유지가 상당히 힘드리라 생각되네요. 무슨 도둑이 다 홍길동이야 -_-)

이에 아인슈타인은 상식 비틀기를 시도합니다. "움직이면 시간이 늘어나고 거리가 줄어든다"는 것이었지요. 단, 주의해야 할 것이 있습니다. 이때 늘어나고 줄어드는 것은 기준이 되는 시간과 거리입니다. 그러니까, 움직이는 녀석의 1초가 제가 보기엔 1.1초인 것이고, 움직이는 녀석의 1미터가 제가 보기엔 0.9미터인 것이지요. 그러면 제가 관측한 55초는 움직이는 녀석에게는 50초처럼 느껴지는 것이고(수정)제가 관측한 50초는 움직이는 녀석에게는 55초처럼 느껴지는 것이고, 제가 관측한 50미터는 움직이는 녀석에게는 45미터로 느껴지는 것이지요. 환율에 빗대어 설명해 보자면, 1 달러의 값(측정하는 값-미터나 초가 여기에 해당합니다.)이 1100원(자연상태의 값-아직 측정하지 않은 거리나 시간입니다.)이었는데 줄어들어 1000원이 되어 버리면, 실제로는 전혀 변하지 않은 5만 5천원이 50달러였다가 55달러로 늘어나는 것과 같은 이치입니다. 이렇게 기준이 되는 시간과 거리가 늘어나고 줄어들기 때문에, 실제 관측값은 줄어들고 늘어나게 됩니다. 이 부분이 오해하기 가장 쉬운 부분입니다. 이제 다시 돌아가 보지요.

속도는 다들 알다시피 이동거리를 시간으로 나누어 정의합니다. 이런 분수에서 분자(윗 부분)를 키우고 분모(아랫 부분)를 줄이면 분수는 커지게 됩니다. 위처럼 관측된 거리가 늘어나고 관측된 시간이 줄어들면 분수의 분자가 커지고 분모가 작아지면 분수의 크기가 커져, 속도가 늘어난다는 것이었지요. 이 늘어나는 정도는 정말 절묘하게 설정되어 있어서, 빛의 속도는 쫓아가는 정도만큼 그 속도가 정확히 늘어나서 그 속도 그대로 유지된다고 설명하는 것입니다.[각주:2]

이정도 수학은 중학교때 배우지 않나요?

이것이 특수상대론입니다. 최대한 쉽게 설명해 보려고 했는데, 이해하기 쉬웠는지는 잘 모르겠네요.[각주:3]

재미있는 것은, 이런 가정을 처음으로 한 사람은 아인슈타인이 아니라는 것입니다. 이런 가정을 처음으로 한 사람은 네덜란드 사람인 핸드릭 안톤 로렌츠(Hendrik Antoon Lorentz)였습니다. 애석하게도 이 분은 위의 "완전히 정지해 있는 사람"이 있을 거라고 생각해서 특수상대론에 다다르지는 못했지요. 그래도 이 사람이 만든 로렌츠 변환은 아직까지도 살아 남았습니다.(변환이란, "A라는 사람이 관측한 C라는 사건을 다른 B라는 사람은 어떻게 볼까"라는 질문에 답하기 위해 만들어진 수학적 과정을 말합니다.) 이제 이처럼 상식을 약간 비튼 일이, 얼마나 상식에서 벗어나는지는 다음 글에서 알아보겠습니다.


덧1. 원래 이 글은 다음 글과 같이 포스트하려고 공개를 미루었던 글인데, 공개가 너무 늦어지는 것 같아서(^-^;;) 지금 공개합니다. 다음 글은 사진만 구하면 금방 금방 쓸 것 같으니(기말이 코앞이긴 하지만 -_-;;) 오래 기다리실 필요는 없을 겁니다 ^^;;

