2023.06.16 - Klein-Gordon propagator in position space

Feynman propagator를 계산한 김에 그냥 관련 함수를 전부 계산해보기로 했다. 모든 two-point function은 결국 Wightman function이라 불리는 다음 두 함수의 계산으로 수렴한다.

$$ G^+(t,\vec{r}) := \langle 0 | \phi(t,\vec{r}) \phi(0) | 0 \rangle \,,\, G^- (t, \vec{r}) := \langle 0 | \phi(0) \phi(t,\vec{r}) | 0 \rangle $$

여기서 $G$에 달린 윗첨자의 부호는 positive frequency인가 negative frequency인가를 나타낸다. scalar field의 mode expansion에서 annihilation operator에 붙는 mode function이 positive frequency($\sim e^{- i E t}$)라고 불린다는 점에서 더없이 적절한 이름이라 하겠다.

$$ G^\pm = \int \frac{d^3 k}{(2\pi)^3} \frac{e^{\mp i (\omega_{\vec{k}} t - \vec{k} \cdot \vec{r})} }{2 \omega_{\vec{k}}} \,,\, \omega_{\vec{k}} := \sqrt{\vec{k}^2 + m^2} $$

Wightman function은 Klein-Gordon 방정식의 homogeneous solution을 만족한다.

$$ (\partial^\mu \partial_\mu + m^2) G^{\pm} (x) = 0 $$

주의해야 할 점이라면 Wightman function은 $x$가 원점을 지나는 lightcone의 안에 있든 밖에 있든 상관없이 정의된다는 점. 애초에 $x^2 = 0$인 lightcone 바로 위가 아니라면 발산하지 않는다. Feynman propagator는 time ordering operator[각주:1] $T$를 끼워넣은 것이므로 Wightman function으로부터 다음과 같이 구현할 수 있다. 단위허수 $i$가 어딘가에 붙긴 할텐데 중요한건 아니니까 무시하기로 하자.

$$ G_F (x) := \langle 0 | T \phi(x) \phi(0) | 0 \rangle = \Theta (t) G^+ (x) + \Theta(-t) G^{-} (x) $$

여기서 $x = x^\mu = (t, \vec{r})$은 좌표 4-vector인데, 혼동의 여지가 없으므로 그냥 위와 같이 간단하게 적기로 하자. 여기서 $\Theta(t)$는 Heaviside step function을 가리킨다. Feynman propagator가 Klein-Gordon 방정식의 Green's function이 되는 이유는 추가로 붙은 Heaviside function이 Dirac delta를 만들기 때문이다. ODE에서 Green's function을 구할 때 쓰는 테크닉과 원리상으로는 완전히 동등한 접근.

 

계산은 Feynman propagator 계산과 거의 동일하다. 약간의 부호만 신경써주면 될 뿐. 편의상 timelike separation을 먼저 고려하자.

$$ G^{\pm} =  \int \frac{d^3 k}{(2\pi)^3} \frac{e^{\mp i t \sqrt{k^2 + m^2}} e^{\pm i \vec{k} \cdot \vec{x}}}{2 \sqrt{k^2 + m^2}} $$

위 식에서 $k$ 적분을 구면좌표계로 변환한 뒤 $d \cos \theta$적분을 취한다.

$$ G^{\pm} = \frac{1}{2 (2 \pi)^2} \int k^2 dk d \cos \theta \frac{e^{\pm i k r \cos \theta} e^{\mp i t \sqrt{k^2 + m^2}}}{\sqrt{k^2 + m^2}} \\\\ = \frac{\mp i}{8 \pi^2 r} \int_0^\infty k dk \frac{e^{\mp i (t \sqrt{k^2 + m^2} - kr)} - e^{\mp i (t \sqrt{k^2 + m^2} + kr)}}{\sqrt{k^2 + m^2}} $$

$k \to -k$의 대칭을 이용하여 적분구간을 전체 실수로 확장하고 $\frac{1}{2}$를 곱한 뒤 지수를 정리하기 위해 다음 변수들을 도입한다. 이 때 $t>0$이라고 가정한다.

$$ \rho = \sqrt{t^2 - r^2} \,,\, \cosh \alpha = t / \rho \,,\, \sinh \alpha = r / \rho \,,\, k = m \sinh \eta $$

이 경우 적분은 다음과 같이 정리된다.

$$ G^{\pm} = \frac{\mp i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{\mp i m \rho \cosh (\eta - \alpha)} - e^{\mp i m \rho \cosh (\eta + \alpha)} \right) $$

우선 적분구간을 정리해준다.

$$ G^{\pm} = \frac{\mp i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \left( \sinh (\eta + \alpha) - \sinh (\eta - \alpha) \right) d \eta e^{\mp i m \rho \cosh \eta} $$

다음으로는 삼각함수 항등식을 이용해서 수식을 정리해준다.

$$ G^{\pm} = \frac{\mp i m \sinh \alpha}{8 \pi^2 r} \int_{-\infty}^{\infty} \cosh \eta d \eta e^{\mp i m \rho \cosh \eta} = \frac{\mp i m}{4 \pi^2 \rho} \int_{0}^{\infty} \cosh \eta d \eta e^{\mp i m \rho \cosh \eta} $$

마찬가지로 DLMF의 10.32.9식을 이용하면 정리 완료. 이 때 $z$는 $|\text{ph} (z) | < \pi/2$의 조건을 만족해야 하므로, 엄밀히 말해서는 $\pm i m \rho$를 허수축에서 $0^+$만큼 떨어진 boundary value로서 취급해야 한다.

$$ K_\nu (z) = \int_0^\infty dt \cosh (\nu t) e^{- z \cosh t} $$

위 적분을 대입하면 Feynman propagator와 비슷하게 생긴 Wightman function을 얻는다.

$$ G^{\pm} = \frac{m^2}{4 \pi^2} \frac{K_1 (\pm i m \rho)}{\pm i m \rho} \,,\, \rho^2 = t^2 - \vec{r}^2 > 0 \,,\, t>0 $$

$t<0$의 경우에는 $\cosh \alpha$ 정의의 부호를 뒤집어준다.

$$ \rho = \sqrt{t^2 - r^2} \,,\, \cosh \alpha = -t / \rho \,,\, \sinh \alpha = r / \rho \,,\, k = m \sinh \eta $$

정리되는 식은 $t>0$과 거의 비슷하지만 지수에서 차이가 나게 된다.

$$ G^{\pm} = \frac{\mp i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{\pm i m \rho \cosh (\eta + \alpha)} - e^{\pm i m \rho \cosh (\eta - \alpha)} \right) $$

전체 부호를 앞으로 빼면 $G^+ \leftrightarrow G^-$의 교환에 대응되니 다음 식으로 정리된다.

$$ G^{\pm} = \frac{m^2}{4 \pi^2} \frac{K_1 (\mp i m \rho)}{\mp i m \rho} \,,\, \rho^2 = t^2 - \vec{r}^2 > 0 \,,\, t<0 $$

함수 자체는 거의 같게 나오지만 세세한 부분에서 차이가 있는 것을 볼 수 있다. 참고로 위 결과는 DLMF의 connection formula 10.27.8을 이용해 Hankel function으로도 적을 수 있다. 구체적으로 필요한 식은 다음.

$$ K_1(iz) = - \frac{\pi}{2} H_1^{(2)} (z) \,,\, K_1(-iz) = - \frac{\pi}{2} H_2^{(1)} (z) \,,\, z>0 $$

이 경우 positive frequency Wightman function은 다음과 같이 정리되며

$$ G^+ = \frac{i m}{8 \pi \rho} \left[ H_1^{(2)} (m \rho) \Theta(t) - H_1^{(1)} (m \rho) \Theta(-t) \right] \,,\, \rho^2 = t^2 - \vec{r}^2 > 0$$

negative frequency Wightman function은 위 함수의 켤레복소수로 주어진다.

$$ G^- = \frac{- i m}{8 \pi \rho} \left[ H_1^{(1)} (m \rho) \Theta(t) - H_1^{(2)} (m \rho) \Theta(-t) \right] \,,\, \rho^2 = t^2 - \vec{r}^2 > 0$$

여기서 $\Theta(x)$는 Heaviside step function. 위 두 형태가 Bogoliubov 양자장론 교재에서 제공하고 있는 형태이다.

