'분류 전체보기'에 해당되는 글 822건

  1. 2020.08.23 Analyticity, causality, Kramers-Kronig relations, and all that (1)
  2. 2020.08.12 적분구간에 대한 섭동계산 취급법
  3. 2020.07.30 행렬식의 섭동계산
  4. 2020.07.25 To believe or not to believe, that is the question
  5. 2020.03.26 Integral for Dirac delta
  6. 2020.02.23 Canonical transformations and equivalence of Hamiltonians
  7. 2019.10.20 그냥저냥 근황
  8. 2019.06.17 여러가지 잡담들
  9. 2019.01.29 Elementary introduction to Dirac brackets (2)
  10. 2018.12.31 중력과 자기회전비율
  11. 2018.03.26 Long distance propagation in open string disk amplitudes (5)
  12. 2018.03.19 비전공자를 위한 끈이론 개론 (1) - 산란실험의 도입 (2)
  13. 2018.03.03 Angular momentum in charge-monopole configuration
  14. 2017.10.07 신서로, <피어클리벤의 금화> (2)
  15. 2017.08.09 간단한 적분 트릭
  16. 2017.07.07 On-shell recursion relations of scattering amplitudes
  17. 2017.07.06 Strings 2017 후기
  18. 2017.01.19 2017 Asian Winter School
  19. 2016.10.23 2016 노벨 물리학상을 이해하기 위해 필요한 것들(2) - 위상수학의 이해 (2)
  20. 2016.10.08 2016 노벨 물리학상을 이해하기 위해 필요한 것들(1) - 상전이의 이해

제목은 아는 사람들은 다 아는(?) 책인 PCT, Spin and Statistics, and All That을 참고했다. 물론 나는 읽다 만(...) 책이지만. 이 포스트의 출발점은 다음 트윗 타래. 한번 정도는 정리해두는 것이 좋겠다는 생각이 들었다.

'세상에서 가장 아름다운 공식'이란 별명이 있는 오일러 공식의 장점(?)은, 네이피어수 (혹은 자연상수) $e$ 위에 올라가는 수학적 물체(mathematical object의 번역으로 이게 맞는지 모르겠다) $a$가 무엇이든 $a^2 = -1$이란 조건을 만족하기만 하면 된다는 것이다.

\[ a^2 = -1 \Rightarrow e^{a \theta} = \cos(\theta) + a \sin(\theta)\]

여기서 $a$는 일반적인 숫자(복소수체에서는 확실히 성립하는데 일반적인 체에서도 되는지는 모르겠다)나 행렬(사원수quaternion는 $2 \times 2$ 행렬과 대응관계를 맺기 때문에 사원수에서도 위의 식이 적용된다), 혹은 클리포드 대수Clifford algebra의 원소(기하대수geometric algebra 계산에서 이 성질을 이용한다) 등 무엇이든 될 수 있다. 그냥 1이 잘 정의되어 있고 제곱해서 -1이 되는 물체가 있다고 하면 언제든 쓸 수 있다는 의미. 다른 특기할 점은 위 공식이 다루기 까다로운 경우가 많은 삼각함수trigonometric function를 지수함수exponential function로 바꾸는 역할을 한다는 것이다. 따라서 주기성을 갖는 물리량이 있는 물리계에서는 위 공식을 반대로 적용해 삼각함수로 써지는 물리량을 지수함수의 '실수부'로 놓는 작업을 자주 한다.

\[ \cos(\theta) = \text{Re}[e^{i \theta}] \]

여기까지는 학부 2학년 수준에서 얼마든지 다루는 내용.

 

전기공학에서는 교류회로를 다룰 때 단위허수 $j$를 $j^2 = -1$으로 도입해 전류와 같은 물리량을 다음과 같이 쓰곤 한다.

\[ I(t) = \text{Re}[I_0 e^{j (\omega t + \delta)}] \]

일반적으로 쓰는 단위허수 $i$가 있는데 왜 하필 $j$일까? 트윗 타래에서 언급했듯 $j = -i$라고 여기는 경우가 있기 때문이다. $(-1)^2 = +1$이므로, 애초부터 단위허수에는 부호를 선택하는 자유도가 남아있었던 셈. $j=-i$라고 여기는 이유는 푸리에 전개가 다음과 같은 꼴을 취하기 때문이다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{-i \omega t} \]

처음 식과 비교해보면 지수함수에 올라간 항은 $-i \omega t$로, $j \omega t$와 부호 차이를 갖고있다. $j = -i$란 인식은 이 차이에서 비롯된 것. 그렇다면 왜 푸리에 전개는 위와 같은 꼴을 택하는 것일까? 예컨대 다음과 같은 표현도 수학의 관점에서 볼 때 푸리에 전개로서는 딱히 결격사유가 없다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{+i \omega t} \]

문제는 인과율causality로부터 얻는 주파수 공간frequency space의 함수 $\tilde{F}(\omega)$가 갖길 원하는 해석적 성질analytic property에 있다. 일반적으로 푸리에 전개를 통해 해석하는 (실)함수 $F(t)$는 입력에 따라 어떤 출력을 예상할 수 있는지를 나타내는 반응함수response function이고, 인과율과 계의 시간불변성time invariance을 가정할 경우 시간차 $t$가 양수일 경우에만 0이 아닌 값을 갖는다.

\[ t<0 \Rightarrow F(t) = 0 \]

그리고 이렇게 '한쪽 방향으로만 값을 갖는 함수'는 라플라스 변환Laplace transform을 쓸 수 있다. 이 방향은 나중에 브롬위치 적분Bromwich integral을 이야기할 기회가 생기거든 돌아오기로 하자. 여튼, 주파수 공간의 함수 $\tilde{F}(\omega)$는 다음과 같이 주어진다.

\[ F(t) = \sum_{\omega} \tilde{F}(\omega) e^{\mp i \omega t} \Rightarrow \tilde{F}(\omega) = \int F(t) e^{\pm i \omega t} dt \]

일반적으로 $\tilde{F} (\omega)$는 실수값만 갖지는 않고, 실수부와 허수부를 모두 갖는다. 따라서 다음과 같은 질문을 해볼 수 있다; 어차피 복소수 값을 갖는 복소함수라면, $\tilde{F} (\omega)$를 복소해석학complex analysis을 통해 다뤄 볼 수는 없을까? 안타깝게도 $\tilde{F}$는 전체 $\omega$ 복소평면에서 해석적인 성질을 가질 수는 없다. 단순하게 복소수 $\omega = \omega_1 + i \omega_2$를 실수부와 허수부로 나누어서 분석해보자.

\[ \tilde{F}(\omega_1 + i\omega_2) = \int F(t) e^{\mp \omega_2 t \pm i \omega_1 t} dt \]

위 표현은 $\mp \omega_2 < 0$일때 $F(t)$가 어지간히 이상한 함수가 아닌 이상 수렴한다. 반대로, $\mp \omega_2 >0$일때 많은 경우 발산해버리고 말 것이다. 따라서, 다음과 같은 결론을 내릴 수 있다.

  • \[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 위쪽 반평면upper half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.
  • \[ \tilde{F}(\omega) = \int F(t) e^{- i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 아래쪽 반평면lower half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.

일반적으로 $\tilde{F}(\omega)$는 위쪽 반평면에서 해석적인 성질을 갖는 것이 바람직하다고 여겨지기 때문에 푸리에 변환의 부호가 $F(t) = \sum_{\omega} \tilde{F} e^{-i\omega t}$로 결정되는 것이다. 힐베르트 변환Hilbert transform을 이용해 반응함수의 실수부와 허수부를 관계짓는 Kramer-Kronig 관계식 또한 이 부호의 선택에 의존한다. 'Kramer-Kronig 관계식을 증명하기 위해 그리는 적분 컨투어contour를 왜 위쪽 반평면에서 닫아야만 하는가?'란 질문에 대해 답을 주기 때문. 이유는 적분에 들어가는 integrand가 위쪽 반평면에서 완전히 해석적인 성질을 가지므로, 위쪽 반평면으로 컨투어를 닫아야 0이 되기 때문이다. 아래쪽 반평면에서는 무슨 일이 일어날지 모른다는 것은 또 다른 이야기.

\[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \,,\, \text{Im} [\omega_0] \le 0 \Rightarrow \frac{\tilde{F} (\omega)}{\omega - \omega_0} \, \text{analytic on upper half plane} \]

이렇게 사소해 보이는 부호 하나에도 그 부호를 선택해야만 하는 이유가 있기 마련이다.

댓글을 달아 주세요

  1. Favicon of http://twitter.com/whewhewhew BlogIcon Whew  댓글주소  수정/삭제  댓글쓰기

    위키백과에서 mathematical object는 수학적 대상으로 번역되었네요.
    https://ko.wikipedia.org/wiki/%EC%88%98%ED%95%99%EC%A0%81_%EB%8C%80%EC%83%81

    2020.09.20 02:48

최근 쓰는 논문에서 대충 다음과 같은 적분을 할 일이 있었다.

\[ \int_a^b \sqrt{f(x)} dx \]

구간은 $f(a) = f(b) = 0$의 해. 문제는 이 계산이 정확하게 되지 않아서 섭동계산으로 풀어야 한다는 것.

\[ \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx \]

편의상 $\epsilon$의 선형 차수까지 이 적분을 계산한다고 가정해보자. 이 경우 적분은 다음과 같이 전개할 수 있다.

\[ \int_{a(0)}^{b(0)} \sqrt{f(x;0)} dx + \epsilon \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \left[ \int_{a(0)+\epsilon a'(0)}^{a(0)} + \int_{b(0)}^{b(0)+\epsilon b'(0)} \right] \sqrt{f(x;0)} dx \]

첫 두 항은 별 문제가 없다. 문제가 되는 것은 마지막의 적분구간이 $\epsilon$에 대해 움직이는 부분. $\sqrt{f(x;0)}$의 부정적분을 계산할 수 있다고 생각없이 움직인 적분구간을 집어넣으면 틀린 답을 얻게 된다. 예컨대 구간 $(a(0)+\epsilon a'(0), a]$에서 $f(x;0)$의 값이 음수가 된다면 나올 리가 없는 허수부가 만들어진다.

 

그렇다면 정확한(?) 풀이방법은 무엇일까? 우선은 처음 쓴 적분을 $G(\epsilon)$으로 정의하자. 우리가 원하는 것은 $G'(0) = \left. \frac{\partial G}{\partial \epsilon} \right|_{\epsilon=0}$이다.

\[ G(\epsilon) := \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = G(0) + \epsilon G'(0) + \cdots \]

$G'(0)$는 정의만 사용하면 다소 싱겁게 구할 수 있다.

\[ G'(0) = \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \frac{\partial b}{\partial \epsilon} \sqrt{f(b;0)} - \frac{\partial a}{\partial \epsilon} \sqrt{f(a;0)} \]

뒤 두 항은 $f(a) = f(b) = 0$란 조건으로부터 0이므로, 실제 계산은 맨 앞 항만 해주면 된다. 물론 이렇게 단순한 문제였으면 포스트를 쓰지도 않았을테지만.

 

문제는 $\epsilon^2$ 차수의 계산이다. $G''(0)$는 어떻게 구할 수 있을까? 쉽게 계산되는 부분은 일단 전부 던져두고, 문제가 되는 부분만 찾아보자.

\[ G''(0) = \cdots + \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} + \cdots - \frac{\partial a}{\partial \epsilon} \frac{\partial \sqrt{f(a;0)}}{\partial \epsilon} + \cdots \]

위에서 $\cdots$로 표시한 부분은 딱히 발산하지 않는 부분이기 때문에 문제없이 계산할 수 있지만, 위에 적은 항들은 그렇지 않다.

\[ \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} = \frac{\partial b}{\partial \epsilon} \left( \frac{1}{2 \sqrt{f(b;0)}} \frac{\partial f(b;0)}{\partial \epsilon} \right) \stackrel{?}{=} \frac{N}{0} \]

별 생각없이 계산하다가는 $\frac10$꼴의 항들이 두개나 튀어나오게 된다. 만약 보다 고차항을 보고 싶다면 $\frac10 \times \frac10$과 같은 더 계산이 불가능한 항들이 만들어질 것이다. 그렇다면 해결방법은 무엇일까?

 

문제의 원인은 적분구간이 이동한다는 사실에 있다. 그러므로 적분변수를 바꿔서 적분구간이 이동하지 않도록 조정해주면 문제가 해결된다. 다음과 같은 성질을 갖는 $\epsilon$에 의존하는 변수변환을 생각하자.

\[ x \to \tilde{x}(x; \epsilon) \,,\, \tilde{x}(a(\epsilon);\epsilon) = a(0) \,,\, \tilde{x}(b(\epsilon);\epsilon) = b(0) \,,\, \lim_{\epsilon \to 0} \tilde{x}(x;\epsilon) = x \]

이 변수변환이 적당한 one-to-one mapping이라면 문제는 매우 싱겁게 해결된다. $G(\epsilon)$에 대한 $\frac{\partial}{\partial \epsilon}$ 미분이 전부 integrand에만 걸리기 때문.

\[ G(\epsilon) = \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = \int_{a(0)}^{b(0)} \sqrt{f(x(\tilde{x};\epsilon);\epsilon)} \left( \frac{\partial x}{\partial \tilde{x}} \right) d\tilde{x} \]

물론 이 invertible mapping을 찾기란 쉽지만은 않다. 처음에는 quadratic 관계식으로 해보려고 했는데 결국은 실패했고, 결과적으로는 다음과 같은 projective 관계식을 푸는 것으로 해결했다. (정확히는 $b = \infty$에 놓여있어서 단순한 선형 이동으로 해결했지만)

\[ \frac{x - a(\epsilon)}{x - b(\epsilon)} = \frac{\tilde{x} - a(0)}{\tilde{x} - b(0)} \]

학부 4년 과정 내내(?) 섭동계산을 배우지만 그것만으로는 충분하지 않을 만큼 섭동계산의 세계는 넓고도 험하다.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

섭동계산을 하다 보면 다음과 같이 작은 섭동항이 붙은 행렬의 행렬식을 계산할 일을 자주 마주하게 된다.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) \]

이 계산은 어떻게 하면 될까? 먼저 $G_{ab}$의 역행렬 $G^{ab}$를 정의해서 다음과 같이 쓰도록 하자.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) = [ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) ] \times [ \text{Det} G_{ab} ] \]

여기서 $A_{a}^{~b} := A_{ac} G^{cb}$로 정의한다. $A_{a}^{~b}$의 고유값들을 $\lambda_i$라 부르기로 한다면, 위 식은 다음과 같이 적을 수 있다.

\[ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) = \prod_i (1 + \epsilon \lambda_i) = 1 + \epsilon \sum_i \lambda_i + \epsilon^2 \sum_{i<j} \lambda_i \lambda_j + \cdots \]

이제부터는 매우 쉽다. 행렬 $A_{a}^{~b}$에 대해 다음 두 조건을 알고 있으므로, 이 두 조건으로부터 얻는 식을 잘 조합하기만 하면 된다.

\[ \text{Tr} A = \sum_i \lambda_i \,,\, \text{Tr} A^n = \sum_i \lambda_i^n \]

예컨대 $2 \sum_{i<j} \lambda_i \lambda_j = (\sum_i \lambda_i)^2 - \sum_i \lambda_i^2$이므로,

\[ \text{Det} (I + \epsilon A) = 1 + \epsilon \text{Tr} A + \epsilon^2 \frac{(\text{Tr} A)^2 - \text{Tr} A^2}{2} + \epsilon^3 \frac{(\text{Tr}A)^3 - 3 \text{Tr} A^2 \text{Tr} A +2 \text{Tr} A^3 }{6} + \cdots \]

와 같은 전개를 얻는다. 찾아보면 위와 같은 조합에 대해 뭔가 이름이 있을 법도 한데 귀찮은 관계로 생략.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

For a physicist, on the other hand, every system is open, and (more to the point) approximate. One never really expects that the mathematical problem one formulates and then solves will provide an exact or complete description of a physical system.

한편 물리학자에게 모든 계는 열려있고 (더욱 중요하게는) 근사적이다. 그 누구도 어떤 물리계에 대해 형식화하고 풀어낸 수학적 문제가 그 계에 대해 완벽하거나 완전한 묘사를 줄 것으로 절대 기대하지 않는다.

- Ingmar Saberi(https://arxiv.org/abs/1801.07270)

한번은 기계 설계였나 강의를 들을 당시 조별 프로젝트 발표를 할 일이 있었습니다. 뭔가 간단한 로봇을 설계하는 일이었는데, 제가 속한 조보다 앞서 발표하던 조에서 로봇에 예상하고 있는 부하가 걸리면 변형이 얼마나 일어나는지 계산한 결과를 발표하고 있었습니다. 뭐 숫자와 식을 알고 있으니 단순한 산수일테고, 산수 끝에 얻은 변형에 대한 예측값은 10^-20 m였던가 그렇습니다. 참고로 원자핵의 크기를 대략 10^-15 m 정도로 보죠.

 

그 슬라이드를 보고는 발표를 듣던 교수님이 '숫자놀음은 집어치워라'라면서 대노하셨고 (그 정도로 작은 값이면 그냥 변형이 없는 것이란 말을 덧붙이면서요) 옆에서 비슷한 숫자를 슬라이드에 집어넣고 있었던 같은 조원은 깜짝 놀래서 재빠르게 숫자를 0으로 바꿨습니다. 세 팀이 조별 프로젝트 발표를 하면 그 중 가르침이 되는 팀이 꼭 있는 법이죠.

 

그래서 준비해 본, '어디까지 방정식을 믿을 것인가?'란 주제 하에 묶을 여러 문제들입니다. 물리는 결국 목표로 삼은 현상에 대한 모형을 세우고 그 모형을 이해하는 것으로 목표로 삼은 현상을 이해하는 것인 셈이니, 세워놓은 모형이 어디까지 현상을 제대로 기술하고 있는가에 대해 감을 갖고 있어야겠죠. 깊게 생각 안하고 공부만 하다 보면 '언제 모형을 믿으면 안된다'는 감이 없는 경우가 자주 있단 말이죠. 짤막하게 작성해 두고 아마 생각나는대로 업데이트하지 않을까 싶네요.

 

참, 이 포스트는 Paul J. Nahin의 Mrs. Perkins's Electric Quilt: And Other Intriguing Stories of Mathematical Physics란 책의 내용에서 영감을 받았습니다. 비록 도서관에서 빌려놓고 시간이 없어 서론만 읽은 뒤 방치해뒀다가 연체되어서 연체비만 물고 뒷쪽은 하나도 못 읽었지만 말이죠.

 

---

 

의외로 물리학을 하나도 안 배운 사람이 물리학을 어느정도 배운 사람보다 이상하다는 것을 빠르게 알아차리는 물리학에 대한 문장이 있습니다.

"전하가 자기장 안에서 받는 힘은 전하의 이동 방향과 수직이므로 자기장은 일을 하지 못한다."

이 문장은 왜 틀린 문장일까요?