덧2. 특수상대론이 문제가 아예 없는 이론은 아닙니다. 물론 상대론 자체에는 문제가 없지만, 이게 전자기학과 연계되는 과정에서 문제가 만들어지게 된다고 해야겠네요. 이에 대한 것은 나중에 다루겠습니다.
  1. 옛 사람들이 도입했던 개념인 '에테르'를 아시는 분이 있으련지 모르겠네요. 이 '에테르'가 보기에 멈추어 있는 사람이 '완전히 정지해 있는 사람'입니다. [본문으로]
  2. 정확히 말하자면 이건 상대론이 아닙니다. Preferred reference Frame Theory(PFT)에 해당하는데, 현 시점에서는 따로 구분할 필요는 없어 보이니 그냥 그대로 진행하도록 하겠습니다. [본문으로]
  3. 제가 설명을 하면서 한가지 빼먹은 것(상대성)이 있는데, 이것에 대해서는 다음 글에서 말해야 할 것 같습니다. 상대성에 대해 간단히 말하자면 '관성 운동(가만히 움직이거나 멈춰있는 운동)을 하는 관찰자들이 관측하는 물리법칙은 동일하다' 입니다. 역시 다른 글에서 설명하는게 낫겠네요. [본문으로]
Posted by 덱스터
안녕하세요 돌아온 덱스터입니다!(항상 여기에 있었으니 돌아왔다고 하기도 뭐하지만...;;)
제 블로그를 조금 꼼꼼히 돌아보신 분들은 아시겠지만(없을 거라고 거의 확신하지만..ㅠㅠ) 물리에 대한 포스트가 좀 많은(?) 편입니다. 물리에 관한 포스트를 손보고 있는 부분도 많구요. 그건 제가 공대생이라는 물리와 절대 벗어날 수 없는 영역에서 살아가고 있는것도 한 원인이 되겠지만 나름대로 물리를 많이 좋아하는 것이 주 원인이겠지요.

그런데 일단 물리에 대한 사람들의 인식은 이렇습니다.


...

이런 우스갯소리가 있습니다.

"제 옆자리의 사람과 대화를 나누고 싶을 때에는 천문학을 전공했다고 해요. 그냥 쉬고 싶을땐 물리학을 전공했다고 합니다." - 천체물리 전공자

이처럼 물리라는 것에 사람들은 거대한 벽을 느낍니다. 단순한 벽도 아닌 매우 거대한 벽을요.

그런데 실제로 물리라는 학문은 그렇게 어려운 학문은 아닙니다. 이런 말이 있지요.

어렵다는 것은 익숙하지 않다는 말의 다른 표현에 불과하다.
-도아

물리가 어려워 보이는 것은 물리가 기반으로 하는 학문이 수학이기 때문입니다. 수학이란 학문은 웬만한 관심을 갖지 않고서는 깊이있는 이해를 하기 힘들지요. 물리는 깊이가 어느 정도 있는 수학을 요구하기 때문에, 당연히 어려워 보일 수 밖에 없습니다. 하지만, 물리는 수학을 도구로 할 뿐 나머지는 상식에 기반을 둡니다. 즉, 수학만 다루지 않는다면 그리 복잡할 것 없는 학문이라는 것이지요. 그래도 시간은 많이 잡아먹을 것이라는 데는 저도 크게 동의합니다...ㅠㅠ

이번 기획은 이런 물리에 대한 벽을 깨뜨려 보고자 하는 것이 목표입니다. 예전에 서울메트로에서 야심차게 기획하던 풍력발전계획이 완전한 돈을 날리는 사업이라는 것을 증명하는 것은 목표가 아니긴 하지만, 앞으로 물리가 대중과 좀 더 가까워진다면 이런 어처구니 없는 사건은 사라지겠지요.

제일 먼저 '특수상대성 이론'을 시작으로 하려고 합니다. 상식과 가장 어긋나는 이론으로 유명하지요. 물론 이제는 이론이 아니라 정설에 가깝긴 하지만 말입니다. 이번 기획에 가장 커다란 영향을 주신 연당선생께 감사의 말씀 드립니다.

제가 왜 이런 기획을 하냐고요? 트래픽을 노려보자는 꿍꿍이도 있지만 지식 자체는 누구에게 귀속되는 것이 아니지 않습니까.(그 사용권은 좀 문제가 다르죠) 여튼, 이번 기획을 끝까지 가져갈 수 있느냐는 제 근성에 달린 문제인데, 잘할 수 있으려나 모르겠네요. 그러면 이만, 다음을 기약해야겠네요.
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함