 

Spacelike separation의 경우 $|\text{ph} (im\rho) | < \pi/2$의 조건을 생각해서 analytic continuation을 하면 되는데, 결과적으로는 $ \rho' = \sqrt{r^2 - t^2}$로 두고 Bessel function의 argument가 $m \rho'$이 되면 된다. 하지만 이왕 계산을 시작했으니 Feynman propagator 계산처럼 $t=0$인 좌표계를 잡는 대신 제대로 계산해보자. 이번에 택할 변수변환은 다음과 같다.

$$ \rho' = \sqrt{r^2 - t^2} \,,\, \cosh \alpha = r / \rho' \,,\, \sinh \alpha = t / \rho' \,,\, k = m \sinh \eta $$

이번에는 사인함수로 정리된다.

$$ G^{\pm} = \frac{\mp i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{\pm i m \rho' \sinh (\eta - \alpha)} - e^{\mp i m \rho' \sinh (\eta + \alpha)} \right) $$

적분을 반으로 나눠서 정리해준다. 첫번째 항은 다음과 같이 정리된다.

$$ \int_{-\infty}^{\infty} \sinh \eta d \eta e^{\pm i m \rho' \sinh (\eta - \alpha)} = \int_{-\infty}^{\infty} \sinh (\eta + \alpha) d \eta e^{\pm i m \rho' \sinh \eta} \\ = \int_{-\infty}^{\infty} ( \sinh \eta \cosh \alpha + \cosh \eta \sinh \alpha) d \eta e^{\pm i m \rho' \sinh \eta} $$

두번째 항도 마찬가지로 정리할 수 있다.

$$ \int_{-\infty}^{\infty} \sinh \eta d \eta e^{\mp i m \rho' \sinh (\eta + \alpha)} = \int_{-\infty}^{\infty} ( \sinh \eta \cosh \alpha - \cosh \eta \sinh \alpha) d \eta e^{\mp i m \rho' \sinh \eta} $$

둘을 더하면 다음과 같이 정리된다.

$$ \cosh \alpha \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{\pm i m \rho' \sinh \eta} - e^{\mp i m \rho' \sinh \eta} \right) \\\\ + \sinh \alpha \int_{-\infty}^{\infty} \cosh \eta d \eta \left( e^{\pm i m \rho' \sinh \eta} + e^{\mp i m \rho' \sinh \eta} \right) $$

첫번째 항은 DLMF의 10.32.7식을 이용해 정리할 수 있다.

$$ K_\nu (x) = \frac{1}{\sin (\nu \pi / 2)} \int_0^\infty \sin \left( x \sinh t \right) \sinh (\nu t) dt $$

결과는 Feynman propagator에서 보던 것과 비슷한 항.

$$ \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{\pm i m \rho' \sinh \eta} - e^{\mp i m \rho' \sinh \eta} \right) = \pm 4 i \int_0^\infty \sinh \eta \sin (m \rho' \sinh \eta) d \eta \\ = \pm 4 i K_1 (m \rho') $$

두번째 항은 발산하는 항을 준다.

$$ \int_{-\infty}^{\infty} \cosh \eta d \eta \left( e^{\pm i m \rho' \sinh \eta} + e^{\mp i m \rho' \sinh \eta} \right) = 4 \int_0^\infty \cosh \eta \cos (m \rho' \sinh \eta) d \eta $$

대응되는 DLMF의 10.32.7식이 발산하기 때문. 식 사용 조건에 $|\mathfrak{R} \nu|<1$이 있었으니 단순 적용하기에 무리가 있기는 했지만.

$$ K_\nu (x) = \frac{1}{\cos (\nu \pi / 2)} \int_0^\infty \cos \left( x \sinh t \right) \cosh (\nu t) dt $$

여튼, 이 적분을 임시로 $f(m \rho')$이라고 부르기로 하자. 적분을 전부 더하면 다음과 같은 식을 얻는다.

$$ G^{\pm} = \frac{m^2}{4 \pi} \frac{K_1 (m \rho')}{m \rho'} \mp \frac{i m t}{ 4 \pi r} \frac{f(m \rho')}{\rho'} $$

발산하는 적분의 앞에 붙는 계수가 Lorentz symmetry를 만족하지 않는 것을 볼 수 있다. 따라서 가장 적절한 해법은 $f(m \rho') = 0$으로 두는 것. 따라서 이 경우 Wightman function은 다음과 같이 정리할 수 있다.

$$ G^{\pm} = \frac{m^2}{4 \pi} \frac{K_1(m s)}{m s} \,,\, s^2 = \vec{r}^2 - t^2 > 0 $$

 

앞서 구한 세 값을 한 식에 정리하고자 한다면 다음과 같이 적을 수 있다.

$$ G^{\pm} = \frac{m^2}{4 \pi^2} \frac{K_1(m \sqrt{s_{\pm}^2})}{m \sqrt{s_{\pm}^2}} \,,\, s_{\pm}^2 = \vec{r}^2 - (t \mp i 0^+)^2 $$

저번에 구한 Feynman propagator는 두 Wightman function을 조합하는 것으로 구할 수 있다.

$$ G_F = \Theta (t) G^+ + \Theta(-t) G^- = \frac{m^2}{4 \pi^2} \frac{K_1(m \sqrt{s_F^2})}{m \sqrt{s_F^2}} \,,\, s_F^2 = \vec{r}^2 - t^2 + i 0^+ $$

단순하게 analytic continuation condition이 맞도록 $s_{\pm}^2$에 붙은 $i0^+$의 위치를 바꿔준 것. 흥미로운 경우는 Pauli-Jordan 함수라고도 불리는 commutator의 기댓값. 이번에도 단위허수 $i$는 무시하기로 한다.

$$ G_{PJ} := \langle 0 | [\phi(x) , \phi(0)] | 0 \rangle = G^+ - G^- = \frac{m^2}{4 \pi^2} \left[\frac{K_1(m \sqrt{s_{+}^2})}{m \sqrt{s_{+}^2}} - \frac{K_1(m \sqrt{s_{-}^2})}{m \sqrt{s_{-}^2}}\right] $$

이 함수는 $s^2 = \vec{r}^2 - t^2 > 0$일때 0이 된다. 이렇게 spacelike separation의 commutator가 사라지는 조건을 microcausality라고 부르기도 한다.

  1. 레퍼런스에 따라서는 chronological ordering이라고 부르기도 한다. [본문으로]

'Physics > Problems' 카테고리의 다른 글

Klein-Gordon propagator in position space  (1) 2023.06.16
Measurements and Projection Operators  (0) 2015.03.04
Independent Susceptibilities  (1) 2014.09.18
압력밥솥 기압재기 및 밥 짓는 온도 재기  (10) 2009.03.30
상대론 문제  (2) 2008.07.14
Posted by 덱스터

Klein-Gordon field의 Feynman propagator를 position space에서 계산해본 적이 없는 것 같아서 뒤늦은 숙제(...) 처리. 일반적인 차원 $D$ 대신 그냥 4차원에서만 계산하기로 했다.[각주:1] 다음의 Fourier transform을 구하는 문제.

$$ \int \frac{d^4 k}{(2\pi)^4} \frac{-i}{-k^2 + m^2 - i \epsilon} e^{- i k \cdot x} = \int \frac{d^4 k}{(2\pi)^4} \frac{i e^{- i k_0 t} e^{- \vec{k} \cdot \vec{x}} }{k_0^2 - ( \vec{k}^2 + m^2 - i \epsilon)} $$

우선 $dk^0$ 적분을 처리한다. $t$의 부호에 의존하는 residue integral로 정리할 수 있는데 결과적으로는 $t$의 절댓값에만 의존하는 결과를 얻는다.