 

문장의 전제는 맞습니다. 전하가 자기장 안에서 받는 힘은 로렌츠힘으로 기술되고, 이 힘은 전하가 이동하는 방향과 항상 수직이기 때문에 로렌츠힘에 의해 전하가 에너지를 얻는 경우는 없죠. 하지만 자기장은 일을 하지 못한다는 사실이 아닙니다. 사이클로트론과 같은 입자가속기에서는 자기장의 세기를 변화시키는 것으로 입자를 가속시키기는 하지만 이건 자기장이 변하면서 패러데이 법칙에 의해 전기장이 생성되는 원리이기 때문에 반례가 되는 것은 아닙니다. 그러니까, 가만히 있는, 혹은 정적인 자기장이 일을 하는 경우입니다. 그리고 누구나 어릴 적 자석을 가지고 놀아봤다면 모를래야 모를 수가 없는 반례이기도 하죠.

 

가만히 있는 자석과 조금 떨어진 곳에 가만히 있는, 자화되지 않은 철조각을 가만히 두면 철조각은 자석을 향해 날아들죠. 중력을 거스르고 날아오르는 경우도 많고요. 정적인 자기장이라도 일을 할 수 있다는 살아있는 반례죠. 물론 철조각이 자화되면서 남는 에너지를 운동에너지로 바꾸는 과정이므로 로렌츠힘에 의한 일은 아니지만, 자기장(혹은 자력)이 일을 하지 못하는 것은 아니지 않습니까.

 

그리고 여기에는 약간의 뒷이야기가 있습니다. 고전역학과 통계역학만 가정할 경우, 자력은 일을 할 수 없는 것이 맞습니다. 이를 보어-판레이우언 정리라고 부르죠. 그러니까 처음에 제시된 문장은 고전역학과 통계역학만 가정한 범위 안에서는 틀린 문장은 아닌 셈이죠. 단지 우리 우주가 그 범위 안에 온전히 속하지 않는 것일 뿐. 포스트의 처음에 인용한 문장이 더없이 적절하지 않습니까?

 

---

 

다음 업데이트에서는 블랙홀에 대해 이야기해보려고 합니다. 아마 트위터에서 자주 떠들어댄 문제이니 이미 아실 분들도 있을 지 모르겠군요.

댓글을 달아 주세요

Dirac delta distribution은 다음과 같은 함수열(sequence of functions)의 극한으로도 볼 수 있다. Fermi's golden rule을 증명할 때 필요한 Dirac delta의 representation이기도 하다.

$$ \delta(x) = \frac{1}{\pi} \lim_{a \to \infty} \frac{\sin^2(ax)}{ax^2}$$

위 함수열의 극한을 이용하기 위해서는 다음 적분을 증명해야 한다.

$$ \int_{-\infty}^{+\infty} \frac{\sin^2(ax)}{ax^2} dx = \int_{-\infty}^{+\infty} \frac{\sin^2x}{x^2} dx = \pi$$

위 적분은 어떻게 증명하면 좋을까.

 

다음 푸리에 변환을 생각하자.

$$ F(s) = \int_{-\infty}^{+\infty} \frac{\sin^2x}{x^2} e^{isx} dx $$

우리는 $F(s=0) = \pi$를 증명하길 원하며, Riemann-Lebesgue 보조정리에 의해 $F(s \to \pm \infty) = 0$이란 경계조건을 알고있다. 이제 $F''(s)$를 직접 계산하자.

$$ F''(s) = - \int \sin^2x e^{isx} dx = \frac{\pi}{2} (\delta(s+2) - 2 \delta(s) + \delta(s-2)) $$

위 식을 $s$에 대해 두번 적분하면서 경계조건 $F^{(n)} (s \to \pm \infty) = 0$을 넣어주면 다음과 같은 결과를 얻는다.

$$ F(s) = \left\{ \begin{aligned} & 0 && |s| \ge 2 \\ & \frac{\pi}{2}(2 - |s|) && |s| \le 2 \end{aligned} \right. $$

따라서 $F(s=0) = \pi$로 증명완료.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

최근 주로 계산하고 있는 것은 산란진폭(scattering amplitude)을 이용해서 천체를 점입자로 근사했을 때 두 천체 사이의 상호작용을 얻는 일. 정확히는 천체를 점입자로 근사하고 두 점입자가 만드는 계(system)의 유효 해밀토니안(effective Hamiltonian) 계산이다. 중력포텐셜 계산이라고 이야기하기도 한다. 대충 이 논문에서 한 일에 스핀을 던져넣는 작업인데, 주로 저번에 했던 일에서 제대로 정리하지 못했던 부분을 청소(...)하고 있다.

 

중력의 성가신 점은 좌표변환이 중력의 게이지 대칭이라는 것이다. 덕분에 중력포텐셜은 게이지를 어떻게 잡느냐에 의존하는 물리량이 되어버리고 만다. 산란진폭을 이용해서 구하는 중력포텐셜은 $\vec{p} \cdot \vec{r}$이 등장하지 않는 isotropic gauge의 포텐셜. 물론 그렇다고 중력포텐셜을 마음대로 쓸 수 있다는 것은 아니다. 서로 생긴 꼴이 다른 중력포텐셜이 실제로는 같은 동역학을 준다면, 두 중력포텐셜의 표현식 사이를 이어주는 canonical transformation이 존재해야 한다. 그러니까 $H_1 (p,q)$가 $H_2 (P,Q)$와 동등하다면 적당한 변수변환 $P(p,q), Q(p,q)$가 존재해서 $H_2 (P,Q) = H_1(p(P,Q),q(P,Q))$이면서 canonical conjugate relation인 $\{ P, Q \}_{\text{P.B}} = \{ p, q\}_{\text{P.B}} $이 (이제부터 Poisson bracket의 subscript인 P.B는 생략하도록 하자) 유지되어야 한다는 것. 흥미로운 점은 서로 다른 해밀토니안을 비교하는데 다음과 같은 식을 만족하는 generator $g$가 존재하는지의 여부로 두 해밀토니안이 물리적으로 동등한지 확인하기도 한다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

예를 들면 이 논문의 4.1장에서 하는 논의라던가. 뒷 항은 $n-1$-PN order에서 보이지 않는 항들이다. 이 식을 어떻게 이해할 수 있을까?

 

의외로 답은 간단하다. $p, q$에서 $P,Q$까지 이어지는 continuous canonical transform을 상상해보자. 대충 $\tilde{p}(p,q;\alpha), \tilde{q}(p,q;\alpha)$란 연속함수가 존재하고 $\forall \alpha, \{ \tilde{p}, \tilde{q} \} = \{ p,q \}$면서 $\tilde{p}(p,q;0) = p, \tilde{p}(p,q;1) = P(p,q)$를 만족한다고 형식화할 수 있다. 이 경우 해밀토니안은 $H=H_1(p,q)=H_2(P,Q)$로 고정되어 있는 상태이다. 해밀토니안이 만드는 flow는 그대로 있고 그 flow를 기술하는 canonical variable들의 coordinate frame이 이동하는 것으로 볼 수 있다.

 

이제 관점을 바꿔보자. canonical variable들의 coordinate frame을 고정하고 해밀토니안이 만드는 flow를 흐르게 시키는 관점이다. 정확히는 $\tilde{p},\tilde{q}$를 좌표축으로 고정한 뒤 $H(\tilde{p},\tilde{q};\alpha)=H_1(p(\tilde{p},\tilde{q}),q(\tilde{p},\tilde{q}))$가 변수 $\alpha$에 대해 어떻게 흐르는지 보는 것이다. 이 경우 $\frac{d}{d\alpha}$는 symplectic vector field이므로 여기에 대응되는 (local) generator $G$가 존재한다. 식으로 쓰자면

$$ \exists G, \frac{\partial}{\partial \alpha} H(\tilde{p},\tilde{q};\alpha) = \{ H(\tilde{p},\tilde{q};\alpha) , G \} $$

이 되는 셈. 다르게 표현하면 다음의 벡터장(vector field) 방정식을 만족하는 벡터장 $\{ G, \bullet \}$가 존재한다고 할 수 있다.

$$ \exists G, \frac{\partial}{\partial \alpha} \{ H , \bullet \} = \mathcal{L}_{\{ G, \bullet \}} \{ H, \bullet \} $$

위 식에서 $\mathcal{L}$은 리 미분(Lie derivative)을 의미한다.

 

위에 적은 미분꼴의 방정식을 차분(difference)꼴로 바꾸면 우리가 이해하고 싶었던 식이 된다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

미분방정식을 차분방정식으로 바꾸는 과정의 논리적 구멍을 메꾸고 싶다면 다음과 같은 미분형식(differential form) 꼴로 바꾼 방정식을 고려할 수 있다.

$$ \delta H(\alpha) = \{ H(\alpha), g \} \,,\, g = G \delta \alpha $$

문제에 perturbation parameter $\epsilon$이 존재한다고 가정할 경우, 위의 방정식은 다음과 같은 차분방정식으로 변경시킬 수 있다.

$$ \Delta H = \{ H, g \} \,,\, \frac{\Delta H}{H} \sim \frac{g}{H} \sim \epsilon $$

Post-Newtonian expansion의 경우 이 perturbation parameter는 $\epsilon = \frac{G\mu}{r c^2} \simeq \frac{p^2}{\mu^2 c^2}$이 된다. 이름대로 $\frac{1}{c}$을 perturbation parameter로서 이해할 수 있다는 의미.

 


23Feb2020 수정사항: 미분형식 꼴로 바꾼 방정식을 이용한 논증 추가.

댓글을 달아 주세요

그냥저냥 근황

Daily lives 2019. 10. 20. 11:10

0.

블로그는 정말 오랜만이군요. 더군다나 일(?)이나 외부의 뉴스에 대한 글이 아니라 일기를 쓰는 것은 정말 오랜만인듯 하네요.

 

1.

졸업당하는(...) 것이 확정된 이상, 포닥 지원서를 열심히 쓰고 있습니다. 박사학위에 어울리는 지식이 있느냐고 묻는다면 아슬아슬하게 커트라인에 닿을지도 모르겠다는 생각은 하지만[각주:1], 그것과는 별개로 박사학위에 어울리는 연구능력이 있냐면 글쎄요. 박사학위를 '독립적으로 연구주제를 발굴해 연구를 수행할 능력'에 대한 자격증으로 생각하는 편이라 제가 연구주제를 발굴해낼 능력이 있는지에 대해서는 아직 의구심이 있습니다.

 

그래도 뭐 결정된 것은 결정된 것이니 어쩌겠습니까. 할 수 있는 것을 해야지.

 

2.

시험기간에는 오랜만에 책상을 정리하고 싶어지는 것과 동일한 원리(...)로, 오랜만에 전자책으로 구한 <역시 내 청춘 러브코메디는 잘못됐다>를 정주행했습니다[각주:2]. 찾아보니 마지막으로 읽은게 거의 4년 전이군요. 그동안 쌓인 경험도 있고 관점도 있다보니 전에 읽었을 때는 별 생각없이 읽었던 표현들도 거슬리는 부분이 생겼습니다만, 전체적으로는 꽤 괜찮고 추천할만한 소설이란 평가는 딱히 변하지 않았습니다. 등장인물들에 대한 평가도 거의 변하지 않았고요. 다만 두 권 더 읽은 지금은 앞으로의 진행에 대해 조금 다른 예측을 하게 되는군요.

 

13권에서는 유키노의 문제가 해결되었다고 선언되었지만, 그걸 해결이라고 부를 수는 없겠죠. 다음 권에서는 이 문제로 돌아오지 않을 수 없을거예요. 유이와 함께 서로의 소원에 대해 이야기한 장면에서 이미 충분한 복선이 준비되어 있기도 하고요. 더군다나 '뜻을 나눈 동지로서의 소울메이트'와 '연인 혹은 배우자로서의 소울메이트'가 꼭 일치해야 하는 것은 아니니까요. 작가는 욕을 엄청 먹겠지만서도. 애초에 이런 관점도 소설 속 캐릭터를 사람보다는 관념의 인격화로 여기는 경향이 있는 저 같은 사람들에게나 납득 가능한 결말일테고요.

 

2.1.

"씁쓸한 인생, 커피 정도는 달아도 괜찮겠지"란 말이 유독 기억에 남네요. 아침부터 공복에 블랙커피를 설탕 없이 우겨넣는 것이 일상이 되다보니 웬만한 커피로는 씁쓸함을 못 느끼게 되었거든요. 어른이 된다는 것은 더 이상 커피로부터 씁쓸함을 못 느끼게 된다는 것은 아닐까란 쓰잘데기 없는 잡념만 남아 맴도는군요.

 

2.2.

"예언할게. 너는 취할 수 없어"란 말도 기억에 남습니다. 뭐, 저부터도 취하지 못하는 편에 속하는 인간이니까요. 사실 취하기 전에 전원이 나가는 것이니 뭔가 하려고만 하면 블루스크린을 띄우고 파업하던 예전에 쓰던 컴퓨터에 더 가까운 것일지도 모르겠습니다만.

 

여튼, 술자리에서 솔직한 이야기를 한다는 것은 어쩌면 '취한 사람은 속을 감추지 않는다'란 사회의 고정관념에 기대어 역할극을 한다는 것은 아닐까란, 예전부터 문득 들곤 하던 생각을 다시 해보았습니다. 사람이 작정하고 숨기겠다고 마음먹은 속마음이 그렇게 쉽게 밖으로 나올리는 없겠죠. 누구에게나 누구에게도 드러낼 생각이 없는 마음 정도는 하나씩 가지고 있을거고, 그런 의미에서 사람은 누구나 해소할 수 없는 외로움에 시달리는 외톨이겠죠.

 

2.3.

만년필에 "별은 보는 사람이 있어서 빛나는 것이 아니다"란 글귀를 적으려던 시절이 있었습니다. 어차피 허세인거 라틴어로 하자는 생각이었죠. 그래서 선택한 글귀는 Lucet stellar non videndi causa였으나 만년필에 새겨진 글귀는 Lucet stellar non videndi cause였고, 수령하면서 크리스마스 선물로 오락기를 웠했던 어린이가 선물을 열었을 때 오락기가 나왔는데 원했던 오락기는 아닐 때의 그 감정 비슷한 것을 맛보았습니다. 아무래도 자동 오탈자 수정으로 a가 e로 바뀐거겠죠. 그래서 제가 한 일은 커터칼을 가져다가 e에 얇은 흠집을 내어서 a처럼 보이게 만드는 작업이었습니다. 결국 취향이 좀 더 굵은 만년필로 옮겨가면서 자연스럽게(?) 안 쓰는 만년필 통에 보관되게 되었지만요.

 

계속 생각이 난단 말이죠. 하치만의 관계에 대한 독백을 보고 있자면.

 

2.4.

얼핏 <너의 췌장을 먹고 싶어>를 읽다가 잠시 멈짓하고 책을 덮었던 기억이 났습니다. 학창시절 자신의 물건이 있을 리 없는 곳에서 발견되는 일을 몇 번 겪어본 사람의 사람에 대한 관점은, 그런 일이 없었던 사람의 그것과는 좀 다를 수 밖에 없겠죠.

 

3.

오랜만에 졸립지만 잠은 오지 않는 새벽을 보냈습니다. 모든 불면증이 기분 나쁜 것은 아니고, 개운한 불면증도 존재한다는 것을 알게 된 것은 오랜만의 소득일까요.

  1. 다만 '야 이렇게 얄팍하게 아는데 박사라고 해도 되는거냐?'란 부분에서는 양심이 찔리는군요... [본문으로]
  2. 이번에는 13권까지. [본문으로]

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08

댓글을 달아 주세요

여러가지 잡담들

Daily lives 2019. 6. 17. 03:43

0.
홍콩의 길거리에서 〈임을 위한 행진곡〉이 불린다는 소식을 들었다. 길거리에 나섰던 홍콩 시민들이 40년 뒤에도 이 날의 기억을 승리의 추억으로 회상하기를 기원한다.

1.
사상적 성향이 사해동포주의에 가까운 것과는 별개로, '그 나라 하면 떠오르는 것은?'이란 질문은 항상 나를 생각에 잠기게 만들었던 질문 중 하나이다. 뭐, 자신의 머리가 생각하는 바와 자신의 가슴이 생각하는 바가 일치하지 않는 경우는 많으니까.

 

가장 자주 볼 수 있는 답은 음식이다. 김치, 스시, 피자, 피쉬 앤 칩스, 맥주 등. 에펠탑과 같이 건축물인 경우도 있고, 캥거루와 같이 동물인 경우도 있다. 상대적으로 드문 답은 추상적인 가치이다. 미국에게는 자유가 있고 프랑스에게는 혁명의 세 정신이 있으며 영국은 전통을 중시하고 독일은 합리성을 추구한다는 이미지가 있다. 식민지배를 경험한 입장에서는 쓴웃음을 지을 수 밖에 없지만 옆나라에서는 와(和)를 추구한다고 하고. 어릴 때는 이렇게 추상적이지만 일상적인 결정을 내릴 때 나아가야 할 방향을 제시해줄 수 있는 가치를 조국의 상징으로 쓸 수 있는 사람들이 있다는 것이 한편으로는 부러웠고 한편으로는 시샘이 났었다. 지금은 좀 덜하지만 그렇다고 해서 일어나는 감정을 밝다고만 표현할 수는 없는 노릇이고.

 

1.1.

흥미로운 점은 이렇게 추상적인 가치를 전면에 내세우는 국가는 제국주의 시절 식민지를 운영해본 경험이 있는 국가가 대부분이라는 것이다. 혈연에 기반한 민족주의를 내세울 수 없었기 때문에 제국을 하나로 묶을 소속감을 제공할 수단을 찾다가 누구나 소속감을 제공해줄 수 있는 정신적인 가치를 고안해낸 것일까? 나로서는 알 수 없다.

 

1.2.

"한없이 높은 문화의 힘"이란 이런 정신적 가치를 이야기하는 것이었을까? 여기에 대해서도 나로서는 알 수 없다.

 

2.

홍콩의 길거리에서 〈임을 위한 행진곡〉이 불린다는 소식을 들었을 때는 복잡한 심정이 들었던 이유이기도 하다. 한편으로는 우리가 걸어온 길이 남에게 용기가 되어줄 수 있다는 것. 다른 한편으로는 그래서 실질적으로 도움을 줄 방법을 떠올리라 하면 도저히 생각나지 않는다는 것.

 

부디 길거리에 나선 사람들이 집에 돌아와 웃으며 가족과 식사할 수 있기를.

 

2.1.

지금은 종교성이 매우 옅은 삶을 살고 있지만 어릴 적 교회를 다니며 들었던 설교 중 아직도 기억에 남는 설교는 죽어서 심판대 앞에 섰을 때 "당신은 어떤 삶을 살아왔나?"란 질문에 대해 무엇이라 대답할 것인지 생각해야 한다는 것이었다. 아주 어린 시절이니 나야 별 생각이 없었지만 당시 모범 답안(?)으로 제시되었던 답변은 아직도 생각난다. "'예수님이었다면 어떻게 했을까?'를 자문해보고 그에 따른다."