$$ \int \frac{d^3 k}{(2\pi)^3} \frac{e^{- i |t| \sqrt{k^2 + m^2}} e^{i \vec{k} \cdot \vec{x}}}{2 \sqrt{k^2 + m^2}} $$

앞으로는 $\tau = |t|$로 적기로 하자. 다음은 구면좌표계로 변환한 뒤 $d \cos \theta$적분을 취하면 된다.

$$ \frac{1}{2 (2 \pi)^2} \int k^2 dk d \cos \theta \frac{e^{i k r \cos \theta} e^{- i \tau \sqrt{k^2 + m^2}}}{\sqrt{k^2 + m^2}} \\\\ = \frac{-i}{8 \pi^2 r} \int_0^\infty k dk \frac{e^{- i (\tau \sqrt{k^2 + m^2} - kr)} - e^{- i (\tau \sqrt{k^2 + m^2} + kr)}}{\sqrt{k^2 + m^2}} $$

$k \to -k$의 대칭을 이용하여 적분구간을 전체 실수로 확장하고 $\frac{1}{2}$를 곱한 뒤 지수를 정리하기 위해 다음 변수들을 도입한다. 우선은 timelike separation을 고려하기로 한다.

$$ \rho = \sqrt{\tau^2 - r^2} \,,\, \cosh \alpha = \tau / \rho \,,\, \sinh \alpha = r / \rho \,,\, k = m \sinh \eta $$

이 경우 적분은 다음과 같이 정리된다.

$$ \frac{-i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \sinh \eta d \eta \left( e^{- i m \rho \cosh (\eta - \alpha)} - e^{- i m \rho \cosh (\eta + \alpha)} \right) $$

우선 적분구간을 정리해준다.

$$ \frac{-i m}{16 \pi^2 r} \int_{-\infty}^{\infty} \left( \sinh (\eta + \alpha) - \sinh (\eta - \alpha) \right) d \eta e^{- i m \rho \cosh \eta} $$

다음으로는 삼각함수 항등식을 이용해서 수식을 정리해준다.

$$ \frac{-i m \sinh \alpha}{8 \pi^2 r} \int_{-\infty}^{\infty} \cosh \eta d \eta e^{- i m \rho \cosh \eta} = \frac{-i m}{4 \pi^2 \rho} \int_{0}^{\infty} \cosh \eta d \eta e^{- i m \rho \cosh \eta} $$

이제 DLMF의 10.32.9식을 이용하면 정리 완료. 이 때 $z$는 $|\text{ph} (z) | < \pi/2$의 조건을 만족해야 한다.

$$ K_\nu (z) = \int_0^\infty dt \cosh (\nu t) e^{- z \cosh t} $$

위 적분을 대입하면 Feynman propagator의 position space representation을 얻는다.

$$ \frac{-i}{-k^2 + m^2 - i \epsilon} \leftrightarrow \frac{m^2}{4 \pi^2} \frac{K_1 (i m \rho)}{i m \rho} \,,\, \rho^2 = t^2 - \vec{r}^2 > 0 $$

Spacelike separation의 경우 $ \rho' = \sqrt{r^2 - t^2}$로 두고 $\rho \to - i \rho'$로 continuation을 하면 된다. Analytic continuation에서 어떤 부호를 택할지 결정하는 문제는 $|\text{ph} (im\rho) | < \pi/2$의 조건으로부터 결정할 수도 있지만 $\tau=0$으로 두고 적분을 다음과 같이 정리하는 것으로도 결정할 수 있다.

$$ \frac{-i}{8 \pi^2 r} \int_0^\infty k dk \frac{e^{i kr} - e^{- i kr}}{\sqrt{k^2 + m^2}} = \frac{1}{4 \pi^2 r} \int_0^\infty k dk \frac{\sin (kr)}{\sqrt{k^2 + m^2}} $$

동일하게 변수변환 $k = m \sinh \eta$를 도입하면 적분이 다음과 같이 정리된다.

$$ \frac{m}{4 \pi^2 r} \int_0^\infty \sin \left( m r \sinh \eta \right) \sinh \eta d\eta $$

이번에는 DLMF의 10.32.7식을 이용한다.

$$ K_\nu (x) = \frac{1}{\sin (\nu \pi / 2)} \int_0^\infty \sin \left( x \sinh t \right) \sinh (\nu t) dt $$

정리하면 얻는 식은 다음과 같으므로 $\rho \to - i \rho'$의 부호 선택이 정답임을 알 수 있다.

$$ \frac{m^2}{4 \pi^2} \frac{K_1 (mr)}{mr} $$

결과적으로 branch cut이 자동으로 결정되는 식을 적고 싶다면 다음과 같이 적으면 되겠다.

$$ \frac{-i}{-k^2 + m^2 - i 0^+} \leftrightarrow \frac{m^2}{4 \pi^2} \frac{K_1 (i m \rho)}{i m \rho} \,,\, \rho^2 = t^2 - \vec{r}^2 - i 0^+ $$

  1. 별 이유는 없고 angular integral 처리가 귀찮아서 그렇다. 좋은 교재들의 전범(...)을 따라 일반적인 차원 $D$에서의 position space propagator는 독자들을 위한 연습문제로 남겨두기로 하자. [본문으로]

'Physics > Problems' 카테고리의 다른 글

Wightman functions for a scalar field  (1) 2023.06.20
Measurements and Projection Operators  (0) 2015.03.04
Independent Susceptibilities  (1) 2014.09.18
압력밥솥 기압재기 및 밥 짓는 온도 재기  (10) 2009.03.30
상대론 문제  (2) 2008.07.14
Posted by 덱스터

 

 

2010.08.03 - 엔트로피 - 고전적인 정의

2010.11.22 - 열역학 제 2 법칙과 엔트로피 증가의 법칙

 

(현재) 밥 벌어먹는 주제와는 다소 거리가 있지만 열역학 및 통계역학은 개인적으로 애착이 있는 주제인데, 공학 전공 대신 이학 전공을 택하기로 마음먹은 계기가 된 학문이기 때문이다. 특히 엔트로피의 정의 및 열역학 제 2법칙의 정량적 형식화는 물리학을 전공으로 택하기로 마음먹은 직접적인 계기가 된 주제이기 때문에 더욱 애착이 있는 편이다. 여튼, 트위터에서 엔트로피의 정의에 등장하는 로그에 대한 이야기가 나와서 엔트로피에 대해 떠들다 보니 예전에 완전히 해소하지 못했던 의문에 대해 다시 생각해보게 되었다.

고전열역학과 통계역학은 서로 다른 "공리계"에 바탕을 둔 이론 체계인데, 어떻게 한 쪽의 엔트로피의 정의가 다른 쪽의 엔트로피의 정의에 대응된다고 할 수 있는가?

학부 졸업하고 한참이 지난 이제서야 이 질문에 대해 답할 수 있게 되어서 정리해보는 것이 이번 포스트의 목적이다.

 

---

 

고전열역학의 알파와 오메가는 열기관(heat engine)이다. '증기기관의 효율 개선'이란 공학적인 목표와 밀접한 관계를 갖고 발전한 학문인데다가 열역학의 가장 기본적인 물리량이라 할 수 있는 온도부터 열기관을 이용해 정의되며, 따라서 어떤 계에 열역학이 있을 경우 대응되는 열기관을 고려하는 것이 매우 자연스럽다.[각주:1] 실제 열역학의 응용은 열기관이 요구하는 닫힌 사이클에 한정되지 않지만, 가장 중요한 개념은 열기관이란 점을 분명히 해 두자.

 

한편 통계역학은 원자론과 경험적 실재를 조화시키는 것을 목표로 한다. 통계역학의 전신이라 할 수 있는 기체분자운동론(kinetic theory of gases)은 수많은 "원자"로[각주:2] 구성된 기체를 어떻게 부피, 온도, 압력 등 매우 적은 갯수의 물리량으로 정확하게 기술할 수 있는가를 설명하기 위한 이론이다. 기체분자운동론보다 다양한 물리계를 다루는 통계역학은 마찬가지로 엄청나게 많은 자유도를 가진 계의 행동을 기술하는데는 그 계의 정확한 상태(혹은 미시상태microstate)를 알 필요 없이 중요한 몇 개의 물리량만 알아도 충분하다는 경험적 실재에 바탕을 두고 있다. Jaynes로부터 시작한 통계역학과 정보이론 사이의 접점도 이런 관점에서 이해할 수 있다. (대)정준 앙상블((grand)canonical ensemble)은 거시계의 중요한 물리량으로 결정되는 거시상태(macrostate)를 알고 있을 때 실제 계가 어떤 미시상태에 있을 확률을 추정하는 문제의 답인데, 이 문제는 전형적인 주어진 정보(거시상태)로부터 원하는 정보(어떤 미시상태일 확률)를 추정하는 베이지언 추정의 사례다.

 

본문으로 넘어가기 전 이 포스트에서는 모두 평형상태, 준평형상태(quasi-equilibrium) 혹은 평형에 가까운 상태(near equilibrium)만 다룬다는 점을 분명히 하기로 하자. 애초에 이 범주에서 벗어나는 경우는 아직까지도 연구주제이기도 하고.

 

---

 

역사적으로는 고전열역학이 기체분자운동론과 같이 발전했지만, 고전열역학의 현대적인 재구성에서는 전혀 통계역학적인 관점을 필요로 하지 않는다. 흥미로운 점은 고전열역학의 세 "공리" 중 물리량을 정량적으로 지정하는 것은 하나(열역학 제 1법칙)뿐이라는 사실이다. 뉴턴역학의 세 "공리" 중 제 2 법칙에 대응된다고 해야 할까.

0. 열평형은 존재하며 온도를 정의할 수 있다. (A와 B가 열평형을 이루고 B와 C가 열평형을 이루면 A와 C 또한 열평형을 이룬다. 이 때 A, B, C 모두 같은 온도를 갖는다.)
1. 열은 에너지의 이동이며, 에너지는 보존된다.
2.1. 열은 낮은 온도에서 높은 온도로 흐를 수 없다. (Clausius)
2.2. 열을 순수하게 일로 변환할 수 없다. (Kelvin-Planck)

위의 열역학 법칙 중 정량적으로 정의되는 것은 (에너지의 이동으로 정의되는) 열밖에 없다. 에너지는 고전역학에서 정량적으로 정의되기 때문. 그리고 위의 열역학 법칙으로부터 정의되는 온도는 모스 굳기계처럼 상대적인 순서만 정의된다는 것을 기억하도록 하자; 온도가 높은 열원에서 온도가 낮은 열원으로 열이 흐른다는 것은 결정할 수 있지만, 온도가 높은 열원이 온도가 낮은 열원보다 얼마나 뜨거운가는 답할 수 없다. '얼마나 뜨거운가?'란 정량적인 질문에 답하기 위해서는 열역학 법칙으로부터 정의되는 온도에 구조를 좀 더 더해 열역학적 온도로 바꾸어야 한다.

 

켈빈으로 정의되는 절대온도는 정확히는 열역학적 온도로, 이상적인 가역기관의 열효율을 이용하여 온도에 절대값을 줄 수 있다는 것을 이용한 것이다.[각주:3] 참고로 실제 측정에 쓰이는 온도의 SI 정의는 ITS-90 및 그 저온 확장인 PLTS-2000으로, 열역학적 온도의 근사이며 완전히 일치하지는 않는다. 고전열역학에서 온도가 정의되는 과정은 위에 링크해둔 예전 글을 참조하도록 하자. 여튼, 열역학적 온도 $T$를 정의하고 나면 열역학적 온도를 이용해 엔트로피(의 변화)를 정의할 수 있다.

$$ dS_C := \left. \frac{\delta Q}{T} \right|_{\text{rev.}} $$

여기서 rev.는 가역과정(reversible process)를 나타낸다. 이 미분이 왜 상태함수인 엔트로피 $S_C$를 정의하는지는 예전 글에서 다뤘으므로 넘어가기로 한다. 대학물리에서 배우는 엔트로피의 정의는 위의 꼴을 갖는데, 편의상 우변에 적힌 미분량을 제일 먼저 적은 클라우지우스의 이름을 따서[각주:4] 클라우지우스 엔트로피라고 부르기로 하자. $S_C$의 아래첨자 C는 Clausius를 나타낸다.

 

---

 

통계역학은 완전히 다른 "공리계"에서 출발한다. 보통 동일 선험확률의 원리(principle of equal a priori probability)라 부른다.

0. 주어진 거시적 성질에 대응되는 모든 미시상태는 동등한 확률을 갖고 실현된다.

그리고 이 성질을 '증명'하기 위해 오늘도 많은 이론가들이 머리를 싸매고 있지만 우리의 관심사는 두통을 얻는 것이 아니므로 일단 그렇다고 받아들이기로 하자. 위 "공리"에서 다음 보조가설이 유도된다.

0.1. 거시적 물리량은 대응되는 미시상태의 수가 줄어들지 않는 방향으로 움직이는 경향을 갖는다.

그렇다면 거시적 물리량에 대응되는 미시상태의 수 $\Omega$는 어떻게 측정할까? 편의상 내부 자유도가 없는 (이상)기체를 가정할 경우, 미시상태의 수는 거시적 물리량과 일치하는 위상공간(phase space)의 부피로 정의한다. 기체의 위상공간 중 위치 $x$가 가질 수 있는 범위는 기체가 가둬진 상자의 부피 $V$로 주어질테고 운동량 $p$가 가질 수 있는 범위는 기체가 갖는 총 에너지 $E$에 의해 결정될테니, 미시상태의 수 $\Omega$는 거시적 물리량인 기체의 총 에너지 $E$와 기체가 가둬진 상자의 부피 $V$에 의해 결정된다.

$$ \Omega = \Omega(E, V) $$

문제는 미시상태의 수 $\Omega$가 별로 좋은 물리량이 아니라는 것이다. '경우의 수'로도 해석될 수 있는 $\Omega$는 동일한 부피와 동일한 에너지를 가진 같은 기체가 또 있을 경우 두배가 되는 것이 아니라 제곱이 된다. 좀 더 구체적으로 이야기하자면, 전체 계를 두 부분계(subsystem)로 나눴을 때 전체 계가 갖는 미시상태의 수 $\Omega_{\text{tot}}$는 부분계 1의 미시상태의 수 $\Omega_1$과 부분계 2의 미시상태의 수 $\Omega_2$의 곱으로 적히게 된다.

$$ \Omega_{\text{tot}} = \Omega_1 \times \Omega_2 $$

우리에게 익숙한 물리량의 행동은 크게 세기 성질(intensive property)과 크기 성질(extensive property)로 나눠지는데, 미시상태의 수 $\Omega$는 두 행동 중 어느 것과도 일치하지 않는다. 하지만 로가리듬을 이용하면 미시상태의 수 $\Omega$를 크기 성질로 바꿀 수 있다.

$$ \log \Omega_{\text{tot}} = \log \Omega_1 + \log \Omega_2 $$

보통은 이쯤에서 $\log \Omega$를 이용해 볼츠만 엔트로피 $S_B$를 정의하는데, 아직까지는 위에서 정의한 클라우지우스 엔트로피 $S_C$와의 관계가 불분명하므로 $W$라고 적기로 하자.

$$ W := \log \Omega (E,V) $$

이제 몇가지 보조가설을 도입하여 $W$의 성질 및 $W$로부터 온도를 정의하는 방법에 대해 알아보자.

1. 열평형은 존재하며, 전체 미시상태의 수가 극대화되는 거시상태에 대응된다.
2. 열은 온도가 높은 부분계에서 온도가 낮은 부분계로 이동한다.