 

우리의 삶은 그런 기준점이 될 수 있을까?

 

3.

1만년 뒤에도 인류가 남아있을지는 아직 알 수 없다. 인류가 있다 하더라도, 한국이 남아있을지는 알 수 없다. 만약 1만년 뒤에도 인류가 남아있는다면, 나는 그들에게 우리가 정신적인 가치로 기억되기를 기원한다. 아니, 일상 생활에서 결정을 내릴 때 쓸 수 있는 기준으로 계속 기념되기를 기원한다.

 

-1.

글을 쓰는 데는 시간이 걸린다. 생각을 정리하며 글을 쓰는 동안 홍콩에서는 송환법 입법이 일단 연기되는 것으로 1차적인 승리를 이끌어내는데는 성공했다는 소식을 들었다. 계속되는 투쟁에서도 좋은 소식이 있기를.

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08

댓글을 달아 주세요

대학원 고전역학에서 다룰만한 내용으로 교수님과 이야기하다가 Dirac bracket 이야기가 나와서 간단(?)하게 트위터에서 주절거렸던 내용을 정리. 해당 타래는 이것.



모든 미분방정식은 충분한 숫자의 변수를 도입하는 것으로 1계미분방정식으로 만들 수 있다. 예컨대 $y''+y=0$이란 미분방정식이 있다면 $x=y'$이란 독립변수 $x$를 도입하여 $x'+y=0$으로 만들 수 있다. 해밀턴역학도 어떤 의미에서는 그런 접근의 연장선상에 놓여있다. 르장드르 변환과도 엮여있기 때문에 좀 복잡한 방식으로 이 과정을 이용하기는 하지만.


트윗 타래에서 설명했듯, 해밀턴역학에서 해밀토니안 함수는 위상공간 위에서의 흐름(flow)을 만들어내는 물체로 생각할 수 있다. 해밀토니안 함수와 그에 대응되는 흐름 혹은 벡터장을 연결해주는 역할을 하는 것이 포아송 괄호(Poisson bracket)이다. 연결 방법은 $H \to \{H,\bullet \}$. 물론 위상공간 위에서의 흐름을 만들어내는 해밀토니안이 실제 계의 동역학과 관계가 있어야 할 이유는 없다. 보다 추상적인 임의의 함수도 포아송 괄호를 통해 위상공간 위에서 흐름을 만들어낼 수 있으며, 일반적으로는 계의 보존량 $Q$를 이용해 이런 흐름을 만들어낼 때 $Q$를 대칭 생성자(symmetry generator)라고 부른다. 이쪽은 운동량 사상(moment map)과 연결되는 방향이지만 이 글의 주제에서는 벗어나니 다음 기회에[각주:1].


임의의 함수는 포아송 괄호를 통해 위상공간 위에서의 벡터장과 대응될 수 있다.


위의 관점은 계의 모든 변수가 독립변수인 경우에는 문제 없이 적용이 가능하지만 계의 모든 변수가 독립변수가 아닌 경우, 즉 제약조건(constraint)이 존재하는 계의 경우에는 위의 관점을 적용하는데 무리가 있다. 이 경우 좌표를 새로 잘 정의해서 새 좌표에서는 모든 변수가 독립변수가 되도록 하는 것으로 위의 관점을 살려내는 방법이 있다. 물론 새 좌표를 찾는다는 것은 원칙상 가능하다는 뜻이고, 이 좌표를 찾는 일이 항상 쉬우리란 보장은 없다. 다른 방법은 디락의 디락 괄호(Dirac bracket)를 도입하는 것.


잠시 원래 이야기에서 벗어나 역사적인 맥락을 살펴보면, 디락이 디락 괄호의 도입을 생각하게 된 이유는 양자전기역학이었다고 한다. 디락은 포아송 괄호를 교환자(commutator)로 교체하는 것으로 고전계를 양자화할 수 있다는 것을 발견했는데, 같은 방법을 전자기학에 적용하려니 뭔가 잘 안 맞는다는 것을 알게 된 것이다. 디락은 가우스 법칙에 의해 전자기장이 가질 수 있는 값에 제약이 생기는 것이 원인이라는 것을 알게 되었고, 제약조건이 있는 계의 포아송 괄호에 해당하는 물체를 어떻게 찾아낼 것인가를 고민한 결과 디락 괄호를 찾아내게 된다.


다시 원래 이야기로 돌아와서, 제약조건이 있다는 뜻은 전체 위상공간 중 그 부분집합에 해당하는 $f_i(\vec{p},\vec{q})=0$을 만족하는 $(\vec{p},\vec{q})$만 실제 계의 상태를 나타낸다는 관점으로도 이해할 수 있다. 일반적으로 해밀토니안에 의해 만들어지는 흐름은 이 제약조건을 만족하는 위상공간 속 부분다양체(submanifold) 위에서 출발하더라도 그 밖을 벗어나게 되리라고 예상할 수 있다.


해밀토니안에 의해 만들어지는 흐름(연두)은 제약조건을 만족하는 부분다양체(연파랑) 위에서 출발하더라도 그 부분다양체 위에서 움직이는 방향(녹색)과 그 부분다양체에서 벗어나는 방향(적색)을 모두 포함한다.


이제 문제는 포아송 괄호를 통해 얻은 해밀토니안 함수에 대응되는 흐름에서 제약조건을 만족하지 못하게 하는 방향의 흐름을 제거하는 것이다. 위의 그림에서 적색 화살표에 해당하는 성분을 제거하는 것이 목표인 셈. 이 목표는 제약조건을 만족하는 경우 0이란 값을 갖는 제약조건에 해당하는 함수 $f_i$들을 적당히 더하는 것으로 이루어진다. $f_i$에 의해 만들어지는 흐름 $\{f_i,\bullet\}$은 일반적으로 0이 아니기 때문. 수식으로 나타내면 다음과 같다.

\[ H \to \{ H, \bullet \}_{\text{Dirac}} = \{ H + c_i f_i , \bullet \} \]


이제 문제는 1. 충분한 숫자의 $f_i$를 찾아서 어떤 방향으로 벗어나더라도 벗어나는 방향을 제거할 수 있을 것 2. 계수들 $c_i$를 결정할 것 두가지로 나뉘게 된다. 첫번째 문제에 대한 답은 제약조건을 primary/secondary constraint와 1st class/2nd class constraint로 분류하는 과정과 관련이 있는데[각주:2] 여기서는 일단 충분한 숫자의 $f_i$들을 구했다고 가정하기로 하자.


디락 괄호는 포아송 괄호에 보정을 가해서 제약조건을 만족시키도록 한 것으로 볼 수 있다.


계수들 $c_i$는 어떤 해밀토니안 함수를 통해 생성된 흐름이더라도 제약조건 $f_i$의 값을 0으로 유지시켜야 한다는 것으로부터 구할 수 있다. 따라서 다음 방정식의 해를 구해야 한다는 뜻이다.

\[ \forall i \,, \{ H, f_i \}_{\text{Dirac}} = 0 \]


이 문제는 다음 가설풀이(ansatz)를 적용해서 풀 수 있다. 이런 가설풀이를 도입하는 이유는 포아송 괄호의 성질들 중 필요한 성질들을 보존하기 위함인데, 그 이야기까지 하기에는 글이 너무 길어지므로 대충 넘어가기로 하자.

\[ c_i(H) = - \{ H, f_j \}M^{ji} \]


위의 가설풀이를 적용하면 이제 풀어야 할 방정식은 아래와 같이 바뀐다.

\[ \{ H, f_i \}_{\text{Dirac}} = \{ H, f_i \} - \{ H, f_k \} M^{kj} \{ f_j, f_i \} = 0\]


고맙게도 위 방정식은 단순한 역행렬 계산으로 풀 수 있다.

\[ M^{ij} \text{ is the solution to } M^{ij} \{ f_j, f_k \} = \delta^i_k \]


이 정도가 디락 괄호의 핵심적인 아이디어에 속한다.

  1. 오스카 와일드의 표현을 따르자면 '다음 기회가 있다면'.(...) [본문으로]
  2. 나도 잘 구분 못한다. 어차피 아이디어를 이해할 때 명칭은 아주 중요한 것은 아니니 대충 넘어가자. [본문으로]

댓글을 달아 주세요

  1. Favicon of https://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    수식이 처리가 안되어 보이네요.

    2019.03.08 10:11 신고

입자물리에서 표준모형(standard model)이란 현재 우리가 알고 있는 모형 중 가장 자연을 잘 기술하는 모형을 의미합니다. 물리학에 관심이 있으시다면 들어보셨을 네 개의 힘과 쿼크, 중성미자 등등이 이 표준모형을 구성하고 있죠. 그리고 대부분의 (입자)물리학자들의 꿈은 표준모형을 넘어서는 것입니다. 그래야 교과서에도 기록되고 운이 좋으면 노벨상도 받는 영광을 누릴 수 있을 테니까요. 그렇다면 현재 알려진 가장 정확한 자연에 대한 기술이 실패하고 있는 지점은 어디일까요?


표준모형이 자연을 기술하는데 실패하고 있는 지점은 의외로 많으며, 그 중 하나는 뮤온의 이상자기모멘트(anomalous magnetic moment)입니다. 뮤온은 경입자(lepton)의 하나로, 전자의 무거운 형제라고 생각하시면 얼추 맞습니다. 현재(2018년 12월) 위키백과의 해당 페이지에서 인용하고 있는 측정된 뮤온의 이상자기모멘트는 다음과 같습니다.

\[a_\mu = 0.001~165~920~9(6)\]


반면에 표준모형이 예측하는 뮤온의 이상자기모멘트는 다음과 같죠.

\[a_\mu^{SM} = 0.001~165~918~04(51)\]


두 값은 약 3.5 표준편차만큼의 차이를 보입니다. 3.5 표준편차는 두 값이 실제로 같았을 경우 1/1000보다도 작은 확률로 이런 차이를 보여야 한다는 의미로, 실험이 어딘가 잘못되었거나 우리가 가진 이론이 어딘가 잘못되었을 가능성이 높다는 정황증거가 되지요. 현재 페르미랩(Fermilab)에서는 이 차이가 실존하는지 검증하기 위한 정밀측정 실험이 진행되고 있습니다.




이상자기모멘트가 흥미로운 관측량이라는 것은 알겠는데, 그래서 이상자기모멘트란 무엇일까요? 이상자기모멘트를 이해하기 위해서는 각운동량과 자기모멘트에 대한 이해가 선행되어야 하므로, 우선은 이 둘에 대한 이야기를 해보도록 하죠.


물리학은 정량적인 측정량을 정성적인 측정량보다 우선시하는 학문입니다. 그러므로 다루고자 하는 대상의 특성을 숫자로 만드는 것이 중요하죠. 예컨대 운동량(momentum)이란 물체가 얼마나 격하게 일정한 방향으로 움직이고 있는지 그 양을 계량화한 것을 의미합니다. 같은 물체라도 더 빠르게 움직이고 있다면 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 가질 것이고, 같은 속도로 움직이고 있는 두 물체라도 더 무거운 물체가 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 갖는 식이죠. 물론 물체는 일정한 방향으로 움직이지만은 않습니다. 팽이와 같이 한 자리에서 뱅그르르 도는 운동을 하는 경우도 있지요. 이런 회전운동을 계량하기 위해 만들어진 물리량이 각운동량(angular momentum)입니다.


각운동량은 자신이 잡은 기준점에 대해 상대적으로 움직이기 때문에 갖는 오비탈 각운동량(orbital angular momentum)과 그 물체가 스스로 회전하기 때문에 갖는 스핀(spin)이란 두 값으로 분류할 수 있습니다. 흥미롭게도 우리가 아무런 내부구조도 없는 순수한 점으로 취급하는 전자와 같은 기본입자들조차 스핀을 가지며, 기본입자들이 어떤 스핀을 가지는가는 우리가 보고 있는 우주의 형성에 큰 영향을 미치고 있습니다. 물론 아무것도 없는 점이 회전하고 있다고 생각할 수는 없으므로 '전자가 회전하고 있다'는 설명을 너무 곧이곧대로 받아들여서는 안되고, '어떤 이유인지는 모르겠으나 전자는 고유한 각운동량을 갖는다'고 이해하시는 것이 좋겠습니다. 이제 이 모든 이야기의 출발점이 되었던 이상자기모멘트로 돌아오면, 이상자기모멘트는 입자가 갖는 스핀으로부터 예상되는 자기모멘트가 그 측정값으로부터 얼마나 벗어나는지를 나타내는 값입니다. 이제 자기모멘트에 대해 이야기할 시간이 되었군요.


자석 중에는 전기의 힘으로 자력을 발휘하는 전자석이란 물건이 있습니다. 전자석은 전하를 가진 물체가 움직여서 전류를 만들면 그 전류에 의해 자기장이 발생하는 원리를 이용한 자석입니다. 물론 대부분의 전자석처럼 전하가 크게 도는 운동을 해야만 자석이 만들어지는 것은 아닙니다. 전하가 제자리에서 뱅글뱅글 도는 것으로도 자석이 만들어질 수 있지요. 이렇게 회전하는 대전된[각주:1] 물체가 자신의 회전운동으로 만들어내는 작은 자석을 계량화한 값이 자기모멘트입니다. 그리고 자기모멘트는 회전운동으로부터 만들어졌으므로, 어떤 물체의 자기모멘트는 그 물체의 스핀과 비례할 것이라고 예상할 수 있습니다. 이 예상을 반영하여 한 물체의 자기모멘트를 그 물체의 스핀으로 나눈 것을 자기회전비율(gyromagnetic ratio)이라고 부르며, 랑데 g 인자(Landé g-factor)는 자기회전비율을 기본입자를 기술하기에 유용한 단위로 측정한 값을 의미합니다. 물론 이 이야기에는 기본입자인 전자나 뮤온도 포함되며, 앞서 잠깐 이야기했듯이 뮤온 자기회전비율의 이론으로 계산한 값과 실험으로 측정한 값 사이의 불일치는 현대물리가 마주하고 있는 가장 큰 문제 중 하나이기도 합니다.




그렇다면 가장 '자연스러운' 자기회전비율은 얼마일까요? 여기에 답하기 위해서는 기본입자들의 스핀에 대해서 좀 더 이해해야 할 필요가 있습니다.


앞서 우리는 기본입자들 또한 스핀을 가질 수 있다는 사실을 배웠습니다. 그렇다면 기본입자들은 아무런 스핀이나 가질 수 있는 것일까요? 물론 여기에 대한 대답은 '아니오'입니다. 현재 알려진 기본입자들은 스핀이 1(글루온/광자/W,Z 보손)이거나 1/2(쿼크/전자/중성미자 등), 혹은 최근 발견되어 누구나 이름은 들어본 적이 있는 힉스 입자처럼 0입니다. 일반적으로 양자역학에 따르면 스핀은 정수(0,1,2 등)거나 반정수(1/2,3/2,5/2 등)를 가져야만 하죠. 여기에서 스핀을 단순한 숫자로 적기는 했지만, 각운동량은 단순한 숫자가 아니라 어떤 단위로 계량되는 값이기에 실제 스핀은 $\hbar$로 쓰는 디락 상수를 단위로 잰 값이라고 생각하셔야 합니다.


흥미로운 점은 기본입자들이 전자기적으로 상호작용한다는 것을 반영하는 최소한의 조건(이를 minimal coupling이라 부릅니다)을 요구할 경우 스핀 1/2 입자를 기술하는 방정식인 디락방정식으로부터 g 인자의 값이 2여야 한다는 결론을 얻게 된다는 것입니다. 앞서 이야기했던 이상자기모멘트란 실제 g 인자의 값이 2에서 얼마나 벗어나는지를 잰 것으로, g 인자의 값은는 양자역학적인 효과에 의해 예측된 값인 2로부터 벗어나게 됩니다. 이상자기모멘트가 적어도 소수점 셋째 자리에서 시작한다는 것은 그만큼 양자역학적인 효과를 무시해도 좋으며, 많은 경우 g 인자의 값을 2로 취급해도 문제가 없다는 것을 의미하죠. 그렇다면 다른 입자의 경우에는 어떨까요?


Belinfante는 디락방정식의 선례를 따라 minimal coupling을 요구할 경우 스핀이 s인 기본입자는 g 인자의 값으로 1/s를 갖는다는 가설을 내놓은 적이 있습니다. s에 1/2를 대입할 경우 우리가 잘 아는 전자나 뮤온의 g=2라는 결론을 얻게 되죠. 그렇다면 다른 스핀을 갖는 기본입자의 경우는 어떨까요? 현재 표준모형에 남아있는 전하를 가지면서 스핀이 1/2이 아닌 입자로는 W 보손이 있으며, W 보손의 g 인자는 2.11[각주:2]정도인 것으로 알려져 있습니다. 그리고 W 보손의 스핀은 1이죠. 따라서 자연스러운 자기회전비율은 g=1/s란 Belinfante의 가설은 벌써부터 반례와 마주하게 되죠. 그래서, 가장 자연스러운 값은 무엇일까요?


W 보손의 g 인자 값이 2에 가깝다는 실험결과에 대해서 들으신 다음이라면 '가장 자연스러운 g 인자의 값은 2가 아닐까?'란 의심을 해볼 수 있겠지요. 흥미롭게도 이 단순무식한 답이 실제 답일 가능성이 높습니다. Holstein은 다음과 같은 정황근거를 제시합니다.[각주:3]


1) 고에너지 콤프턴 산란(Compton scattering)이 좋은 성질을 갖기 위해서 필요한 값이다.

2) GDH 합 규칙(sum rule)이 자연스럽게 측정하는 값이다.

3) 중력자 산란과 광자 산란 사이의 KLT 관계를 자연스럽게 반영하기 위해 필요한 값이다.

4) 열린 끈이론(open string theory)으로부터 예측되는 값이다.

5) 일반상대론에서 전기장의 영향 아래 움직이는 입자의 스핀을 기술하는 BMT 방정식이 가장 간단해지는 값이다.

6) 전하가 있는 회전하는 블랙홀(Kerr-Newman)을 점입자로 취급하는 극한에서 얻는 값이다.


위 목록의 흥미로운 점이라면 중력이 등장한다는 것입니다. 1번과 2번을 제외하면 모두 중력과 접점을 갖고 있습니다; 중력자 산란이나 일반상대론, 블랙홀은 당연히 중력과 떼려 해도 뗄 수 없는 관계이며, 끈이론의 경우에는 닫힌 끈(closed string)을 자연스럽게 고려하면서 닫힌 끈의 한 상태인 중력자를 이야기할 수 밖에 없게 되지요. 표준모형에서는 일반적으로 중력을 다른 힘들과 같은 위치에 두고 다루지는 않기 때문에 은근슬쩍 나타난 중력은 예상 밖의 등장이라고 할 수 있겠습니다. 하지만 예상 밖의 등장이라고 해서 그것이 우연이라고 단정할 수는 없는 법이죠.




이 포스트의 제목인 중력과 자기회전비율의 관계를 이야기하려면 이 관계가 가장 명확하게 드러나는 새로운 기술법으로부터 출발하는 편이 좋겠습니다. 주인공은 스피너-헬리시티 변수(spinor-helicity variable)입니다.


스피너-헬리시티 변수는 우리가 사는 세계인 3+1차원의 세계에서 회전을 기술하는 군인 $SO(1,3)$군이 행렬식이 1인 $2 \times 2$ 복소행렬들의 집합인 $SL(2,\mathbb{C})$군으로 확장될 수 있다는 사실에서 출발합니다. 표준적인 양자역학을 따른다면 우리가 다루는 모든 상태(state)는 이 $SL(2,\mathbb{C})$군의 표현(representation) 중 하나로 수렴해야 하죠. 스피너-헬리시티 변수는 단순히 모든 상태를 $SL(2,\mathbb{C})$군의 가장 기본적인 표현(fundamental representation)과 그 켤레복소수(complex conjugate)에 해당하는 표현만을 이용해 기술하는 것을 의미합니다. 이 모든 전문적인 내용을 이해하지 못하셨다면 단순히 '최대한 군더더기를 없애고 입자들의 상태를 표현하는 방법'이라고 생각하셔도 좋습니다.


최근까지만 해도 스피너-헬리시티 변수는 질량이 없는 입자에 대해서만 그 기술법이 알려져 있었습니다. 이 변수가 질량이 있는 입자에 대해서도 쓸 수 있도록 확장된 것은 채 2년이 지나지 않았죠. 이 변수를 쓰게 되면 여태 이야기한 g 인자와 중력과의 관계를 더욱 쉽게 이해할 수 있게 됩니다. 이제부터 우리가 주로 다룰 문제는 다음 파인만 도표(Feynman diagram)으로 나타낼 수 있으며, 질량이 있는 입자(검은 선)가 질량이 없는 입자(연파랑 물결선)를 방출하는 과정에 대한 산란진폭(amplitude)입니다. 산란진폭이란 산란실험의 중요한 물리량인 산란단면적을 계산하기 위해 필요한 물리량으로, 자세한 설명을 다루기에는 이 글이 너무 길어지므로 다른 글에서 설명하도록[각주:4] 하겠습니다. 또한 산란진폭 업계의 표준을 따라 모든 운동량은 들어오는(incoming) 방향으로 취급하도록 하겠습니다.

입자 셋을 다루는 파인만 도표


자세한 설명은 논문으로 넘기기로 하고 결과만 적어보면, 위와 같은 일반적인 입자 셋의 산란진폭은 다음과 같은 꼴로 적을 수 있습니다. 여기서 질량이 있는 입자는 질량 m에 스핀 s인 입자라고 가정하였으며[각주:5], 질량이 없는 입자의 헬리시티는[각주:6] h로 가정하였습니다.

\[ M_3^{h} = (mx)^h \left[ g_0 \frac{\langle {\bf 21} \rangle^{2s}}{m^{2s-1}} + g_1 x^{1} \frac{\langle {\bf 21} \rangle^{2s-1} \langle {\bf 2} 3 \rangle \langle 3 {\bf 1} \rangle}{m^{2s}} + \cdots + g_{2s} x^{2s} \frac{\langle {\bf 2} 3 \rangle^{2s} \langle 3 {\bf 1} \rangle^{2s}}{m^{4s-1}} \right] \]


이 산란진폭을 보면 총 2s개의 파라메터 $g_i$가 등장하며, 모두 각자의 해석이 존재합니다. 예컨대 질량이 없는 입자의 헬리시티를 h=1로 둘 경우 이 산란진폭은 입자가 전자기적으로 어떻게 반응하는지를 나타내며[각주:7], 첫번째 파라메터인 $g_0$는 입자의 전하량을 결정합니다. 흥미로운 점은 두번째 파라메터인 $g_1$인데, 이 경우 $g_1$은 g 인자를 결정하는 역할을 하며, $g_1$이 0이여야만 g 인자의 값이 2가 됩니다. 어떤 의미에서는 $g_0$만 남기고 나머지 파라메터를 전부 0으로 결정한 $M_3 = x \langle {\bf 21} \rangle^{2s}$이 가장 단순하고 자연스럽다고 할 수 있으니[각주:8] 이런 관점에서도 g=2가 가장 자연스러운 자기회전비율이라고 주장할 수 있겠지요.


위의 산란진폭에서 질량이 없는 입자의 헬리시티를 h=2로 둘 경우 이 산란진폭은 입자가 중력과 어떻게 상호작용하는지를 나타내게 됩니다[각주:9]. 흥미롭게도 중력이 입자의 질량과 상호작용하는 방식이 정해져 있을 뿐만 아니라 스핀과도 상호작용하는 방식이 정해져 있다는 성질에 의해 $g_1$이 0 이외의 값을 가지는 것은 금지되어 있습니다. g 인자가 자연스러운 값 2를 갖기 위해서는 $g_1$이 0이어야 한다는 사실을 의식할 수 밖에 없는 결과이지요. 그리고 실제로도 둘은 관련이 있습니다.




1986년 Kawai-Lewellen-Tye 세 사람은 (끈이론의 맥락 안에서) 중력자를 포함한 산란진폭을 글루온만 있는 산란진폭의 (적절한 처리를 거친) 제곱으로 쓸 수 있다는 사실을 발견합니다. 이를 KLT 관계라고 부르며, 이 관계를 양자효과를 고려한 경우까지 확장한 것을 BCJ(Bern-Carrasco-Johannsson) 관계라고 부릅니다. 이런 관련성은 색-운동학 이중성(colour-kinematics duality), 중력은 양밀 제곱 (GR=YM^2), 혹은 더블 카피 (double copy) 관계라는 이름을 쓰기도 합니다. 위에서 Holstein이 언급한 g=2에 대한 여섯가지 정황증거 중 세번째 정황증거가 이 관계를 이용하죠.


글루온은 양밀이론(Yang-Mills theory)의 스핀 1인 질량이 없는 입자를 지칭하는 말로, 우리가 아는 전자기력의 광자와 닮은 사촌이라고 생각하셔도 좋습니다. 따라서 KLT 관계는 광자를 포함한 산란진폭을 적절한 처리를 거쳐 제곱하면 중력자를 포함한 산란진폭으로 바꿀 수 있다는 것을 의미한다고 볼 수 있지요. 어째서 KLT 세 사람이 이런 관련성을 알아내게 되었는지 이해하기 위해서는 끈이론에서 중력과 양밀이론이 어떻게 구현되는지 알아야 합니다.


끈이론에서 입자는 끈의 각기 다른 진동 모드로 구현됩니다. 진동 모드란 끈이 얼마나 격하게 진동하는가를 나타내는 것으로, 대체로 진동이 격해질수록 그 진동 모드에 해당하는 입자의 질량과 스핀이 증가하게 됩니다. 둘은 진동이 격해짐에 따라 서로 비례해서 증가하는 모습을 보이는데, 이를 레제 궤적(Regge trajectory)이라고 부릅니다. 레제 궤적은 핵물리 발전 초창기에 강한 핵력을 통해 상호작용하는 입자들의 스핀과 질량 사이에 선형(linear)[각주:10] 관계가 존재한다는 관찰을 바탕으로 세워진 가설인데, 끈이론의 태동기에는 끈이론이 레제 궤적을 만들어낸다는 사실 때문에 많은 사람들이 끈이론을 가망있는 핵물리 모형으로 여기고 뛰어들게 되었죠.


각기 다른 진동 모드. N이 클 수록 격렬하게 진동하고 스핀과 질량이 증가한다.



끈이론에서 다루는 끈의 종류는 크게 두가지로 나눌 수 있습니다; 열린 끈(open string)과 닫힌 끈(closed string)이죠. 열린 끈은 신발끈처럼 양 끝이 이어져 고리를 이루지 않는 끈을 지칭하며, 닫힌 끈은 고무줄처럼 양 끝이 이어져 고리를 이루는 끈을 말합니다. 열린 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 1인 진동 모드가 포함되며, 닫힌 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 2인 진동 모드가 포함됩니다. 따라서 열린 끈의 경우에는 질량이 없고 스핀이 1인 입자가 등장하고 닫힌 끈의 경우에는 질량이 없고 스핀이 2인 입자가 등장합니다. 질량이 없고 스핀이 1인 입자로는 글루온과 광자가 있고, 질량이 없고 스핀이 2인 입자는 중력자로 유일하다는 것이 알려져 있습니다. 따라서 열린 끈을 다루게 되면 질량 없는 스핀 1 입자가 필요한 양밀이론을 포함하게 되며, 닫힌 끈을 다루게 되면 질량 없는 스핀 2 입자가 필요한 중력을 포함하게 되지요.


흥미로운 점은 열린 끈 두 개를 가져다가 양 끝을 이으면 닫힌 끈을 만들 수 있다는 것입니다. 그리고 이런 관계에서 양밀이론의 산란진폭을 제곱하면 중력이론의 산란진폭을 얻을 수 있다는 KLT 관계가 유도됩니다. 닫힌 끈의 산란진폭은 열린 끈의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있으므로, 중력이론의 산란진폭은 양밀이론의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있다는 것이지요.


열린 끈 둘의 끝을 잇는 것으로 닫힌 끈을 만들 수 있으며, 이 성질은 KLT 관계의 근간이 됩니다.


이 모든 이야기가 앞서 도입한 스피너-헬리시티 변수와 무슨 관계가 있을까요? 우리는 입자 셋의 산란진폭에는 총 2s개의 파라메터 $g_i$가 등장할 수 있으며, 그 중 $g_1$은 광자/글루온과의 상호작용의 경우 g 인자와 밀접한 관계를 맺고 중력자와의 상호작용의 경우 항상 사라져야 한다는 것을 배웠습니다. 만약 이 입자가 광자/글루온과의 산란진폭을 제곱하는 것으로 중력자와의 산란진폭을 얻을 수 있는 KLT 관계를 만족하게 된다면 광자/글루온 산란진폭의 $g_1$은 중력자 산란진폭의 $g_1$으로 변하게 됩니다. 그런데 중력자 산란진폭의 $g_1$은 항상 0이어야 한다는 것이 알려져 있으므로 이 입자의 광자/글루온 산란진폭의 $g_1$ 또한 0이어야 한다는 결론을 내릴 수 있으며, 이로부터 이 입자의 g 인자는 항상 2란 값을 만족해야 한다는 사실을 알 수 있습니다. 어떤 의미에서는 중력이 g 인자의 값이 2가 되도록 강제한다고 할 수 있는 것이죠.




우리는 자기회전비율이라는 입자의 전자기장과 상호작용하는 방식을 나타내는 한 파라메터가 전자기력과는 전혀 상관없어 보이는 중력과의 상호작용과 어떻게 연결될 수 있는지 알아보았습니다. 그리고 그 관계를 가장 명확하게 드러내는 방법은 최근에 개발된 표기법인 스피너-헬리시티 변수라는 것도 알게 되었죠. 이 새로운 도구는 우리에게 어떤 도움을 줄 수 있을까요?


미래를 예단하는 것은 멍청한 헛소리를 하는 가장 빠른 지름길이므로 여기서는 무엇을 할 수 있을지 조심스러운 전망을 내놓기보다는 이미 알려진 흥미로운 결과를 이야기해보려고 합니다. 중력과의 가장 '단순한' 상호작용이지요.


스피너-헬리시티 변수로 쓸 수 있는 가장 단순한 중력자와의 상호작용은 다음과 같습니다.

\[ M_3 = x^2 \langle {\bf 21} \rangle^{2s} \]


그리고 중력이 있는 계에서 가장 단순한 물체는 아무런 특징이 없는 (no hair) 블랙홀이라는 사실이 알려져 있죠. 따라서 이 산란진폭이 블랙홀과 중력자의 상호작용을 나타내는 것은 아닐까 가설을 세워 볼 수 있겠죠. Arkani-Hamed는 그 가설이 실제로 밝혀진다면 흥미로울 것이라고 이야기한 적이 있습니다. 블랙홀이 '기본입자'처럼 반응한다는 것을 의미한다면서요. 그리고 실제로도 이 산란진폭이 (고전적인 크기의 스핀을 갖는) 블랙홀의 산란진폭과 일치한다는 것을 보일 수 있습니다. 위에서 Holstein이 언급한 '블랙홀의 g 인자는 2다'란 명제를 생각해본다면, 어쩌면 이 사실은 그리 놀라운 일이 아닐지도 모릅니다. 하지만 스피너-헬리시티 변수라는 새로운 도구가 없었더라면 우리는 이 그렇게까지는 놀랍지 않은 일을 알 길이 없었겠지요. 이 새로운 도구가 어떤 길로 우리를 안내하게 될 지 기대하게 되는 이유이기도 합니다.

  1. 대전된 물체는 전체적으로 전하를 가진 물체를 말합니다. [본문으로]
  2. loop effect라 불리는 양자효과를 고려한 값으로, 양자효과를 제하면 남는 값은 정확히 2입니다. https://arxiv.org/pdf/hep-ex/0209015.pdf [본문으로]
  3. 이 목록에는 등장하지 않지만, 대부분의 초대칭이론의 경우에도 g 인자의 값이 2로 고정된다는 사실이 알려져 있습니다. 또 다른 강력한 정황증거인 셈이죠. [본문으로]
  4. 끈이론 개론 시리즈의 2편이 산란진폭을 다룰 예정입니다. [본문으로]
  5. 때때로 중요하지 않다고 생각되면 수식에서 질량을 나타내는 m을 생략하겠습니다. [본문으로]
  6. 헬리시티는 질량이 없는 입자의 스핀을 말합니다. 질량이 없는 입자의 경우 스핀의 방향을 뒤집을 수 없기 때문에 특별히 헬리시티란 이름을 붙입니다. [본문으로]
  7. 광자의 스핀이 1이기 때문에 일어나는 현상입니다. [본문으로]
  8. 이렇게 $g_0$만 남기고 다른 파라메터를 전부 0으로 날려버리는 선택은 질량이 없는 극한으로 아무런 문제 없이 보낼 수 있는 유일한 선택지이기도 합니다. [본문으로]
  9. 중력자의 스핀이 2이기 때문에 일어나는 현상입니다. [본문으로]
  10. 비례관계를 보다 전문적으로 일컫는 말이라고 생각하시면 됩니다. [본문으로]

댓글을 달아 주세요

얼마 전에 했던 삽질 관련 내용 정리.



이 잘 알려진(하지만 나는 몰랐던) 상식을 증명하는 방법은 Schwarz-Christoffel transform을 이용하는 것. 이 변환은 복소평면의 윗 반평면(upper half plane)을 다각형의 내부로 보내는 등각변환이다. 완전한 등각변환이라고 하기에는 꼭지점에서의 등각성이 깨지긴 하지만 그 정도는 무시하기로 하고(...). 2차원 이상유체 문제나 도파관 문제를 풀 때 이 변환을 이용하는 경우가 있는데, 요즘 물리과에서는 보통 풀 일이 없는 문제들이라 생소한 사람들도 많을듯. 구체적인 설명은 위키백과의 해당 항목으로 넘기기로 하자.


Schwarz-Christoffel map이 하는 일. 변수 z에서의 upper half plane을 등각성을 유지한 상태로 변수 w에서의 다각형 내부로 보낸다.


이 변환을 통해 증명하고 싶은 것은 'open string disk amplitude에서 vertex operator를 집어넣는 점들 중 일부가 한 점으로 수렴하고 이 점들을 a1, a2, ...으로 쓰기로 하자. 한 점으로 수렴하는 극한의 산란진폭은 a1, a2, ...에 해당하는 입자들이 산란하는 산란진폭과 나머지 입자들이 산란하는 산란진폭에 해당한다'는 주장인데, 다르게 이야기하면 'a1, a2, ... , c가 산란하는 진폭과 c, b1, b2, ...(b1, b2, ...는 vertex operator들 중 a1, a2, ...에 해당하지 않는 나머지)가 산란하는 진폭으로 나누어지며 그 사이를 c에 해당하는 상태가 진행하는 극한에 해당한다'가 된다. 단순히 말하면 c에 해당하는 internal propagator가 on-shell에 가까워져서 먼 거리를 이동한다는 이야기.


편의상 4ptc scattering을 생각하기로 하고 t-channel이 on-shell로 가는 극한을 생각하자. 이때 $SL(2,R)$를 이용해 vertex operator를 집어넣는 점 셋을 고정할 수 있다. 정석적인 선택은 $(0,\sigma,1,\infty)$. 따라서 다음 그림과 같은 형태의 Schwarz-Christoffel map을 찾는 것이 목표가 된다.


t-channel에서 intermediate state가 on-shell에 가까워지면 먼 거리를 이동하는 극한과 동등하다는 것을 보이기 위해 필요한 Schwarz-Christoffel map


여기서 $\bar{\sigma_1}$은 왼쪽의 꺾이는 점(혹은 1번과 4번 string이 intermediate state에 해당하는 string으로 합쳐지는 점)에 해당하고 $\bar{\sigma_2}$는 오른쪽의 꺾이는 점(혹은 intermediate state에 해당하는 string이 2번과 3번 string으로 갈라지는 점)에 해당한다. 이제 위 그림에서 $\sigma \to 1$의 극한이 $f(\bar{\sigma_2}) \to +\infty$로 가는 극한, 즉 $\bar{\sigma_1}$에 해당하는 점에서 $\bar{\sigma_2}$에 해당하는 점까지 이동하는 거리가 무한히 늘어나는 극한과 일치한다는 것을 보이면 된다. 이 변환은 다음 미분방정식의 해로서 주어진다.

\[ f'(z) = A (z-x)^{1}(z-0)^{-1}(z-\sigma)^{-1}(z-[\sigma + a(1-\sigma)])^{1} (z-1)^{-1} \]


이 식은 다음과 같이 분수들의 합으로 정리할 수 있다.

\[ f'(z) = A\left\{ \frac{\alpha}{z-0} + \frac{\beta}{z-\sigma} + \frac{\gamma}{z-1} \right\} \]


약간의 Mathematica 계산을 통해[각주:1] $\alpha = \frac{-x(a\sigma - a - \sigma)}{\sigma}$, $\beta=\frac{a(\sigma - x)}{\sigma}$, $\gamma = (1-a)(1-x)$가 된다는 것은 금방 확인할 수 있다. 영 못 믿겠으면 손으로 계산하는 것도 방법. 여기서 $a$와 $x$가 고정되어 있다면 $\alpha$, $\beta$, $\gamma$ 모두 유한한 값으로 고정된다는 것을 알 수 있다. 적분은 단순한 $1/z$의 적분이므로 바로 계산이 가능하다. 단, 복소변수이기 때문에 약간의 주의가 필요. Argument를 결정하는 branch cut은 편의상 -Im(z)축 방향으로 뻗도록 하는 것이 좋다.

\[ f(z) = A\left\{ {\alpha}\text{Log}z + {\beta}\text{Log}(z-\sigma) + {\gamma}\text{Log}(z-1) \right\} + B \]


state 1은 $-A\alpha$방향, state 2는 $-A \beta$방향, state 3는 $-A \gamma$방향, state 4는 $A(\alpha+\beta+\gamma) = A$방향에 위치한다는 것을 알 수 있다. 그러므로 위의 그림에 맞게 $A$의 값을 정하면 $A<0$이 된다. 이제 string worldsheet이 갈라지는 점들($f(\bar{\sigma_1})$과 $f(\bar{\sigma_2})$)의 위치를 살펴보자. 여기서 중요한 것은 Im(w)축상의 위치가 아니라 Re(w)축 방향의 거리이므로 Log의 argument에 해당하는 항은 잠시 무시해도 좋다. 우선 왼쪽의 합쳐지는 점의 위치를 구하면 다음과 같다.

\[ f(\bar{\sigma_1}) = A \left\{ \alpha \log |x| + \beta \log |x-\sigma| + \gamma \log |x-1| \right\} + i \cdots + B \]


오른쪽의 합쳐지는 점의 위치는 다음과 같이 주어진다.(수식이 약간 깨지는데 중요한 부분은 다음 문단에 있으므로 굳이 편집하지는 않겠다)

\[ f(\bar{\sigma_2}) = A \left\{ \alpha \log |\sigma + a(1-\sigma)| + \beta \log |a(1-\sigma)| + \gamma \log |(a-1)(1-\sigma)| \right\} + i \cdots + B \]


$\sigma \to 1$의 극한에서 발산하는 항만 모아보면 다음과 같다.

\[ f(\bar{\sigma_2}) = A \left\{ \beta \log |(1-\sigma)| + \gamma \log |(1-\sigma)| \right\} + \cdots \]


참고로 이 극한에서는 $\beta + \gamma \to 1 - x$이기 때문에, 오른쪽의 갈라지는 점은 $+\infty$의 방향으로 밀려나는 것이 맞다(부호를 $x<0$와 $A<0$로 결정했기 때문). 여기서 발산하는 항들은 전부 로그에 들어가는 값이 0으로 수렴하는 극한 때문에 등장했으므로, 이런 현상은 4ptc scattering에만 국한된 것이 아니라 일반적인 산란 상황에서도 관찰할 수 있을 것으로 기대할 수 있다. vertex insertion point가 모이게 되면 amplitude factorisation이 되는 극한, 혹은 intermediate state가 long distance propagation을 하는 IR divergence가 있는 극한으로 생각할 수 있다는 의미.