대부분의 통계역학 교육과정에서처럼 부피에 대한 의존도는 무시하고 에너지에 대한 의존도만 살리기로 하자. 부분계 1과 부분계 2로 나눈 전체 계의 에너지를 $E$라고 할 때, 전체 계의 미시상태 수 $W_{\text{tot}}$는[각주:5] 다음과 같이 적을 수 있다.

$$ W_{\text{tot}} (E;E_1) = W_1 (E_1) + W_2 (E - E_1) $$

여기서 $E_1$은 부분계 1이 나눠가진 에너지다. 평형상태에 대응되는 에너지 $E_1^\ast$는 $W_{\text{tot}}$의 극대화 조건으로부터 구할 수 있다. 첫번째 극대화 조건은 '미분이 0일 것'이다.

$$ \left. \frac{\partial W_{\text{tot}}}{\partial E_1} \right|_{E_1 = E_1^\ast} = \left. \frac{\partial W_1 (E_1)}{\partial E_1} \right|_{E_1 = E_1^\ast} - \left. \frac{\partial W_2 (E_2)}{\partial E_2} \right|_{E_2 = E - E_1^\ast} = 0 $$

두번째 극대화 조건은 '2계미분이 음수일 것'이다.

$$ \left. \frac{\partial^2 W_{\text{tot}}}{\partial E_1^2} \right|_{E_1 = E_1^\ast} = \left. \frac{\partial^2 W_1 (E_1)}{\partial E_1^2} \right|_{E_1 = E_1^\ast} + \left. \frac{\partial^2 W_2 (E_2)}{\partial E_2^2} \right|_{E_2 = E - E_1^\ast}  < 0 $$

잠시 두번째 조건에 대한 사족을 덧붙이고 온도의 정의로 넘어가기로 하자. 만약 두번째 극대화 조건보다 강한 다음 조건을 계의 미시상태 수 $W$에 대해 요구하면 그 계는 (같은 조건을 만족하는) 다른 계와 항상 열평형을 이룰 수 있다.

$$ \frac{\partial^2 W}{\partial E^2} < 0 $$

대부분의 경우 암묵적으로 고려하는 물리계가 1계미분에 대한 조건 $\frac{\partial W}{\partial E} > 0$과 함께 위의 성질을 만족할 것을 요구하며, 통계-열역학적으로 보통인 계(normal system in the statistical-thermodynamic sense)라고 부르기도 한다.[각주:6] 물론 모든 계가 이 조건을 만족하는 것은 아니다. 힐베르트 공간의 차원이 유한한 양자계가 대표적인 사례. 다른 사례로는 끈이론이 있는데, 고에너지이론에서는 끈의 에너지가 충분히 높을 경우 끈의 미시상태 수가 에너지에 따라 지수적 이상으로 증가($\Omega \gtrsim e^{\alpha E}$)해 이 조건을 만족하지 못하는 경우가 존재한다. 이와 관련된 온도를 하게도른 온도(Hagedorn temperature)라고 하는데, 보통은 상전이점에 가까워져 통계역학적인 물리를 기술하기 위해 썼던 모형이 더 이상 유효하지 않아 발생하는 것으로 해석한다.

 

첫번째 보조가설에 대한 이야기(열평형의 존재)는 이정도로 하고, 이제 두번째 보조가설인 '열의 흐름 방향'으로 넘어가자. 열이 흘러야 하는 방향으로부터 온도의 대소관계를 정의할 수 있다. 만약 부분계 1이 가진 에너지가 평형상태에 대응되는 에너지보다 낮은 상태($E_1 < E_1^\ast$)라면 $E_1$이 증가하는 방향과 $W_{\text{tot}}$이 증가하는 방향이 동일할 것이다.

$$ E_1 < E_1^\ast \Rightarrow \frac{\partial W_{\text{tot}}}{\partial E_1} = \frac{\partial W_1 (E_1)}{\partial E_1} - \left. \frac{\partial W_2 (E_2)}{\partial E_2} \right|_{E_2 = E - E_1} > 0 \Rightarrow \frac{\partial W_1}{\partial E_1} > \frac{\partial W_2}{\partial E_2} $$

이 경우 $E_1$이 증가하려 하기 때문에 부분계 1의 온도 $t_1$은 부분계 2의 온도 $t_2$보다 낮을 것이다.

$$ E_1 < E_1^\ast \Rightarrow t_1 < t_2 $$

반대의 경우($E_1 > E_1^\ast$) 또한 생각해 볼 수 있다. 중간 계산을 건너뛰고 결론만 이야기한다면, 다음과 같은 식을 얻는다.

$$ E_1 > E_1^\ast \Rightarrow \frac{\partial W_1}{\partial E_1} < \frac{\partial W_2}{\partial E_2} \,,\, t_1 > t_2 $$

여기서 한가지 패턴을 눈치챌 수 있는데, 온도의 대소관계는 미시상태 수에 대한 에너지 미분 $\frac{\partial W}{\partial E}$의 대소관계와 반대라는 것이다. 따라서 $\frac{\partial W}{\partial E} > 0$를 만족하는 보통계의 경우 온도에 대한 단조증가함수 $\phi(t) > 0$를 다음과 같이 정의할 수 있다.

$$ \phi(t) := \left( \frac{\partial W}{\partial E} \right)^{-1} \,,\, t_1 < t_2 \Rightarrow \phi(t_1) < \phi(t_2) $$

이제 남는 문제는 $\phi(t)$를 고전열역학에서 정의되는 열역학적 온도 $T$로 취급할 수 있다는 것을 보이는 것이다. 이 문제만 해결되면 볼츠만 엔트로피 $S_B = W$가 클라우지우스 엔트로피 $S_C$에 대응됨은 자동으로 따라오는데, 볼츠만 엔트로피의 변화량을 클라우지우스 엔트로피 정의의 우변처럼 적을 수 있기 때문이다.

$$ \phi(t) = T \Rightarrow \frac{\partial S_B}{\partial E} = \frac{1}{T} \Rightarrow dS_B = \frac{dE}{T} \Leftrightarrow \left. \frac{\delta Q}{T} \right|_{\text{rev.}} = dS_C $$

그렇다면 $\phi(t) = T$를 어떻게 보일 수 있을까? 고전열역학에서 열역학적 온도 $T$가 어떻게 정의되었는지 기억하는가? 똑같은 방법을 쓰면 된다. 가역열기관(reversible heat engine)을 도입해서 열 교환비가 정확히 $\phi(t)$의 비로 주어짐을 보이면 된다.

 

---

 

가역열기관 중 가장 잘 알려진 카르노 기관(Carnot engine)을 이용하기로 하자. 영문/한국어를 불문하고 위키백과 설명에는 카르노 기관이 이상기체를 작동 유체으로 이용한다고 되어 있으나, 일반적인 가역기관으로 추상화할 경우에는 카르노 기관의 작동 유체가 이상기체일 필요가 없다. 열역학 및 통계역학 교육에서 명시적으로 언급하는 경우가 드문 것이 아쉬운 부분.

 

구체적으로는 다음과 같이 카르노 기관을 구성한다.

 

  • 등온과정은 온도 $t$ 혹은 $\phi(t)$가 일정한 과정으로 구성한다.
  • 단열과정은 미시상태의 수 $\Omega$ 혹은 그 로그값인 $W = \log \Omega$가 일정한 과정으로 구성한다.

 

등온과정은 같은 온도를 갖는 열기관과 열원 사이의 열 교환이므로 가역과정이고, 위의 방식대로 정의된 단열과정은 미시상태의 수가 늘어나지 않았기 때문에[각주:7] 되돌릴 수 있어 가역과정이다. 등온-단열-등온-단열 네 단계를 통해 원 상태로 돌아오는 카르노 순환(Carnot cycle)은 다음과 같은 도표로 나타낼 수 있다. 비록 양 축을 온도(의 함수)인 $\phi(t)$와 미시상태의 수인 $W$로 구성했지만, 실제 열기관의 상태를 결정하는 독립변수는 열기관의 에너지 $E$와 부피 $V$이다.