$\sigma \to 1$ 극한은 두 갈라지는 점 사이의 거리가 무한이 멀어지는 극한으로 생각할 수 있다


다만 이 논증은 worldsheet에서의 이야기이고, 실제 target space로 바로 연결되지는 않는다. 하지만 induced metric을 생각해보면 worldsheet상에서의 거리가 무한히 멀어지는 것과 target space상에서의 거리가 무한히 멀어지는 것은 비슷하다고 봐도 무방해 보인다.

  1. Apart 함수를 쓰면 된다. [본문으로]

댓글을 달아 주세요

  1. 진민서  댓글주소  수정/삭제  댓글쓰기

    wlsalstj0321@naver.com 저는 지금 학생이구요! 제가 블로그를 운영하게 되면 IT, 정보보안,컴퓨터 쪽으로 제가 블로그를 운영하게 된거 같아요!!! 제가 블로그를 운영하게 되면 같이 정보도 공유하고 같이 소통할수 있었으면 좋겠어요!!! 제글 읽어주셔서 감사합니다!! 초대장이 없어서 블로그를 운영하지 못하고있어요 ㅜㅜㅠ 초대장 보내주시면 같이 소통도하고 지낼수 있을거 같아요!! 감사합니다

    2018.09.16 01:39
  2. Favicon of http://no1gs.co.kr/ BlogIcon 강남  댓글주소  수정/삭제  댓글쓰기

    잘보고 가요!!!

    2018.09.16 21:15
  3. 예나아빠  댓글주소  수정/삭제  댓글쓰기

    안녕하세요. 깔끔하게 양질의정보로만 블로그를 꾸려나가시네요.. 워너비입니다.
    저는 평범한 직장인이구요.
    블로그를 시작해보려는데 번잡한 네이버보다는 티스토리가 좋을것 같아
    티스토리 초대장을 보내주실수 있을까 해서 댓글 남깁니다.

    2018.10.17 14:48
  4. twistors105  댓글주소  수정/삭제  댓글쓰기

    유도 잘 봤습니다. 4pt amplitude에서 world-sheet integrand를 unintegrated vertex operator가 꼽힌 점 하나를 골라서 그 점 근처에서 전개해서 적분하면 나오는 internal propagator를 world-sheet 상에서 시각화 하신 것 같은데 world-sheet integrand로 부터 low energy effective amplitude를 (적분 안하고) 찾는데 도움이 될 것 같네요. 또한, 4개의 punctures가 있는 구의 moduli space의 boundary에서 일어나는 상황을 world-sheet에서 물리적으로 이해하는데도 도움이 될 것 같네요. 재밌게 잘 봤습니다. one loop (torus)에서 tau가 i \times \infty로 가는 상황도 비슷하게 world-sheet 상에서 이해할 수 있을지 궁금해지네요. 재밌게 잘 봤습니다.

    2018.11.02 11:46
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2018.11.03 15:02 신고  댓글주소  수정/삭제

      1-loop에서 tau가 + i \infty로 가는 극한은 string이 string length에 비해 아주 먼 거리를 이동하는 극한 혹은 particle approximation에 해당하는 극한으로 이해할 수 있습니다. Bern-Kosower rule이 이 관찰에서 유도되었다고 알고 있어요.

지도교수님과 회식을 하던 도중 이런 이야기가 나왔습니다.

최근 들어 논문 원고만 쓰고 블로그는 방치해뒀다는 약간의 자책감과 글을 쓰지 않는 버릇을 들이다가는 생각하는 법도 잊어버린다는 약간의 위기감과 연구에 진척이 나질 않는데 잠시 숨을 돌려볼까 하는 약간의 일탈감에 힘입어 오랜만에 글을 써 볼까 키보드를 잡았습니다. 주제는, 교수님의 이야기에서 아이디어를 얻어, 제 전공이 있는지조차 모르는 사람들을 위한 안내서가 좋겠다 싶었죠. 제가 제 전공에 대해 글을 쓸 정도로 제 전공을 잘 아느냐고 물으신다면 양심의 가책은 느끼겠지만, 그런 것에 전혀 구애받지 않고 배짱으로 들이대는 것이 젊음의 특권 아니겠습니까(?)


이제부터는 나이를 묻거든 얼굴에 철판을 깔고 살기로 했습니다


과거 인기를 끌었던 사극 중 <태양인 이제마>가 있습니다. 사상의학의 개척자 이제마의 일대기를 다룬 드라마였는데, 드라마 중간에는 양의학을 접한 이제마가 다음의 말을 하는 장면이 있습니다.

"양의학은 부분을 깊게 살펴 빠르게 효과를 보지만 전체를 고려하지 않아 근본적인 대책이 되지는 못한다"(기억에 의존한 대사라 정확하지 않을 수 있습니다)

인터넷의 영원한(?) 떡밥 중 하나인 '한의학과 양의학 중 어느 쪽을 믿을 것인가'란 질문은 잠시 제쳐두고, '부분을 깊게 살핀다'는 말에 초점을 맞춰보겠습니다.


'부분을 자세히 파고들어 전체를 이해해보겠다'는 접근방식을 환원주의(reductionism)라 부릅니다. 예컨대 시계가 어떻게 작동하는지 알고 싶다면 시계를 구성하는 톱니바퀴들 사이의 관계를 이해하면 된다는 것이지요. 환원주의는 근대과학의 주된 구심점으로 작동했습니다. 현실 세계는 복잡하지만 현실 세계에서 '중요하지 않은 부분'을 쳐내고 나면 보다 단순한 현상으로 환원되고, 환원된 단순한 현상은 우리가 충분히 이해할 수 있으며, 단순화된 현실을 다루는 것으로 얻은 지식을 현실 세계로 다시 외삽하면 현실 세계를 이해할 수 있다는 것이 과학의 근간이었으니까요. 20세기부터 이어진 근대과학의 눈부신 성장을 보면 이런 접근법이 매우 성공적이었다고 평할 수 있겠죠.


입자물리, 혹은 고에너지물리는 이런 환원주의의 끝에 놓인 학문 중 하나입니다. 예로부터 사람들은 자신을 둘러싼 세계를 이해하고자 노력했습니다. 각종 신화 및 설화를 살펴보면 '왜 번개가 치는가?' 혹은 '왜 무지개가 생기는가?'와 같은 질문에 대한 답을 어렵지 않게 찾을 수 있다는 것이 그 방증이지요. 그리고 (어떤 의미에서는 지나치게) 성공적이었던 환원주의를 이 런 문제들에 적용해보는 사람들이 나타나는 것은 필연이라 할 수 있겠지요. 환원주의에 따르면 우리는 우리를 둘러싼 세계를 보다 작은 부분으로 나누어 그 작은 부분을 이해하는 것으로 원래 이해하고자 했던 세계를 이해할 수 있습니다. 이렇게 계속 세계를 작은 부분으로 나누어 나가다 보면 물질의 구성 요소라 여겨지는 소립자들을 이해하는 문제와 마주하게 됩니다. 소립자물리, 혹은 입자물리를 환원주의의 끝에 놓인 학문이라 부르는 것은 이러한 맥락에서입니다. 입자물리학의 성배를 최종이론(final theory), 혹은 모든 것의 이론(TOE; Theory Of Everything)이라 부르는 것 또한 이 연장선상에 있습니다.




입자물리는 고에너지물리라고도 부릅니다. 물리학자들이 작은 물체들의 행동을 가장 정확하게 묘사한다고 믿는 양자역학에 따르면 보다 작은 것을 보기 위해서는 보다 높은 에너지를 필요로 하므로, 가장 작은 것을 보고자 한다면 가장 높은 에너지를 이용해야만 하기 때문입니다. 그리고 실제로는 입자가 아닌 것들 또한 다룬다는 점에서 고에너지물리라는 명칭이 보다 정확하다고도 할 수 있지만, 용어의 혼동을 방지하고자 이 글에서는 입자물리라는 이름을 계속 사용하도록 하겠습니다.


입자물리는 그 이름이 시사하듯이 입자들의 행동을 다룹니다. 그렇다면 먼저 입자가 무엇인지 정의하는 것이 필요하겠지요. 양자역학이 등장하기 이전까지 물리학자들이 세계를 바라보는 관점에 커다란 영향을 미쳤던 뉴턴의 입장을 따른다면 입자는 하나의 점이고, 따라서 점입자(point particle)이란 용어를 쓰기도 합니다. 기하학에서 다루곤 하는 '크기와 부피를 갖지 않는 추상적인 점'이 바로 입자라는 것이지요. 물론 이 정의는 '얼마나 공간을 차지하는가'의 관점에서 주어지는 것으로, 점입자는 다른 물리적인 성질 즉 질량이나 전하와 같은 성질은 얼마든지 가질 수 있습니다. 또한 우리가 책을 한 권, 두 권 세는 것처럼 입자도 한 개, 두 개 셀 수 있지요. 이런 입자의 정의는 직관적으로는 잘 와닿기는 하지만 실제 연구를 하는 사람들에게 있어서는 충분히 세밀하지 못하다는 단점이 있습니다.


보다 현대적인 입자의 정의는 헝가리 출신 미국 물리학자 유진 위그너(Eugene Wigner)에 의해 정립되었습니다. 위그너 분류법(Wigner classification)은 다음과 같은 아이디어를 따릅니다.


1. 이론상 어떤 물체의 에너지와 운동량은 정확하게 측정할 수 있다. 그러므로 물체의 에너지와 운동량을 기본적인 변수로 잡자.

1'. (특수)상대론에 따라 에너지와 운동량을 조합하여 질량을 정의한다.

2. 어떤 물체든 그 물체를 회전시키면 그 회전에 반응한다[각주:1]. 물체의 운동량을 변화시키지 않고 물체를 회전시켰을 때 물체가 반응하는 방식을 따라 같은 운동량을 갖는 물체를 분류하자.

2'. 회전에 반응하는 방식을 스핀으로 정의한다.


운동량이라는 개념이 생소할 분들을 위해 운동량을 약간 설명해보자면, 운동량이란 말 그대로 '물체가 얼마나 많은 양의 운동을 갖고 있는가?'를 계량화한 것입니다. 같은 속도로 달리는 소형차와 거대한 트럭을 비교하면 거대한 트럭 쪽(무거운, 혹은 질량이 큰 쪽)이 보다 많은 운동을 갖고 있다고 할 수 있습니다. 또한 같은 소형차라고 해도 보다 빠르게 달리는 소형차가 보다 많은 운동을 갖고 있다고 할 수 있지요. 뉴턴의 입장에서는 이 두 관찰 결과를 반영하여 운동량을 질량과 속도의 곱으로 정의합니다. 운동량의 현대적인 정의는 이와는 조금 차이가 있지만 필요 이상으로 길어지게 되므로 이 정도에서 설명을 마치겠습니다.


정리하자면 현대적인 입자의 정의에서는 입자를 다음과 같은 것들에 의해 무엇인지 식별할 수 있는 대상으로 봅니다; 운동량 및 에너지가 몇인가(질량이 몇인가), 그리고 스핀은 몇인가. 이 과정을 통해 분류한 입자 한 개 한 개를 모아 입자 여러개를 묘사하는 것 또한 가능하다고 여깁니다. 물론 이 관점에서는 뉴턴의 입장에서와 마찬가지로 '전하가 몇인가'란 질문을 통해 서로 다른 입자를 식별할 수 있는 여지는 남아 있습니다. 하지만 이 정의에 '입자의 크기는 얼마이고 위치는 어디인가?'란 질문이 비집고 들어올 틈은 보이지 않죠. 그렇다고 입자의 크기나 위치를 묻는 질문이 의미가 없다고는 할 수 없습니다. 분명히 모든 존재하는 것은 어딘가 공간을 조금이라도 차지하고 있으니까요.




'입자의 크기가 무엇인가?'란 질문에 답하려면 '입자의 크기는 어떻게 측정하는가?'를 묻는 것이 더 나을 수도 있습니다. 이렇게 어떤 개념을 그 개념을 얻어내는 과정을 이용하여 정의하는 것을 조작적 정의(operational definition)라 부릅니다[각주:2]. 입자의 크기는 어떻게 측정할 수 있을까요?


우리는 손에 닿지 않는 물건의 크기를 가늠하는데 눈을 사용하곤 합니다. 눈이 하는 역할은 그 물건의 표면에서 반사된 빛을 잡아채는 것이지요. 그리고 이 과정을 다르게 표현하면 빛과 물건이 충돌을 일으킨 뒤 튕겨져 나온 빛을 관찰하는 것이라고 할 수 있습니다. 비슷한 방법을 입자의 크기를 측정하는 데 써볼 수 있습니다. 각기 다른 입자끼리 충돌시켜 보는 것이죠. 이처럼 입자와 입자를 충돌시키는 실험을 산란실험이라고 부릅니다. 가장 기본적이고 가장 투박하면서도 그에 걸맞지 않을만큼 강력한 실험이지요. 최근 힉스 입자의 발견으로 (약간의 희망을 담아 멋대로 수식어를 붙여본다면) 대중에게 널리 알려진 LHC에서 하는 실험도 이런 종류의 실험입니다. 그 이름(Large Hadron Collider; 큰 강입자 충돌기)이 암시하듯 LHC에서는 물리학자들이 강입자라고 분류하는 입자들을 매우 빠르게 가속시켜 서로 충돌시키는 실험을 하고 있습니다. 강입자는 나중에 이야기의 주연으로 등장하게 되지만 강입자에 대해서는 그 때 설명하기로 하죠.


산란실험은 반복수행을 염두에 두고 설계된 실험입니다. 작고도 작아 정확한 제어가 힘든 소립자들을 이용해야 하는 실험이라는 점이 반영된 셈이죠. 이렇게 반복수행을 염두에 두고 설계된 실험에서는 총 반복한 실험 횟수에 대하여 어떤 결과가 몇 번 얻어졌는지 그 비율을 관측하는 것이 실험의 목적이 됩니다. 그리고 이 비율은 입자의 '크기'를[각주:3] 정의하는 기준이 됩니다. '큰 물체일수록 더 많은 빛을 반사한다'란 일상생활에서의 관찰 결과를 소립자의 세계까지 확장한 것이지요. 재미있게도 산란실험은 '입자가 어디에 위치하고 있는가'에 대한 부분적인 답 또한 줍니다. 한 입자가 다른 입자와 충돌을 일으켰다면, 두 입자는 서로 같은 위치를 지나친 것이니까요. 어떻게 보면 당연해 보이는 '같은 위치를 지나쳐야만 충돌을 일으킨다'는 성질은 사실 상당히 강력한 제약이 됩니다. 이에 대해서는 다음 글에서 이야기하도록 하겠습니다.


물리학자들은 산란실험으로 결정되는 '크기'를 산란단면적(scattering cross-section)이라 부릅니다. 현대 입자물리학 역사의 큰 줄기는 산란실험으로 얻은 산란단면적의 정보로부터 이 산란단면적과 일치하는 예측치를 주는 이론을 역추적하는 일과 주어진 이론으로부터 원하는 산란과정에 해당하는 산란단면적을 계산해내는 일로 요약할 수 있을 정도로 산란단면적은 입자물리학에서 거대한 주축을 담당하고 있습니다. 끈이론은 이 거대한 주축으로부터 탄생했습니다.


연관글:


비전공자를 위한 끈이론 개론(2) - 산란행렬의 계산 (작성중)

비전공자를 위한 끈이론 개론(3) - TBA (작성 예정?)


  1. 여기서 반응이라는 것은 '책상 위의 책을 뒤집으면 더 이상 앞면이 보이지 않고 보이지 않던 뒷면이 보이는 것'처럼 그 물체를 기술하는 방법이 바뀐다는 것을 의미합니다. [본문으로]
  2. 보다 물리학, 특히 고전역학에 익숙한 독자들을 위해 약간의 설명을 덧붙이자면, '힘을 받지 않는 물체가 등속운동하는 기준계'가 관성기준계에 대한 일반적인 정의라면 '힘을 받지 않는 물체들을 각기 다른 방향으로 던져 그 물체들이 등속운동을 하는 것으로 보이도록 잡은 좌표계'가 관성기준계의 조작적 정의에 해당합니다. [본문으로]
  3. '크기'에 따옴표를 친 이유는 크기를 (조작적으로) 정의하는 다양한 방법이 있을 수 있기 때문입니다. 대부분의 경우 크기에 대한 각기 다른 정의는 물체의 크기에 대해 다른 답을 줍니다. 다양한 크기의 정의법을 보고 싶으신 분은 이 글을 참고하시면 좋겠습니다(링크된 글에서 전자의 크기를 정의하기 위해 사용하는 조작적 정의들은 이 글에서 사용한 정의와는 차이가 있습니다). [본문으로]

댓글을 달아 주세요

전하와 자하를 동시에 두면 이로부터 만들어지는 전자기장이 각운동량을 갖는다는 사실은 잘 알려져 있다. 처음으로 이 계산을 한 것이 톰슨이었다던가. 이 계산은 각운동량의 양자화로부터 전하와 자하의 양자화를 유도해내는 과정인 Dirac quantisation 혹은 Dirac-Schwinger-Zwanziger quantisation을 정당화하는데 이용되기도 한다.


여튼, 정석적인 계산방법은 전하를 원점에, 자하를 적당한 z축상의 한 점에 둔 뒤 원통좌표계를 써서 각운동량을 계산하는 것인데 이 방법 말고 벡터미적분학을 적절히 이용해서 쉽게(?) 계산하는 방법이 있다. 이 방법이 있다는 것은 알고 있었는데 정확한 과정을 떠올리는데 만 하루가 걸리고 나니 조금 슬프지만.


먼저 전하를 원점에, 자하를 $\vec{r'}$에 두자. 그리고 다음과 같이 벡터 $\vec{\rho} := \vec{r} - \vec{r'}$를 정의한다. 전하와 자하가 만들어내는 전자기장은 다음과 같이 계산할 수 있다.

\[ \vec{J} = \int \vec{r} \times \vec{P} = \int \vec{r} \times \left( \vec{E} \times \vec{B} \right)  \]


전기장과 자기장을 쓰기 위한 단위계는 cgs를 택하기로 한다.

\[ \vec{E} = \frac{e \vec{r}}{r^3} \] \[ \vec{B} = \frac{g \vec{\rho}}{\rho^3} \]


실제 계산에 문제가 되는 항은 다음 항이다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} \]


벡터 삼중곱을 쓰면 이 항은 다음과 같이 쉽게 정리할 수 있다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = \vec{r} \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} - \frac{\vec{\rho}}{r \rho^3} \]


이제부터 벡터미적분학의 묘미가 시작된다. 다음 등식은 어렵지 않게 증명 가능하다.

\[ (\nabla \phi) \cdot (\nabla \varphi) = \nabla \cdot (\phi \nabla \varphi) - \phi \nabla^2 \varphi \]


이 식을 $\vec{a}/a^3$꼴의 식에 적용한다.

\[ \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} = \nabla \frac{1}{r} \cdot \nabla \frac{1}{\rho} = \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) - \frac{1}{r} \nabla^2 \frac{1}{\rho} \]


다음 항등식은 전자기학을 공부했으면 심심찮게 만날 수 있다.

\[ \nabla^2 \frac{1}{r} = - 4 \pi \delta^3 (\vec{r}) \]


정리하면

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \vec{r} \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) + \frac{1}{r} \nabla \frac{1}{\rho} \]


또는, Einstein summation convention을 도입할 경우,

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) \]


가 되어 total divergence만 남는 것을 확인할 수 있다. 따라서,

\[ \vec{J} = e g \int 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) = 4 \pi e g \hat{r'} + \oint \text{boundary terms} \]


으로 정리할 수 있으며, 약간의 order of magnitude analysis를 통해 boundary term은 0이 된다는 것을 증명하면 정리는 끝난다. 해당 증명은 어렵지 않으니 생략.

\[ \therefore \vec{J} = 4 \pi e g \hat{r'} \]


단위계가 엉망인데 계산과정이 중요한 것일 뿐이니 적당히 알아서 집어넣으시길...

댓글을 달아 주세요

아마 살면서 경험할 추석 연휴 중 가장 긴 추석 연휴가 될 것으로 보이는 이번 연휴. 적당히 쉬었으니 슬슬 느껴서는 안되는 감정인 무료함을 달래기 위해 이런저런 소설을 읽었습니다. 흔히(?) 말하듯 노는 것이 재미있는 것이 아니라 할 일이 있음에도 노는 것이 재미있는 것인 법이니까요(...) 점차 준비해둔 소설의 리스트가 다해가던 때, 다양한 사람들의 추천을 보고는 언젠가는 읽어야겠다고 생각해놓고는 서장만 읽고 한동안 잊고 있었던 소설이 생각나 다시 펼치게 되었습니다. 아니, 다시 열었다는 표현이 더 적확하려나요. <피어클리벤의 금화>입니다. 모처럼 비평을 작성해야겠다는 의무감이 든 글도 오랜만이군요.


https://britg.kr/novel-group/novel-posts/?novel_post_id=11110


판타지라는 장르에서 사람들이 연상하는 것은 대체로 정해져 있습니다. 그 공통점을 하나로 묶어낸다면 마법, 이종족, 종교, 그리고 중세 정도일까요? 물론 작품에 따라서는 근세나 미래의 기계문명을 엮어내는 경우도 있으니 마법과 이종족 정도를 판타지 장르의 가장 큰 특색이라 부를 수 있겠지요. 그렇다면 문제가 하나 남습니다. '왜?'


왜 사람들은 굳이 마법과 이종족이라는 자신도 만나본 적이 없으니 잘 모를 수 밖에 없는 존재들에 대해 소설을 읽고 쓰는 것일까요? 그냥 재미있어 보이니까? 물론 그럴 수도 있습니다. 촘촘한 인과의 거미줄을 요구하는 허구와는 달리 주사위 놀음의 변덕에 시달린다는 것이 현실의 고약한 점이니까요. 하지만 그 변덕에 의해 망가진 거미줄을 수복하는 거짓만큼 사람의 인상에 깊게 남는 것은 없다고 했죠.[각주:1] 그렇다면 (아마도 존재하지 않을) 거미줄 가닥을 찾아 사유의 손끝을 더듬어 보는 것도 재미있는 작업이 될 것입니다.


우선 마법의 레종 데트르는 그리 어렵지 않게 유추해볼 수 있습니다. 중세란 배경은 (우리가 아는 한) 기술문명의 최전방에 선 현대의 독자들에게 너무 느린 시대입니다. 나이와 관록이 동의어로서 사용될 수 있던 시대와 그 둘은 독립적인 개념임을 실증하는 현대의 멀미나는 기술발전속도만을 이야기하는 것은 아닙니다. 사회의 모든 활동에 전반적으로 속도가 붙었지요. 가령 통화기능이 달린 회중시계는 실시간으로[각주:2] 정보를 교환하는 것을 가능하게 하며, 발달된 의료기술은 질병의 (제한된) 정복뿐만 아니라 예전에는 상상도 못했던 속도로 질환으로부터 회복이 가능하도록 만들어주었죠. 조금 다르게 말하자면 이런 것입니다. 판타지란 장르에서 마법의 의의는 화려한 화염구를 적들에게 날리는 극적인 긴장감에 있지 않고 회복마법으로 동료를 치료하거나 원거리의 동료와 심상으로 소통하는, 이른바 현대 기술문명의 속도에 익숙한 독자들을 위한 현대기술의 대체품이라는 것이죠. 그런 의미에서 발달된 기계문명과 마법을 함께 다루는 것은, 마법으로 작동하는 기계들이 아닌 이상, 어떤 의미에서 자기모순이라 할 수 있습니다. 기계문명을 바탕으로 세워진 사회와 마법의 반석에 기초한 사회 사이의 골이 깊은 단절된 세계를 이야기하는 것이 아니라면 말이죠.[각주:3]


이종족의 존재는 아무래도 마법보다는 다소 까다롭습니다. 왜 판타지 장르에서는 귀가 조금 더 길고 수명도 조금 더 긴 사람이나 머리 한둘 정도 작고 빠르게 늘어나며 피부가 녹색인 사람(?) 등을 도입하는 것일까요? 그저 색다른 외모를 가진 자들을 추가하여 다른 세계의 이야기임을 드러내고자 한다면 우화의 형식을 빌어 인격을 부여받은 동물들을 끌어들이는 방법도 있을텐데 말이죠.


여기서 잠시 판타지 장르에서 이종족이 다뤄지는 방식을 떠올려봅시다. 이종족은 외양이나 수명뿐만 아니라 생활 양식 또한 상당히 다른 것으로 묘사되는 것이 일반적입니다. 예컨대 귀가 조금 더 길고 수명도 마찬가지로 긴 것으로 묘사되는 종족은 숲을 생활 근거지로 두고 주된 경제활동이 수렵/채집이며 마법에 대한 숙련도가 높은 것으로 묘사되기 마련이며, 머리 한둘 정도 작고 피부가 녹색인 것으로 묘사되는 종족은 마찬가지로 수렵/채집을 하지만 약탈 또한 서슴지 않으며 땅굴을 주된 생활 근거지로 갖는 것으로 묘사되곤 합니다. 현실 세계에서 이들과 대응시킬만한 존재를 찾는다면 이방인, 혹은 다른 문화권의 사람들이 있겠지요. 약간의 과장을 보탠다면, 이종족들은 타국 혹은 타 문화권의 외삽이라고 불러도 좋을 것입니다.


사람 사는 곳은 어디나 비슷하다고 합니다만, 꼭 그렇지만도 않다는 것을 우리는 잘 알고 있습니다. 대중매체나 인터넷 동영상 채널을 살펴보면 서로 다른 문화권에서 온 사람들이 서로 얼마나 다른 방식으로 세계를 바라보는지를 다루는 내용을 심심찮게 찾을 수 있습니다. 문화권 간의 차이가 더 벌어진다면 시각의 차이도 한껏 벌어지겠지요. 애석하게도 이 거리감을 살려낸 작품들은 많지 않습니다. <피어클리벤의 금화>를 다루는 리뷰에서 이영도의 <드래곤 라자>가 끝없이 호출되는 것은 그러한 이유일 것입니다. <드래곤 라자>에서 묘사된 엘프 이루릴은 분명히 대화를 나누고 그 대화의 내용도 이해할 수 있는 지성을 가진, 혹은 일반인보다는 머리가 좀 더 좋은, 존재로 묘사되지만 맥락이 상당 부분을 차지하는 대화에서는 영 겉돌기 일쑤입니다. 머리를 주전자에 빗대는 농을 건네는 장면에서 영 그 농담을 이해하지 못하는 것이 한 사례라고 할 수 있겠지요.


<피어클리벤의 금화>는 용, 혹은 린트부름의 올바른 적생자, 빌리더자드가 인간 처녀를 납치하는 것에서 시작합니다. 용은 절대적인 힘 혹은 신격의 현신처럼 묘사되며, 그에 걸맞는 앎을 갖추며 약속에 구속됩니다. 고블린 혹은 흐로킨의 검은 혈맹은 판타지 장르에서 널리 퍼진 이미지와 크게 다르지 않게 묘사됩니다. 피부색은 묘사된 적이 없으나 검은 혈맹이라 했으니 아무래도 어두운 색일 가능성이 높겠지요. 이들의 사회와 가장 유사한 이미지를 갖는 문화권(?)을 찾는다면 아무래도 바이킹을 들어야 할 듯 싶군요. 서리심의 무녀는 겨울 혹은 자연의 인격화처럼 묘사됩니다. 인격을 얻은 자연은 수목 보호 외 일절에 관심을 갖지 않습니다. 엄밀히 말하자면 전 문장은 틀렸지만 스포일러가 될 수 있으니 넘기기로 하죠. 류그라, 혹은 쓰러진 신목의 유배자들은 판타지 장르에서 널리 퍼진 엘프의 이미지를 차용한 것으로 보입니다. 이들은 원 본거지를 잃고 떠돌아다니는 유랑민족으로서 그려지며, 아무래도 떠돌이라는 이미지 때문인지 집시가 생각나는 것은 어쩔 수 없군요. 이들과의 대화는 실로 타문화간의 대화라 부를 수 있을 만큼 상이한 가치관 사이의 대화로 그려집니다. 그것이 이 작품을 돋보이게 하는 가장 큰 특징이 아닐까 싶습니다.


또 다른 특기할만한 점은 이야기의 흐름에 영향을 미치는 인물들의 성비입니다. 막연한 인상비평에 불과합니다만, 이렇게 다양한 인물이 등장하는 군상극에서 이야기가 나아갈 방향을 결정하는 조타석에 올라타도록 허락받은 인물의 7할 정도가 여성이라는 것은 판타지란 장르에서 상대적으로 드문 일이니까요. <드래곤 라자>와의 또 다른 유사성인 이야기의 배경, 즉 국가의 체계가 뒤틀리기 시작하는 격동의 시기와 관련이 있는 설정일지도 모르겠지만, 스포일러가 될 수 있는 이야기는 되도록이면 자제하는 편이 좋겠습니다.


물론 아쉬운 점이 아주 없다고는 할 수 없습니다. 쓰러진 신목의 유배자들은 귀가 길며 유랑민족으로서 박해받았고 그들만의 마법체계를 갖고 있다는 것 외에는 이렇다할 두드러짐을 내보이지 못했습니다. 보다 정확히 말한다면 그들의 발자취로 인해 다듬어진 세계관이 어떻게 타 종족과 다른지 제대로 묘사된 적이 없다고 해야겠지요. 이는 작가의 생각이 아직 거기에 다다르지 못했다기보다는 아직까지는 이야기의 전면에 내세워질 기회가 없었던 유랑민족의 비애일지도 모르겠지만요. 공교롭게도 이 비평을 적는 시점에서 소설은 118화까지 진행되었고, 이야기의 전면에 나설 기회가 없었던 류그라들이 이야기의 흐름에 영향을 끼칠 기회가 주어질 것으로 보입니다. 아직 완결이 나지 않은 작품인만큼, 조금은 더 기대를 걸어보아도 좋겠지요.


이 즈음 해서 없는 거미줄 가닥을 더듬는 사고실험의 끝을 마무리하고자 합니다. 이 글의 모든 것은 밤하늘의 별들 사이를 잇는 가상의 선만큼이나 허구일 가능성이 높겠지만, 별자리와 그에 얽힌 신화가 아직까지 전해지는 것을 보면 아주 의미 없는 글은 아닐 것이라 약간은 자위해도 상관없으리라 자기최면을 걸어봅니다.


  1. 제 세계관에 상당한 영향을 끼친 저술 중 하나인 <블랙 스완>의 저자 NNT의 견해로 기억하고 있습니다. [본문으로]
  2. 아인슈타인이 이 문제에 골몰한 덕분에 현대물리학에서는 이 개념을 정의하는 것에 애를 먹는다는 사실은 잠시 잊도록 하겠습니다. [본문으로]
  3. 하지만 인정해야 할 것은 인정해야겠지요. 가솔린 오토바이를 타고 윈체스터를 쏴제끼는 마법사가 파이어볼을 쏴제끼는 모습에 매력을 못 느끼겠냐고 묻는다면, 그만큼 취향을 관통하는 일도 별로 없겠다고 답해야 하지 않겠습니까? [본문으로]

댓글을 달아 주세요

  1. 2540  댓글주소  수정/삭제  댓글쓰기

    안녕하세요.
    티스토리를 시작하고 싶어서 이렇게 글을 남깁니다 .
    초대장을 저에게도 전달해 주시면 감사하겠습니다.
    제 메일은 2540mj@gmail.com 입니다.

    2018.01.11 00:25

'원 위의 임의의 두 점을 골랐을때의 거리의 기하평균'을 구할 일이 있어서 다음과 같은 적분을 할 일이 생겼다.


\[ \int_0^1 \log ( \sin \pi x ) dx \]


매스매티카에 돌려보면 이 적분의 값은 $ - \log 2 $라고 한다. 어째서인지 직접 계산해서 보일 수 있을 것만 같은 값이라서 적분을 이리 고치고 저리 고치는 삽질을 좀 하다가 직접 증명이 가능하다는 것을 확인하는데 성공했다. 생각보다는 간단한 트릭이었음.


우선 적분을 다음과 같은 꼴로 바꾼다.


\[ \int_0^1 \log ( \sin \pi x ) dx = 2 \int_0^{1/2} \log ( \sin \pi x ) dx = \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


이 적분은 이런 꼴로도 변환할 수 있다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \int_0^1 \log ( 2 \sin \frac{\pi x}{2} \cos \frac{\pi x}{2} ) dx \]


로그를 분해한 후 코사인에 대한 적분에서 변수변환 $x \to 1-x$을 적용하면 다음과 같이 정리된다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \log 2 + 2 \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


두 표현을 잘 정리하면 원하는 답을 얻는다.


\[ \therefore \int_0^1 \log ( \sin \pi x ) dx = - \log 2 \]

'Mathematics' 카테고리의 다른 글

행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01
이항전개와 수치근사  (1) 2015.05.01
TAG 적분

댓글을 달아 주세요

산란진폭의 재귀적 구성을 다룬 원고로, 그룹미팅 발표용으로 준비했던 자료를 TeX으로 문서화해봤습니다. 연구과목 보고서로 때우기 위해 작성한 불순한(?) 의도도 있긴 한데 뭐 상관없겠지요. 생각보다 길어져서 계산으로 실제 다뤄봤던 예시는 포함하지 않았습니다. 어차피 참고문헌에 다 들어있으니 알아서 찾아보시면 될 듯(무책임).


Amplitude recursion public.pdf



댓글을 달아 주세요

Strings 2017 후기

Daily lives 2017. 7. 6. 16:58

Strings 2017이 이스라엘 텔아비브에서 열렸습니다. 그래서 평생 중동에 갈 일은 없을 것이라고 생각했었는데 팔자에도 없던 이스라엘에 다녀오게 되었네요.


학회에서는 SYK model에 대한 간략한 개괄과 산란진폭에 대한 세션이 기억에 남습니다. 특히 Raju의 발표가 기억이 남는데, 논문에서 쓴 방법론을 쓰면 무언가 논문거리가 하나 나오지 않을까 생각하며 신나서 메일을 쓰고 문헌조사에 들어갔던 것이 기억에 남습니다. 그리고 20년도 더 전에 비슷한 것을 한 사람들이 결론을 내려놨다는 것을 알게 되었죠(씁...). 잘 머리를 굴려보면 해볼만한 프로젝트가 하나는 나올 것 같은데 아직도 잘 모르겠군요...


AdS/CFT 20주년 기념 세션도 있었는데 초창기에는 AdS/CFT가 잠시동안의 유행이 될 것이라고 본 사람들이 많았나 봅니다. 발표자 중 "얘가 그때 그런 (틀린) 소리를 했었지"라며 놀리는(?) 슬라이드를 끼워넣는 사람들이 많더군요. 내년 Strings는 끈이론 50주년 기념이 될 것이라는데 Veneziano amplitude를 기준으로 재는 모양입니다. 이번에는 끈 현상론에 대한 톡이 전혀 없었는데 내년에는 있을지 두고봐야겠군요.


포스터 발표를 하면서 질문을 받았는데, 질문에 답을 하면서 '무엇을 다르게 한 것이 원인이 되어 예전과는 다른 결과를 얻었는가?'란 질문은 다루지 않았다는 것을 깨달았습니다. 포스터에만 안 다뤘으면 괜찮은데 논문에서도 안 다루었던 것 같더군요 OTL. 이미 출판된 논문은 어쩔 수 없는 일이니 다음에 쓰는 논문에는 반영하도록 해야겠습니다.


다음은 학회 외적인 이스라엘에 대한 인상입니다.