 

높은 온도에서의 등열팽창(AB)-높은 온도에서의 단열팽창(BC)-낮은 온도에서의 등열수축(CD)-낮은 온도에서의 단열수축(DA) 네 과정으로 구성되는 카르노 기관

이제 구성한 카르노 기관의 열 교환비를 계산해보자. 등열팽창 과정인 A-B에서 열기관이 얻는 열 $Q_h$는 A와 B에서의 에너지 차이인 $E_B - E_A$로 주어진다. 이때 열기관의 상태가 움직이는 곡선은 온도 $\phi(t)$가 상수인 곡선 $\frac{\partial W}{\partial E} = \phi(t_h)^{-1}$이므로, 고온부에서 얻은 열은 다음과 같이 적을 수 있다.

$$ Q_h = E_B - E_A = \left( \left. \frac{\partial W}{\partial E} \right|_{t=t_h} \right)^{-1} (W_B - W_A) = \phi(t_h) (W_B - W_A) $$

마찬가지로 저온부에서 버리는 열은 다음과 같이 적을 수 있다.

$$ Q_l = E_C - E_D = \left( \left. \frac{\partial W}{\partial E} \right|_{t=t_l} \right)^{-1} (W_C - W_D) = \phi(t_l) (W_C - W_D) $$

그리고 단열과정의 정의 때문에 $W_B = W_C$와 $W_A = W_D$라는 추가조건을 얻으며, 열 교환비로 다음 표현을 얻는다.

$$ \frac{Q_l}{Q_h} = \frac{\phi(t_l) (W_C - W_D)}{\phi(t_h) (W_B - W_A)} = \frac{\phi(t_l)}{\phi(t_h)} = \frac{T_l}{T_h} $$

이제 가역열기관의 열 교환비를 열역학적 온도로 정의하는 고전열역학에서와 같이 온도에 대한 양의 단조증가함수 $\phi(t)$를 열역학적 온도 $T$로 정의하면 된다. 다만 $\phi(t) = (\partial W / \partial E)^{-1}$는 에너지의 차원을 가지므로, 단위를 변환해줄 상수인 볼츠만 상수 $k_B$를 도입해서 온도와 차원을 맞춰준다.

$$ \phi(t) := k_B T = \left( \frac{\partial W}{\partial E} \right)^{-1} $$

이제 볼츠만 상수를 넘겨주면 많은 통계역학 책에서 그냥 적고 시작하는 다음 식을 얻을 수 있다.

$$ \frac{1}{T} = k_B \frac{\partial \log \Omega (E,V)}{\partial E} = \frac{\partial}{\partial E} \left( k_B  \log \Omega \right) = \frac{\partial S_B}{\partial E} $$

이 식이 주어질 경우 어떻게 볼츠만 엔트로피의 변화량 $d S_B$를 클라우지우스 엔트로피의 변화량 $d S_C$에 대응시킬 수 있는지는 위에서 이미 이야기했으므로 생략하기로 한다.

  1. 마찬가지의 이유에서 열역학이 존재하는 블랙홀을 이용한 열기관을 생각할 수 있다. 이 사실을 AMPS 불의 벽Firewall(방화벽으로 번역하기도 하는데 의미상 불의 벽이 더 자연스럽다) 역설을 주제로 한 특강(2014년 봄)을 들으며 깨달았는데, 대학원에 들어오고 나서 열기관으로서의 블랙홀을 고려하는게 최신 연구 주제(내가 아는 한 이 문제를 고려한 논문은 2014년 4월의 Clifford Johnson의 논문이 최초이다)라는 것을 알고는 상당히 놀랐던 기억이 있다. [본문으로]
  2. 실제로는 분자이지만 '연속체가 아닌 이산적인 작은 입자로 구성된다'란 핵심 아이디어를 공유한다는 점에서 원자론의 일종으로 취급할 수 있다. [본문으로]
  3. 구체적으로는 이상적인 가역기관의 열 교환비에 대응된다. 비율로 정의된다는 특성상 온도간 차이는 의미가 없고 온도간의 비율만이 의미를 갖는다. 절대온도의 다른 정의방법인 '이상기체의 부피'와 연관지으려면 통계역학의 '열역학적 온도'와 동치성을 보인 뒤 기체분자운동론을 이용하는 방법을 쓸 수 있다. 기체분자운동론을 이용해 이상기체상태방정식을 구하는 것은 많은 교재에서 다루는 내용이므로 생략하기로 하자. [본문으로]
  4. 폐곡선을 따라 우변의 미분량을 적분하면 0보다 작은 값을 얻으며, 가역과정의 경우에는 0이 된다는 정리를 클라우지우스 정리(Clausius theorem)라고 한다. 열역학 제2 법칙의 정량화된 버전 중 하나. [본문으로]
  5. 편의상 미시상태의 수를 $W$라고 적을 경우 로가리듬이 붙은 경우를 의미한다고 이해하기로 하자. [본문으로]
  6. 이 표현은 Kubo의 통계역학 책에서 쓰는데, 보편적인 표현은 아닌 듯 하다. 참고로 $(d^2 W/ d E^2) < 0$이란 조건은 비열(specific heat)이 양수일 조건과도 일치하며, 블랙홀은 반대 조건을 만족하는 열역학계이기 때문에 불안정하고 궁극적으로는 호킹 복사에 의해 증발한다. [본문으로]
  7. 동일 선험확률의 원리에서 유도되는 보조가설이 '미시상태의 수가 줄어들 수 없음'이었음을 상기하자. [본문으로]
Posted by 덱스터

This series is divergent; therefore, we may be able to do something with it. -- Oliver Heaviside

 

$\frac{1}{r}$꼴을 갖는 Coulomb potential은 IR 발산이 있는 것으로 유명하다. 좀 더 구체적으로 말하자면, 학부 역학 수준에서 계산할 수 있는 궤도방정식을 풀어 얻는 Rutherford scattering의 미분단면적(differential cross-section)을 계산할 경우 다음과 같은 $\sin^{-4} (\theta/2)$의 꼴을 갖는다는 것이 알려져 있다.

$$ \frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4 (\theta/2)} $$

이 식을 적분하여 얻는 총산란단면적(total cross-section)은 발산한다.

$$ \sigma_{\text{tot}} = \int \frac{d \sigma}{d \Omega} d \Omega \propto \int \frac{d(\cos \theta)}{\sin^4 (\theta/2)} \to \infty$$

양자역학에서 Coulomb potential이 주어졌을 때의 산란문제를 풀 때도 이 성질과 관련된 현상이 나타난다. Griffiths 양자역학에서는 Coulomb potential을 Yukawa potential의 질량이 없는 극한으로 생각하기 때문에 등장하지 않지만 Landau 3권이나 교수님 세대의 메인 레퍼런스(...)란 느낌이 있는 Shiff책을 뒤적이다 보면 asymptotic region에서 파동함수가 평면파인 $e^{ikz}$로 수렴하는 것이 아니라 로그가 붙은 추가적인 위상항(phase factor)이 등장하는 것을 볼 수 있다.

$$ \psi \sim e^{ikz + (i/k) \log [k(r-z)]} $$

교재에서는 이런 Coulomb potential의 IR 발산에 대해 'Coulomb potential이 장거리 상호작용(long-range interaction)이기 때문에 발생한다'는 설명을 써놓지만, 구체적으로 무한원점에서 0으로 수렴하는 다른 potential들과 어떻게 다른지에 대해 설명하는 경우는 드물다[각주:1]. 왜 이런 현상이 일어나는지 고전역학적으로 이해하는 것이 이 포스트의 목표.

 

---

 

Coulomb potential이 주어졌을 때 그 potential을 따라 움직이는 시험 입자(test particle)의 궤도방정식을 푸는 문제는 몇 안 되는 정확하게 풀 수 있는 고전역학 문제이다. 심지어 궤도방정식 위키백과 페이지가 있을 정도. 시간에 대한 거리의 미분방정식을 각도에 대한 거리의 미분방정식으로 바꾼 뒤 $u = 1/r$이란 변수변환으로 조화진동자 방정식으로 바꾸는 과정이나 이렇게 얻은 궤도방정식으로부터 충돌 파라메터(impact parameter)에 대한 산란각(scattering angle)의 방정식을 얻는 과정은 많은 교재에서 충분히 다루고 있으니 여기서는 생략하기로 하자[각주:2].