1. 공항 및 입출국

기분탓일지도 모르겠지만 여태 봤던 공항들과는 달리 유리 외장재의 비율이 상당히 적다는 인상을 받았습니다. 긴장감이 높은 주변국들과의 관계로 인한 보안상의 이유로 택한 디자인인지 단순히 더운 지방이라 냉방효율을 끌어올리는 디자인을 택한 것인지는 판단이 서질 않는군요.


입국은 그다지 오래 걸리지는 않았습니다. 입국 수속에서 컨퍼런스 목적으로 왔다고 하니 무슨 컨퍼런스냐고 물어서 끈이론이라고 대답했더니 못 알아들어서 물리학이라고 정정하는 시트콤에 어울릴 법한 작은 에피소드를 겪었습니다.


출국시에는 우선 짐칸에 실어 보낼 가방에 대해 간단한 보안검정(?)을 받은 후 출국장으로 들어갈 때 보다 빡센 검사를 받습니다. X-레이 검사 및 금속류 검사는 다른 곳에서도 모두 하는 일이지만 이스라엘에서는 폭발물로 의심되는 물질이 없는지 냄새 분자를 모아서 검사하는 시스템(으로 추정)도 갖추었더군요. 운 나쁘면 보안검사에서 몇시간씩 잡혀있는다는 말을 듣고 일찍 공항에 들어간 편이었는데, 약간은 부풀리기가 들어간 호들갑이란 인상이었습니다. 보안검색이 더 까다로운 편이기는 하지만 걱정하던 것만큼 심한 수준은 아니었으니까요.


2. 날씨

여름이라서 그럴지도 모르겠지만 찝니다. 폭염주의보의 후폭풍이 아직도 남아 대기중에 열기가 남아있는 서울 밤의 대기를 7월이 되기도 전에 느꼈네요. 그래도 습함은 좀 덜해서 견디기 좋았습니다. 다만 햇살은 비교가 안 될 정도로 강하더군요. 자외선차단제는 필수입니다.


3. 텔아비브

Asian Winter School에서 돌아오면서 잠시 관광했던 홍콩에서 건물의 덩치를 줄이면 비슷한 느낌이 나겠다는 생각을 했습니다. 외장재에 그다지 돈을 많이 들이지 않아 은근히 낡은 듯한 인상을 받는 날것의 느낌을 가진 건물들이나 뜬금없이 보이는 네온사인으로 번쩍이는 간판들이 홍콩을 떠올리게 했다고 해야할까요? 물론 홍콩만큼 건물들의 덩치가 크지 않고 길거리 사이사이가 좁지 않아 완전히 같은 느낌을 주지는 않았지만요.


학회 기간 중 백야(White Night)라고 밤새 파티가 이어지는 날이 있었습니다. 찾아보니 매년 6월 마지막 주 목요일 밤이 이 백야에 해당하는 모양이더군요(이스라엘은 유대교의 영향으로 금요일 해질녘부터 토요일 해질녘이 안식일-샤바트-입니다. 목요일 밤이 한국의 불타는 금요일에 해당하는 셈). 구 자파(Jaffa) 도심의 곳곳에서 버스킹이 이어졌는데, 새벽 1시가 조금 넘어가자 버스킹하던 모든 사람들이 장비를 집어넣는 것을 보고 '어디가 백야라는거지'란 생각을 잠깐 했습니다. 인상적인 부분이라면 곳곳에 무장한 경찰이 치안을 담당하고 있었다는 것이로군요.


4. 사해

학회 전에 선택할 수 있는 관광코스 선택에서 마사다와 사해를 선택해 사해에 다녀왔습니다. 지표면에서 가장 낮은(대기압이 가장 높은으로 해석해도 되려나요?) 지대이자 사해문서의 발견지인 사해는 기대보다는 웅장함(?)이 덜하더군요. 사실 무엇을 기대하고 있었는지도 잘 모르겠지만, 기대만큼은 아니었습니다. 아무래도 다들 한번 정도는 해보고 싶어하는 사해 입수를 안해서 그럴지도 모르겠습니다. 사해의 날씨는(6월 말) 한낮에 거의 40도에 육박했는데 약간 '고등교육을 잘 버무린 사람을 준비해 사해에서 40도로 90분간 조리합니다'란 요리책 느낌의 기온이었습니다. 사해에 입수했던 친구의 말로는 구멍에 물이 들어가지만 않으면 들어갔던 피부가 매끈해지면서 좋다고 하더군요.


사실 사해 기념품으로 암염 조각같은 것을 기대했었지만 그런 기념품은 없었고 그나마 비슷한 것이 사해에서 얻은 소금으로 만든 조리용 굵은 소금이었습니다. 일단 저는 요리를 할 일이 없으니 부모님께 드려야겠군요.


5. 마사다

헤롯왕의 요새 마사다는 사해를 내려다보는 위치에 있었는데, 2000년 전의 건축물이 아직까지도 세월에 완전히 굴복하지 않고 집요하게 존재를 드러내는 모습이 인상적이었습니다. 벽에 그어진 검은 선 아래 부분은 복원 당시 원래 존재하던 부분이라고 하더군요. 가장 인상적이었던 것은 로마식으로 지어진 목욕탕이었는데, 열기가 빠져나가는 것을 적정 수준으로 조절하기 위해 문의 크기를 조정한다거나 증기탕을 만들기 위해 속이 빈 바닥과 내벽을 만들어놓은 흔적을 보면서 '건물의 설계능력이 그렇게 크게 차이나지는 않는구나'란 생각을 했습니다. 문명의 한계는 기술을 떠올리는 능력이 아니라 그 기술을 현실화할 수 있는 재료의 가공능력이 결정한다는 느낌이랄까요.


그와는 별개로 가이드가 설명하는 마사다 항전의 이야기를 들으며 국가 차원에서 이 이야기의 소비를 장려한다는 인상을 받았습니다. '영웅적 전설'이란 느낌으로 설명을 이어가는 것을 보면 '이스라엘인은 누구인가?'에 대한 답을 교육시키는데 이용하기 좋은 방식으로 이야기에 접근하는 틀을 맞춰놓았다는 느낌이랄까요. 성격이 상당히 다른 이야기지만 하지만 '한국에서 단군 신화를 대하는 자세를 외부인이 본다면 이런 느낌일까'란 생각이 들기도 하는군요.


6. 방벽

텔아비브에서 사해를 왕복하는 버스 안에서 이스라엘-팔레스타인 분쟁을 다루는 뉴스에서 항상 자료화면으로 등장하는 분리장벽을 나안으로 목격할 기회가 있었습니다. 중간의 초소와 같은 곳에서는 무장한 군인이 대기하고 있고, 처음 방벽을 통과해 사해로 나가는 길에서는 군인이 버스에 탑승하여 검문하기도 했습니다. 이 방벽이 생긴 뒤로 테러가 줄어들었다는 가이드의 설명을 들으며 복잡한 기분이 들었습니다.


7. 예루살렘

금요일 학회가 끝난 이후 예루살렘 투어를 신청해 누구나 이름정도는 들어보는 기독교의 성지 예루살렘에 다녀왔습니다. 십자가가 세워졌던 골고다 언덕을 덮는 교회를 만들어 그 언덕의 꼭대기를 작은 기도대로 만들어놓은 것을 보고는 '와 덕질은 이렇게 하는 거구나'란 생각이 살짝 들더군요(...). 기독교와 예수의 고행에 대한 지식이 어느 정도 있다면 그래도 재미있게 볼 수 있는 투어가 되겠다 싶었습니다.


8. 기술

생각외로 수목이 많아서 놀랐습니다. 지방이 지방이다 보니 북미 유타주와 같이 황무지가 길게 이어지는 계곡을 예상했는데 오히려 전에 다녀온 이태리 트리에스테 수준으로 수목을 자주 볼 수 있었습니다. 물론 사해로 가기 위해 방벽을 지나니 예상했던 그 황무지가 그대로 이어졌지만요. 새삼 이 나라가 기술력 하나는 대단하구나 느꼈습니다. 가끔 판타지물을 보면 역사가 짧은 신생국가가 주변의 보다 오래된 국가들에 비해 부족한 안정성을 우월한 기술력으로 보충해서 안정을 꾀하는 설정을 만나곤 하는데, 그런 설정의 모티프가 되는 현실국가를 찾으라면 이스라엘을 꼽아야겠다는 생각이 들었으니까요. 실제 중동 역사도 그런 느낌으로 진행되었고요.

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08

댓글을 달아 주세요

2017 Asian Winter School을 다녀왔습니다. 올해 Asian Winter School은 중국 광동 성 주하이 시의 중산대학 주하이 캠퍼스에서 열렸습니다. 다녀온 직후에 연이어 출장이라 후기가 좀 늦어졌네요.


Hartman(3d gravity-AdS3/CFT2), Myers(Entanglement entropy), He(Scattering amplitude-CHY) 세 사람의 강의를 재미있게 들었지만 그런 기술적인[각주:1] 이야기를 하려고 블로그를 하는 것은 아니므로 중국 생활이나 조금 적어보려고 합니다.


가장 먼저 기억에 남는 것은 대방화벽. 모든 메일이나 일정관리를 구글에 통합해놓은 터라 vpn 접속이 잘 안 되어서 죽는 줄 알았습니다. 심지어 arXiv조차 접속이 느리고 끊어지는 경우가 많더군요. '아 이래서 자유주의가 최고다'란 생각을 했습니다. 학교 일정 끝나고 홍콩에 왔을 때 자유롭게 접속되는 구글을 보며 '이것이 문화승리다!'를 외쳤던 기억이 나네요(...).


또 기억에 남는 것은 열악한(?) 시설. 지은지 얼마 안 된 캠퍼스라 그런지 학회장에서 인터넷 연결이 되질 않았습니다(...). 학회장에서는 아무것도 못 해서 호텔에서 인터넷 연결해서 arXiv 확인하고 메일 쓰고 논문 고치며 살았더니 학회장에 있을 때마다 '90년대에 연구를 한다는 것은 이런 느낌이었을까?'란 생각이 들었습니다. 그래도 호텔 시설은 마음에 들었지만요.


식사는 좀 힘들었습니다. 중국에서 향신료 향이 제일 약한 지방이라고 했는데도 입에 맞질 않아서 차고 다니던 벨트가 헐렁하게 느껴질 정도였으니까요. 그래도 학외로 나가 서울과 비슷한 물가에 먹었던(현지 물가를 생각하면 고급 음식에 해당했겠지요) 식사는 상당히 괜찮았습니다. 10여일간 쓸 일이 별로 없을거라 생각해 많이 환전해두지 않았는데 결과적으로는 거의 전부 쓰게 되었네요. 그리고 커피 대신 차를 많이 마셔서인지 커피머신은 네스카페 믹스종류가 대부분이었고 카페에서 파는 커피는 매우 썼습니다. 구색을 맞추기 위해 준비했다는 인상이랄까요. 괜찮아 보이는 카페를 발견해서 아포가토를 시켜봤는데 아이스크림만 먹을 당시에는 괜찮다고 생각했다가 에스프레소를 입에 대면서 '이건 아닌데...'란 생각을 했죠. 저는 커피는 보통 가리지 않고 먹는 막입인데도 말이죠.


조금 놀란 부분은 택시. 시내로 나가려는데 택시가 잡히질 않아 호텔 프런트에 문의했더니 호텔에서 비허가 택시를 연결해줄 것이라고는 상상도 못했습니다(...). 피곤해서 졸다가도 '여기서 잠들면 큰일난다'는 생각에 정신을 차렸던 기억이 나는군요. 결과적으로는 별 탈 없었지만요.


어쩌다 보니 중국 땅에서 일본어로 대화하는 사람들 사이에 껴서 서울에서도 먹어본 적이 없는 서래갈매기(...)를 저녁으로 먹게 되었는데, 진정 글로벌(?)한 경험이라고 할 수 있겠네요. TV에서 자막을 단 라디오스타가 방영되고 있는 것을 보고는 신선했던 기억이 납니다.


끝나고 돌아오면서 관광했던 홍콩에 대한 코멘트는 다음 기회에. 다음 Asian Winter School은 인도에서 열리는데 다녀온 경험자들의 고생담 때문에 아무래도 참가가 망설여지네요(...). 1년은 남았으니 조금 생각해보고 참가를 결정할까 합니다.

  1. technical이란 단어를 번역해서 써보니 뭔가 이상한 단어가 나오는군요(...) [본문으로]

'Daily lives' 카테고리의 다른 글

여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
이런저런 이야기  (0) 2015.09.08
파인만이 말하는 연습문제를 푸는 이유  (0) 2015.03.22

댓글을 달아 주세요

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




위상수학에 대해 가장 널리 알려진 예시라고 한다면 도넛과 머그잔이겠지요. 거기에 질세라 노벨위원회에서 올해 수상자를 발표할 때 위상수학을 설명하면서 베이글과 프레츨을 예시로 들었습니다. 이 물체들이 어떻게 위상수학적으로 같고 다른지는 찰흙을 가지고 장난을 치다가 부모님께 혼나본 경험이 있으시다면 이해할 수 있으시겠지요. 아쉽게도 위상론적 물질에서 필요한 위상수학적인 양은 천 숫자(Chern number)라는 값으로, 앞선 예시들과는 달리 쉽게 머리 속으로 그릴 수 있는 것들은 아닙니다.


위상수학에서는 우리가 머리 속으로 그릴 수 있는 평범한 도형들을 다양체(manifold)라는 개념을 이용해 정의합니다. 구체적인 정의는 논의를 괜히 쓸데없이 복잡하게 만들테니 필요없겠지요. 천 숫자는 접속(connection)이란 특별한 종류의 수학적인 물체를 다양체 위에 올려놓았을 때 그 접속에 대한 위상론적인 정보를 담고 있는 값입니다. 그러면 우선 접속이 무엇인지에 대해 알아야 위상수학이 어떤 역할을 하는지 알 수 있겠지요.


그다지 좋은 예는 아니지만[각주:1] 접속을 이해하는데 쓸 수 있는 장난감으로 굴렁쇠가 있습니다. 비록 저 자신은 굴렁쇠를 실제로 굴려본 적이 없고 교과서 사진으로나 봤을 뿐이지만 동전은 자주 굴려봤으니 자신감을 가져도 좋겠지요. 다시 굴렁쇠로 돌아와서, 어떤 위치에서 굴리기 시작한 굴렁쇠를 적당한 경로를 따라 원래 위치로 돌아오는 것을 생각해 봅시다. 만약 굴렁쇠의 각 점에 눈금이 매겨져 있었다면 굴리기 전의 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금과 굴리고 같은 위치로 돌아왔을 때 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금은 다르겠지요. 홀로노미(holonomy)나 모노드로미(monodromy)는 이 눈금이 얼마나 달라지는가를 잡아내기 위해 정의된 수학적인 물체입니다. 하지만 오늘 논의에서는 다루려던 내용이 아니므로 두 용어에 대해서는 이 정도에서 설명을 마치도록 하지요.


접속이란 개념을 이해하기 위해서는 굴렁쇠를 굴린 경로 위의 각 점에 굴러가고 있는 굴렁쇠를 관찰하는 관찰자를 올려놓는 것이 좋습니다. 각 점에 앉아있는 관찰자는 굴렁쇠의 눈금 중 어떤 눈금이 바닥과 닿아있는지를 기록할 수 있겠지요. 그리고 한 점에 앉아있는 관찰자가 관찰한 눈금은 바로 옆에 앉은 관찰자가 관찰한 눈금과 일정한 관계를 맺고 있습니다. 굴렁쇠는 미끄러지지 않고 굴렀을테니, 두 관찰자 사이의 거리만큼 굴렁쇠와 바닥이 닿은 눈금이 변했을테니까요. 이처럼 한 점에서 관찰한 무언가의 값을 바로 옆의 점으로 끌고가면 일반적으로는 그 값이 변합니다. 수학에서는 이런 정보를 담은 것을 접속이라고 부릅니다. 한 점에서의 정보를 바로 옆의 점으로 연결시켜 준다는 점에서 더없이 적절한 용어(접속은 영어로 connection이라 부릅니다)라고 할 수 있겠지요. 한 점에서 바로 옆의 다른 점으로 움직이는 방법은 움직일 수 있는 방향만큼이나 다양하기 때문에 접속은 '어떤 방향으로 움직이는가'에 대한 정보도 함께 담고 있어야 합니다. 방향에 대한 정보를 가지고 있다는 점에서 접속은 벡터장과 매우 비슷합니다.


약간은 의외의 사실일 수 있겠지만, 어떤 다양체에는 벡터장을 임의로 올려놓지 못한다는 것이 알려져 있습니다. 가장 간단하고 머리 속으로 그려볼 수 있는 예시로는 털난 공 정리(hairy ball theorem)이 있습니다. '털난 공을 빗을 수 없다'란 표현으로 유명한 이 정리는 공의 표면(2차원 곡면이므로 $S^2$라 부릅니다) 위에 올려놓은 벡터장은 항상 0이 되는 지점이 있어야 한다고 주장합니다. 크기가 0이 아닌 벡터장을 공에 납작하게 붙은 털에 빗댄 것이지요. 실제로 그런지 의심이 드는 분이라면 바람이 부는 지구 표면을 생각해 보시면 좋습니다. 과연 지구 표면의 모든 점에서 동시에 바람이 불 수 있을까요? 털난 공 정리에 따르면 지구의 적어도 한 점에서는 바람이 불고 있지 않아야 합니다.


위의 정리는 위상수학적인 결과입니다. 털난 공이라고는 했지만 그것이 꼭 공일 필요는 없는 것이지요. 공이 조금 찌그러져 있다거나 허리같은 길쭉한 부분이 있다거나 해서 벡터장이 0인 지점이 하나는 있어야 한다는 사실이 변하지는 않는다는 말입니다. 천 숫자는 털난 공 정리와 비슷하게 다양체 위에 올려놓은 접속이 임의로 주어질 수는 없다는 것을 말해줍니다. 천 숫자를 계산하면 정수를 얻지만 이 정수가 정확히 무엇을 세는가에 대해서는 저도 좋은 설명이 없다는 점이 아쉽군요. 다만 한 가지 확실하게 말할 수 있는 것은 두 접속에 대해 계산한 천 숫자가 서로 차이가 난다면 하나의 접속에 작은 변화를 누적시켜서 다른 접속으로 바꾸는 것이 불가능하다는 것이고, 이런 의미에서 천 숫자가 위상론적인 불변량이라는 것입니다.




천 숫자에 대해 이해하려면 우선 접속에 대해 더 자세히 알아야 합니다. 그러므로 접속에 대해 좀 더 이야기해보도록 하죠.