 

여기서는 eikonal 근사의 변종으로 Coulomb potential에서의 산란을 풀어보자. Eikonal은 기하광학에서 빛의 경로를 계산하기 위해 쓰는데, WKB 근사라고 생각해도 좋다. 여담으로 eikonal은 해밀턴이 기하광학을 풀기 위한 수학적 기법을 다듬으면서 같은 기법이 고전역학에도 적용될 수 있음을 알아차리면서 현재의 해밀턴역학과 심플렉틱기하를 만들어내는 계기가 되었고, 슈뢰딩거의 파동방정식은 기하광학의 eikonal 방정식에서 영감을 얻었다고 한다.

 

고전역학이든 양자역학이든 산란 문제에서 eikonal 근사란 '직선 근사'라고 생각하면 된다[각주:3]. 구체적으로 이야기한다면, 입자의 경로를 1) 아무런 산란이 없는 직선 경로에 2) 산란을 일으키는 포텐셜의 효과를 집어넣어 얼마나 직선 경로에서 벗어나는지 섭동계산으로 구하는 방법이 되겠다.

 

이제 Coulomb potential에서의 고전적인 산란 문제에 eikonal 근사를 적용해보자. Landau 1권에서는 뉴턴역학을 기반으로 eikonal 근사를 사용하지만 여기서는 해밀턴역학을 기반으로 eikonal 근사를 써보기로 한다[각주:4]. 먼저 해밀토니안을 다음과 같이 적는다.

$$ H = \frac{p^2}{2} - \frac{k}{r} $$

해밀턴 운동방정식은 금방 적을 수 있다.

$$ \dot{\vec{r}} = \{ H , \vec{r} \} = \vec{p} \,,\, \dot{\vec{p}} = \{ H , \vec{p} \} = - \frac{k \vec{r}}{r^3} $$

이 역학계의 산란문제를 eikonal 근사로 푸는 것은 다음과 같은 ansatz를 이용해 섭동전개 파라메터 $k$에 대해 푸는 것으로 생각할 수 있다.

$$ \vec{p} = \vec{p}_0 + k \vec{p}_1 (t) + k^2 \vec{p}_2 (t) + \cdots \,,\, \vec{r} = \left( \vec{b} + \vec{p}_0 t \right) + k \vec{r}_1 (t) + k^2 \vec{r}_2 (t) + \cdots $$

여기서 $\vec{p}_0$는 asymptotic region에서의 운동량이고, $\vec{b}$는 충돌 파라메터의 역할을 한다. 이렇게 해석하려면 $\vec{b} \cdot \vec{p}_0 = 0$이란 조건을 추가로 얹어주는 것이 좋다. 섭동이 없는 원래 경로에서 시간 $t$의 원점을 재정의하는 것으로 이 조건을 맞출 수도 있고.

 

이제 위의 방정식을 풀어보자. 방정식을 풀려면 경계조건을 줘야 하는데, 가장 먼저 생각할 수 있는 경계조건은 다음 경계조건이다.

$$\vec{r}_{i>0} (-\infty) = \vec{p}_{i>0} (-\infty) = 0$$

언듯 보기에는 문제가 없는 경계조건으로 보인다. $t = -\infty$는 산란이 일어나기 한참 전의 과거이므로 섭동이 없는 원래 경로와 일치해야 한다는 직관과도 맞고. 하지만 이 경계조건은 절대로 맞춰줄 수 없다. Coulomb potential의 꼬리가 너무 길기 때문. 우선 이 문제를 무시하고 그냥 방정식을 풀어보자.

 

$\vec{p}_1$에 대한 운동방정식은 다음과 같이 주어진다.

$$ k \dot{\vec{p}}_1 (t) = - \frac{k (\vec{b} + \vec{p}_0 t)}{(b^2 + p_0^2 t^2)^{3/2}} $$

이 식에 처음 얹은 경계조건을 넣고 풀면 다음과 같은 답을 얻는다.

$$ \vec{p}_1 (t) = - \int_{-\infty}^t \frac{\vec{b} + \vec{p}_0 \tau}{(b^2 + p_0^2 \tau^2)^{3/2}} d\tau = -\frac{1}{ab^2} \left[ \left( 1 + \frac{at}{\sqrt{1 + a^2 t^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 t^2}} \right] $$

쌍곡함수로 변수변환을 하면 적분을 쉽게 할 수 있다. 문제를 풀 때 새로 정의한 변수들은 다음과 같다.

$$ \hat{b} := \frac{\vec{b}}{b} \,,\, \vec{a} := \frac{\vec{p}_0}{b} \,,\, \hat{a} := \frac{\vec{a}}{a} = \frac{\vec{p}_0}{p_0} $$

$k^1$ 차수에서 운동량 변화는 단순히 $\vec{p}_1 (+\infty)$를 읽어내면 된다.

$$\Delta \vec{p}_1 := \vec{p}_1 (+\infty) = - \frac{2 \hat{b}}{ab^2} = - \frac{2 \vec{b}}{p_0 b^2}$$

마찬가지로 $k^2$ 차수에서 운동량 변화는 $\vec{p}_2 (+\infty)$를 읽어내면 되는데, $\vec{p}_2$는 $\vec{r}_1$에 대한 해가 있어야 풀 수 있다[각주:5].

$$k^2 \dot{\vec{p}}_2 = - k^2 \left[ \frac{\vec{r}_1}{r_0^3} - \frac{3 \vec{r}_0 (\vec{r}_0 \cdot \vec{r}_1)}{r_0^5} \right]$$

따라서 $\vec{r}_1(t)$를 풀어야 한다. 우선 식을 적어보자.

$$\vec{r}_1 (t) = \int_{-\infty}^{t} \vec{p}_1 (\tau) d\tau = - \frac{1}{ab^2} \int_{-\infty}^{t} \left[ \left( 1 + \frac{a\tau}{\sqrt{1 + a^2 \tau^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 \tau^2}} \right] d\tau$$

눈치가 빠른 분들은 알아차리셨겠지만, 이 정적분은 잘 정의되질 않는다. 두번째 항이 $\sim \tau^{-1}$의 꼴을 하고 있기 때문에 무한대에서 로그 발산이 있기 때문이다. 첫번째 항은 정적분으로 처리하고 두번째 항은 정적분을 포기하고 부정적분으로 처리할 경우 다음 식을 얻는다.

$$\vec{r}_1 (t) = - \frac{ e^{\sinh^{-1} (at)}}{a^2 b^2} \hat{b} + \left. \frac{\sinh^{-1}(at)}{a^2 b^2} \hat{a} \right|_{-\infty}^{t}$$

$x \in \mathbb{R}$일 때 $\sinh^{-1} x = \log (x + \sqrt{1+x^2})$이므로, 두번째 항의 발산은 예상대로 로그 발산임을 확인할 수 있다. 이 로그 발산은 다음과 같이 이해할 수 있다. Coulomb potential에서의 에너지 보존을 생각하면 무한대에서의 입자의 속력을 $v$라고 할 때 asymptotic region에서의 입자의 속력 $v$는 다음과 같다.

$$ \frac{v^2}{2} = \frac{v_0^2}{2} + \frac{k}{r} \Rightarrow v \sim v_0 + \frac{c}{r}$$

따라서 아무런 힘을 못 느끼고 $v_0$의 속력으로 이동하는 섭동이 없는 경로와 Coulomb potential의 영향을 받아 섭동이 있는 경로 사이의 변위(displacement)를 계산하면 다음과 같아진다.

$$ \Delta r \sim \int (v - v_0) dt \sim \int \frac{c}{r} dt \sim \int \frac{1}{dr/dt} \frac{c}{r} dr \sim \frac{c}{v_0} \log r $$

$r^{-1}$보다 빠르게 떨어지는 다른 potential의 경우 입자가 멀어져 가면서 potential로부터 받는 영향이 충분히 빠르게 줄어들어 섭동이 없는 경로와 potential의 영향을 받은 경로 사이의 변위가 일정하게 유지된다. 하지만 Coulomb potential의 경우 potential의 영향이 0으로 줄어드는 속도가 느려 아무리 멀어지더라도 변위의 차이가 계속 누적되는 것이다. 발산하는 총산란단면적이나 양자역학 산란 문제를 풀 때 평면파에 로그만큼의 위상항이 추가로 붙는 현상은 이 흔적이라고 이해할 수 있다.