잘 만들어진 굴렁쇠라면 모든 점이 서로 엇비슷하게 생겼을 겁니다. 굴렁쇠에 눈금을 새겼더라도 어떤 눈금을 1로 두고 그 눈금부터 번호를 매길 것인가에 대한 자유가 남아있는 것이지요. 때문에 각 점에 앉아있는 관찰자가 각자 굴렁쇠를 하나씩 들고 '나는 이 눈금을 1로 세겠다'고 주장하는 것을 생각해 볼 수 있습니다. 이 눈금을 1로 세는 점을 기준점이라고 부르도록 하죠. 각 점에 앉아있는 관찰자가 임의로 기준점을 재조정하더라도 실제로 굴렁쇠가 굴러가는 것에는 영향을 미치지 않아야 합니다. 이렇게 기준점을 재조정하는 것을 게이지 변환(gauge transform)이라 부르고, 기준점 재조정에 영향을 받지 않는 것을 게이지 대칭(gauge symmetry)이라 부릅니다. 입자물리에 관심이 있으신 분들이라면 게이지 보존(gauge boson)이란 단어를 들어보셨을텐데, 그 단어에서 말하는 게이지와 지금 여기에서 말하는 게이지는 같은 수학적인 물체입니다. 단지 그 수학적인 물체를 무엇을 나타내기 위해 쓰고 있느냐의 차이 정도만 있을 뿐이지요.


접속은 언제까지나 '한 점에서 읽어낸 값을 바로 옆의 점으로 옮기는 방법'을 결정해주기 때문에 값을 읽어낸 점에서 관찰자가 선택한 기준점과 값이 옮겨질 점에서 관찰자가 선택한 기준점에 영향을 받습니다. 그래서인지 기준점을 재조정하는 과정인 게이지 변환을 할 경우 각 점이 얼마나 다르게 기준점을 재조정했는지의 정보까지 들어가야 해서 보다 복잡하게 변화하지요. 다르게 말하자면 '각 점에서의 기준점 선택'에 영향을 받는다는 의미에서 진짜 물리적인 의미를 갖는 대상이라고 보기는 힘들다고 할 수 있습니다. 게이지 변환에 영향을 받지 않는 것들, 즉 게이지 불변(gauge invariant)인 것만이 실제 물리적인 의미를 갖는 대상이라고 생각해야 한다는 것이지요. 그렇다면 접속으로부터 충분히 물리적인 의미를 갖는 대상을 얻어낼 수 있는지가 문제가 됩니다.


한가지 방법은 아주 작은 폐곡선을 생각하고 그 폐곡선을 따라 굴렁쇠를 원래 위치로 굴린 것과 굴리기 전의 굴렁쇠의 차이를 확인하는 것입니다. 같은 점에서 굴렁쇠를 비교하는 것이기 때문에 기준점을 옮긴다고 해도 눈금의 차이는 변하지 않지요. 마치 12와 16의 차이가 112와 116의 차이와 같은 것처럼 말입니다. 이를 곡률(curvature)이라고 부릅니다.[각주:2] 곡률은 작은 폐곡선의 경우 그 폐곡선을 경계면으로 갖는 곡면의 넓이에 비례해서 눈금의 차이가 커진다는 관찰에 기반을 두고 있습니다. 작은 곡면은 평행사변형으로 근사할 수 있고 평행사변형은 두 방향(마주한 변은 같은 방향이므로 두 방향만 갖습니다)을 갖기 때문에 곡률은 방향에 대한 정보를 둘 가지고 있어야 합니다. 또한 이 두 방향이 겹치게 되면 넓이를 갖는 평행사변형이 만들어지지 않기 때문에 주어진 두 방향에 대해 반대칭적(antisymmetric)이어야 하죠.


곡률은 물리적인 정보를 담습니다. 게이지 이론으로 이해할 수 있는 전자기학을 예로 들자면, 전자기장에 해당하는 접속의 곡률은 우리가 실제로 측정할 수 있는 전기장과 자기장으로 인식됩니다. 또한 실제 천 숫자를 계산할 때는 접속을 이용하는 것이 아니라 접속의 곡률을 이용합니다. 이것을 이용해 여러가지 위상론적인 물체들을 만들 수 있습니다. 예를 들어 3차원 공간의 한 점을 감싸는 구의 표면 위에서 전자기장의 천 숫자를 계산하면 그 표면을 통과하는 총 자기장의 양을 얻는데, 천 숫자는 정수로 주어지므로 그 구 안에 들어있는 자기장의 원천 즉 자하의 총량은 정수로 주어진다는 것을 알 수 있습니다. 전하와 마찬가지로 자하 또한 양자화되어야 한다는 것을 의미하는 것이지요. 약간 원래 논의에서 벗어나기는 했지만, 고에너지 물리학에서는 이런 방식으로 위상수학을 이용해 위상론적인 물체들을 다루곤 합니다. 위상론적인 원인이 있고 입자의 성질을 갖기 때문에 이런 물체들을 위상론적 솔리톤(topological soliton)이라고 부르지요. 다른 위상론적인 물체로는 인스탄톤(instanton)들이 있는데 시간을 허수로 만드는 다소 설명하기 껄끄러운 일들을 해야 하므로 넘어가도록 하겠습니다.


천 숫자가 위상론적인 물질에서 물리적인 의미를 갖는 사례 중 하나는 정수 양자 홀 효과(integer quantum Hall effect)입니다. 금속에 아주 강한 자기장을 수직축으로 걸었을 때 전기장을 수평축으로 걸면 자기장과 전기장에 수직한 방향으로 전류가 흐르는데, 정수 양자 홀 효과는 이때 흐르는 전류와 전기장의 비를 측정한 것(홀 전도도라고 부릅니다)이 폰 클리칭 상수(von Klitzing constant)의 정수배로 나타나는 현상을 말합니다. 정수 양자 홀 효과에서는 이 홀 전도도가 천 숫자로부터 계산할 수 있다는 것이 알려져 있습니다.


정수 양자 홀 효과에서 계산하는 천 숫자는 조금 독특한 공간에서 계산합니다. 2차원 공간을 돌아다니는 전자들을 운동량으로 분류했을 때, 이 운동량이 만드는 공간에서의 적분이죠. 이 공간 위에서도 접속을 정의할 수 있습니다. 특정 운동량을 갖는 전자의 위상을 측정할 때 기준으로 삼는 위상을 운동량마다 다르게 설정해 줄 수 있기 때문이죠. 이를 베리 접속(Berry connection)이라고 부르고, 베리 접속으로부터 얻는 곡률을 베리 곡률(Berry curvature)라고 부릅니다. 양자 홀 효과와 관련된 천 숫자는 베리 곡률로부터 얻어지며, 이를 TKNN 불변량이라고 부릅니다.


정리해보자면, 실제로 위상론적 물질에서 쓰이는 위상수학은 접속과 관계된 천 숫자라는 불변량들이고 천 숫자가 실제로 힘을 발휘하는 경우의 예로 정수 양자 홀 효과를 들 수 있었습니다. 논의를 벗어나기는 했지만 고에너지 물리학에서는 위상수학을 어떻게 이용하는지를 다루면서 솔리톤에 대한 이야기도 꺼냈지요. 위상수학에 대한 이야기만 잔뜩 하고 정작 물리 이야기는 거의 하지 않았다는 점이 조금 마음에 걸리지만, 일단은 여기까지가 현재 할 수 있는 범위 내에서는 최선인 것 같네요.




천 숫자를 중심으로 살펴보긴 했지만 실제로는 더 많은 위상수학이 쓰입니다. 예를 들어 애니온(anyon)의 경우에는 매듭 군(braid group)과 관련이 있지만 잘 알지 못하는 관계로 넘어갔습니다. 글에서 언급된 자기단극자의 경우 한 차원 낮추게 되면 소용돌이(vortex)의 양자화를 얻는데, 이건 천 숫자로 표현하기에는 껄끄러운 점이 있어서 넘어갔죠.


마지막 글은 솔직히 쓰기는 할지 모르겠습니다. 요즘 일이 많아서... ㅠㅠ

  1. 수학적으로 정합적(consistent)인 묘사가 불가능하다는 점에서 좋은 예는 아닙니다. [본문으로]
  2. 참고로 일반상대론에서 말하는 '휜 공간'의 곡률과 이 곡률은 같습니다. 단지 곡률을 정의하기 위해 사용하는 접속이 다를 뿐이죠. [본문으로]

댓글을 달아 주세요

  1. k. s. kim  댓글주소  수정/삭제  댓글쓰기

    위상학적 물질을 공부하면서 알게된건 제 머리랑 돌이랑 같다는 것 정도네요. 혹시 Berry phase와 Berry curvature의 차이를 설명해주실 수 있으신가요?

    2019.01.24 18:00
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2019.01.29 17:51 신고  댓글주소  수정/삭제

      하나의 계(system)에는 그 계의 동역학(dynamics)을 결정하는 여러 파라메터들이 존재할 수 있습니다. 그 파라메터 공간의 기하학적 성질을 나타내는 것이 Berry phase와 Berry curvature입니다.

      Berry phase는 파라메터 공간에서 이동해서 원 위치로 돌아왔을 때 (계의 파라메터를 점차 변화시켜 처음 시작했던 동역학으로 돌아왔을 때) 그 계의 파동함수들이 얻는 추가적인 위상(phase)을 말합니다. 따라서 파라메터 공간에서 '어떤 경로를 통해 움직이는가'란 정보가 필요하죠. Berry curvature는 Berry 접속(connection)을 파라메터 공간에서 움직인 경로를 따라 적분하는 것으로 얻어집니다.

      스토크스 정리를 이용하면 Berry phase를 계산하는 선적분을 면적분으로 바꿀 수 있습니다. 면적분으로 바꿀 때 Berry 접속에 외미분(exterior derivative)를 취해주게 되고, 이 때 얻어지는 적분항(integrand)을 Berry curvature라고 합니다. Berry curvature는 이런 관점으로도 볼 수 있습니다: 파라메터 공간 위의 한 점에서 충분히 작은 폐곡선(loop)을 따라 이동해 원점으로 돌아왔을 때 얻는 Berry phase는 그 폐곡선이 닫고 있는 곡면의 넓이에 비례합니다. 이때 비례상수에 해당하는 것이 Berry curvature입니다. 이런 정의의 관점에서 본다면 Berry curvature는 '계가 파라메터 공간의 어떤 경로를 따라 움직였는가'란 질문과 무관계하다는 것을 알 수 있죠.

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


세 번 정도에 걸쳐 다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




기초적인 질문부터 시작해보도록 합시다. 물질의 상은 어떻게 구분할까요? 누구나 물과 얼음은 다르다는 것을 본능적으로 알고 있습니다. 하지만 기계에게 물과 얼음의 차이를 이해시키고자 한다면 "딱 보면 몰라?"보다는 나은 설명이 필요하겠죠.


한없이 투명한 무언가가 담겨 있는 양동이를 생각해봅시다. 양동이가 전혀 움직이지 않는다면, 이 양동이에 담긴 것이 물인지 아니면 얼음인지 구분하는 것은 쉽지 않겠죠. 어떻게 하면 물인지 얼음인지 구분할 수 있을까요? 답은 손을 대보면 됩니다. 액체인 물이라면 손이 한없이 투명한 표면을 뚫고 들어갈 것이고, 고체인 얼음이라면 손은 단단한 벽과 마주한 것처럼 전혀 표면을 뚫을 수 없겠지요. 이 차이를 두고 '얼음과 물의 층밀리기 탄성(shear elasticity)이 다르다'고 합니다. 층밀리기 탄성을 이해하는 좋은 방법 중 하나는 평평한 책상 위에 올려놓은 책을 떠올려 보는 것입니다. 책의 윗면에 손을 놓고 마찰력을 이용해 책의 윗면을 책상과 평평하게 이동시키면 책은 원래의 네모난 모양을 잃어버리고 각 페이지가 층층이 밀린 듯한 모습으로 변해버리겠지요. 이런 변화를 층밀리기 변형(shear)이라고 부릅니다. 우리는 얼음과 같이 층밀리기 변형에 대해 단단하게 저항하는 성질을 갖는 물체를 고체라고 부릅니다. 반대로 물처럼 층밀리기 변형에 대해 전혀 저항하지 못하는 물체는 액체라고 부르지요.


위의 예시처럼 '어떤 계의 상이 변했다'고 말하고자 한다면 그 계의 특징적인 물리량이 어떻게 변했는지를 살펴보면 됩니다. 물과 얼음의 경우에는 층밀리기 변형에 대한 저항이 이런 물리량 중 하나에 해당하겠지요. 이런 특징적인 물리량을 두고 질서 변수(order parameter)라고 부릅니다. 잘 정한 질서 변수는 그 상전이를 완벽하게 묘사해낼 수 있습니다. 이 사실을 바탕으로 만들어진 것이 란다우-긴즈부르크(Landau-Ginzburg) 이론입니다. 란다우-긴즈부르크 이론에서는 '무엇이 상전이를 일으키는가'란 질문보다는 '무엇이 상전이의 특성을 나타내는가'란 질문이 중요합니다. 이제 상전이를 이해하기 위해 우리가 던져야 할 질문은 '어떻게 해야 좋은 질서 변수를 찾을 수 있을까?'가 되겠지요.


물리계 중에는 대칭성을 가진 계들도 존재합니다. 대칭성을 정확히 정의하려면 논의가 복잡해지지만[각주:1] 여기에서는 일상에서 '대칭'이라는 단어가 사용되는 정도로만 이해해도 충분합니다. 정삼각형은 세 꼭지점을 돌리는 것에 대해 회전대칭을 가지고 있고, 대부분의 물고기는 (거의) 좌우대칭입니다. 물리계가 대칭성을 가진다는 것도 비슷한 의미를 지닙니다. 물리계를 전체적으로 돌리거나(회전대칭) 전체적으로 조금 이동시킬 경우(병진대칭) 그 전과 구분되지 않는다는 것이죠. 과거에는 '계가 가진 대칭성이 좋은 질서 변수를 결정한다'고 믿었습니다. 심지어는 계가 가진 대칭성만 가지고도 그 계의 상전이가 완전히 결정된다는 주장도 있었지요. 이것을 보편성(universality)이라고 부릅니다.


보편성은 계가 상전이를 하고 있는 바로 그 순간에는 눈금 바꿈 대칭(scale symmetry)을 가진다는 것에 근거를 둡니다. 어떤 물리계의 어떤 물리량을 측정하고자 한다면 그 물리량을 측정하는데 기준이 되어주는 기준자가 있어야 합니다. 예를 들어 길이를 측정한다고 하면 1cm마다 눈금이 하나씩 그어져 있는 자가 필요하지요. 눈금 바꿈 대칭이란 물리량을 측정하는데 기준으로 쓴 기준자의 눈금을 바꿔도 바꾸기 전과 구분하지 못한다는 것을 의미합니다. 예컨대 어떤 물리계를 한 사람은 a란 크기의 눈금을 가진 기준자로 관찰하고 다른 사람은 b란 크기의 눈금을 가진 기준자로 관찰할 경우 둘은 서로 같은 계를 관찰했지만 다른 상태를 관찰했다고 인식하는 것이지요. 만약 눈금 바꿈 대칭이 없었다면 그 계는 어떤 특성 길이(characteristic length) c를 갖기 때문에 전자는 c/a라는 값이 특별하다는 것을 눈치채고 후자는 c/b라는 값이 특별하다는 것을 눈치채며, 일반적으로 c/a와 c/b는 같지 않기 때문에 둘은 서로 다른 계를 관찰하고 있다고 생각하게 됩니다. 한편 그 특성 길이가 0이거나 무한대가 된다면 두 값은 같으므로 그 물리계는 눈금 바꿈 대칭을 가지고 있다고 할 수 있겠지요.


계가 A라는 상과 B라는 상 사이에 끼어서 상전이를 하는 순간에는 계를 A라는 상으로 바꾸려는 작용과 B라는 상으로 바꾸려는 작용이 균형을 이루기 때문에 작은 변화라고 해도 아주 먼 거리까지 영향을 미칩니다.[각주:2] 팽팽하게 당겨진 실에서는 한쪽으로 움직이려는 힘과 반대쪽으로 움직이려는 힘이 균형을 이루고 있기 때문에 한 끝을 튕기면 그 진동이 반대 끝까지 전달되는 것과 비슷하다고 해야할까요? 이렇게 한 계가 눈금 바꿈 대칭을 가진 경우에는 매우 큰 눈금을 가진 자로 측정해도 살아남는 특징이 계의 특징을 결정한다고 생각할 수 있습니다. 통계역학의 관점에서는 매우 큰 눈금을 가진 자로 측정할 경우 물리량을 측정하는데 관여하는 원자의 수가 엄청나게 많기 때문에 각 원자의 상세한 특징은 거대한 숫자에 쓸려나가 버립니다. 따라서 계의 상세한 특징은 상전이를 기술하는데 별로 영향을 미치지 않는다고 생각할 수 있는 것이지요. 한편 계의 대칭성은 작은 눈금을 이용하든 큰 눈금을 이용하든 영향을 받지 않습니다. 따라서 계의 대칭성은 상전이를 기술하는데 중요한 역할을 한다고 추정할 수 있고, 이것이 앞서 설명한 보편성의 근거가 됩니다.


여기까지가 위상론이 상전이를 이해하는데 필요하다는 사실을 깨닫기 전까지의 이야기였습니다. 정리하자면, 여태까지는 계가 가진 대칭성만 잘 이해하면 계의 상전이를 잘 이해할 수 있다고 믿었던 것이죠.




나머지 내용도 언젠가 올리긴 올릴텐데 과연 노벨상 수상식이 있기 전에 올라갈 것인지는 모르겠군요...=-= 다른 할 일이 많아서...




23. Oct. 2016> 생각해보니 중요한 내용 몇가지를 언급하는 것을 잊어버렸는데, 란다우-긴즈부르크 이론에서 대칭성과 함께 중요한 것은 계가 몇차원에 정의되었는가이며 상전이를 두고 나누어진 두 상은 계의 대칭성이 깨졌는가 깨지지 않았는가를 이용해 구분합니다. 계의 대칭성이 깨지지 않았다면 질서 변수가 계의 대칭성을 보존하는 변환에 대해 변하지 않지만 계의 대칭성이 깨졌다면 질서 변수가 계의 대칭성을 보존하는 변환에 따라 변화하게 되지요. 해당되는 질서변수의 구체적인 예로 철의 자화(magnetisation)를 들 수 있는데, 대칭성이 깨지지 않은 고온의 탈자 상태에서는 회전에 대해 자화가 변하지 않지만(0이니까요) 저온의 자화된 상태에서는 회전하게 되면 자화된 방향이 변하게 되죠.

  1. 관심이 있으신 분은 제가 예전에 적은 노트(영문)의 앞부분에 해당 내용이 있으니 참고하세요.2016/08/08 - Particles in Curved Space [본문으로]
  2. 이 설명은 잠열이 없는 상전이, 즉 2차 상전이에 해당하는 설명입니다. 잠열이 있는 1차 상전이에서는 잠열이 작은 변화를 완충해주는 역할을 하기 때문에 이 경우에 해당하지 않습니다. 주로 임계현상(critical phenomena)의 연구가 2차 상전이에 집중되어 있는 것도 이런 이유에서이죠. [본문으로]

댓글을 달아 주세요

1 2 3 4 ··· 42 

글 보관함

카운터

Total : 685,781 / Today : 29 / Yesterday : 87
get rsstistory!