 

---

 

여튼, $k^2$ 차수의 운동량 변화를 계산하는 문제로 돌아오자. 발산이 있으면 잡으면 되는 법이다.

 

가장 단순한 해법은 $t = - \infty$를 기준점으로 잡지 않고 $t = 0$를 기준점으로 잡는 것이다. 실제로 worldline quantum field theory(WQFT)를 도입해서 post-Minkowskian 계산을 하는 팀에서 이런 접근을 취하고 있는데, 이 접근법은 일관성이 있다는 장점이 있지만 asymptotic variable을 새로 계산해야 하는 번거로움이 있다.

 

다른 해법은 로그 발산을 미리 섭동계산의 경계조건에 반영하는 것이다. 구체적으로는 다음과 같이 로그 발산을 $\vec{r}_1^{(0)}$로 뽑아내고 $\vec{r}_1^{(1)}$에 대한 방정식을 푸는 것.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) \,,\, \vec{r}_1^{(0)} (t) = \frac{\sinh^{-1} (at)}{a^2 b^2} \hat{a} $$

로그 발산을 갖는 경계조건을 $\vec{r}_1^{(0)}$로 뽑아내었기 때문에 남는 경계조건은 $\vec{r}_1^{(1)} (-\infty) = 0$이 되며, $\vec{r}_1 (t)$는 다음과 같이 풀린다.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) = - \frac{ at + \sqrt{1 + a^2 t^2}}{a^2 b^2} \hat{b} + \frac{\log \left( at + \sqrt{1 + a^2 t^2} \right)}{a^2 b^2} \hat{a} $$

위 해를 $\vec{p}_2$에 대한 운동방정식에 집어넣으면 $k^2$ 차수의 운동량 변화를 구할 수 있다. 적분구간이 $(-\infty, +\infty)$로 대칭적이라는 것을 이용하면 식을 좀 다 단순화할 수 있다.

$$ \Delta \vec{p}_2 = \int_{-\infty}^{+\infty} \left[ \frac{1}{a^2 b^5 (1 + a^2 \tau^2)} - 3 \frac{\sqrt{1 + a^2 \tau^2} - a\tau \log (a\tau + \sqrt{1 + a^2\tau^2})}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{b} d\tau \\ - \int_{-\infty}^{+\infty} \left[ \frac{3a^2\tau^2}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{a} d\tau $$

얼핏 봐서는 적분이 꽤 복잡하게 보이는데, 의외로 적분하고 나면 값 자체는 단순하다.

$$ \Delta \vec{p}_2 = - \frac{2 \vec{a}}{a^4 b^5} = - \frac{2 \vec{p}_0}{p_0^4 b^2}$$

$k$를 전부 살린 산란 후 운동량은 다음과 같은데

$$\vec{p} (+ \infty) = \left( 1 - \frac{2 k^2}{p_0^4 b^2} \right) \vec{p}_0 - \frac{2k}{p_0 b^2} \vec{b} + \mathcal{O}(k^3)$$

제곱해보면 $k^2$ 차수에서 에너지 보존이 성립한다는 것도 확인할 수 있다.

$$ \left| {\vec{p} (+ \infty)} \right|^2 = p_0^2 + \mathcal{O}(k^3) $$

  1. Landau 3권에는 있다 (566쪽 주석). 이 포스트와는 다른 설명을 보고 싶다면 란다우를 보세요. [본문으로]
  2. 진짜로 상관없는 여담이지만, 고등학생을 대상으로 한 물리 경시대회가 있던 시절 궤도방정식을 푸는 문제가 나온 적이 있다. 문제에 전혀 손도 못 댄 것이 분해서 그날 돌아오자마자 Marion의 해당 파트를 잡고 수식 유도과정을 전부 외워버렸는데, 다음 해 경시대회에는 궤도방정식과 관련된 문제가 전혀 등장하지 않았다. [본문으로]
  3. 다만 Weinberg의 양자역학 교재에서는 WKB근사로 취급하고 있어서 약간 다르다. Landau 3권의 quasi-classical 근사로 말하고 있다고 봐도 좋을 듯. [본문으로]
  4. 따로 작성하던 노트가 해밀턴역학 기반이라 뉴턴역학으로 옮겨적기 귀찮아서(...) 그렇다. 뉴턴역학에 적용하는 것은 연습 문제로 남긴다. [본문으로]
  5. 고전역학 교재에서 eikonal 근사로 산란문제를 푸는 것을 배웠고 Coulomb potential에 적용하는 연습문제도 풀어봤는데 IR 발산을 본 기억이 없다면 1차 근사까지만 배웠기 때문일 가능성이 높다. [본문으로]
Posted by 덱스터

얼마 전 계산을 하나 추가하고 내용을 완전히 갈아엎다시피 한 논문을 재투고했는데 에디터가 전혀 반응을 보이지 않고 있다. 에디터 반응을 기다리는 동안 생각도 정리할 겸 간략하게 적어보는 정리 포스트. 포스트 작성 도중 레프리에게로 넘어간 것을 확인했다. 좋은 리포트가 돌아오기만을 기다려야...

 

---

 

"블랙홀은 머리카락이 없다(no-hair)"는 말이 있다. 단순하게 설명하면 '블랙홀은 질량, 스핀, 전하에 의해 완전히 결정된다'는 의미이고, 좀 더 수학적인 세부사항을 덧붙이면 '사건의 지평선이 특이점(singularity)이 아닌 일반상대론의 진공해는 알려진 (Schwarzschild/Kerr/Reissner-Nordström/Kerr-Newman) 블랙홀 해만 존재한다'가 된다. 블랙홀을 시공간상의 "구멍"처럼 말하곤 하는데, '텅 빈 허공이 무슨 특징을 가질 수 있겠느냐'는 관점에서 보면 블랙홀에게 머리카락이 없다는 말은 꽤나 그럴듯하게 들린다. 물론 그래서 양자중력을 고민하는 사람들이 머리를 쥐어뜯고 있지만.

 

물론 흔히 말하는 "블랙홀은 머리카락이 없다"의 블랙홀은 온 우주에 딱 그 블랙홀 하나만 존재하는 이상화된 조건에서의 블랙홀에 대한 정리이기 때문에 실제로 우리가 보는[각주:1] 블랙홀에게도 적용된다고 이야기하려면 약간의 논리적 도약이 필요하다. 주변에 아무것도 없는 홀로 남겨진 블랙홀과 주변에 온갖 물체들이 날아다니는 실제 우주에 존재하는 블랙홀이 비슷한 성질을 갖고 있으리라 믿는 것은 합리적이지만, 그 둘이 비슷한 수준이 아니라 완전히 동일하다고 주장하는 것은 아무래도 다른 이야기가 되지 않겠는가?

 

그렇다면 좀 더 현실적인 상황에 놓인 블랙홀에 대해 '머리카락이 없다'는 것은 무슨 의미일까? 이상화(idealised)된 해로서의 블랙홀과 현실적인 블랙홀의 차이는 후자의 경우 블랙홀이 주변에 날아다니는 물체의 중력에 의해 영향을 받는다는 것이다. 따라서 '머리카락이 없다'는 성질의 현실적인 상황으로의 일반화로서 '주변 물체로부터 받는 영향이 없다'는 성질로 해석하는 가능성이 있다. 그리고 실제로 일반상대론의 블랙홀들은[각주:2] 이 성질을 만족한다.

 

---

 

바닷가에 충분히 오래 있었던 사람이라면 누구나 몸으로 경험하게 된다. 거대한 달의 중력을.

 

달과 함께 바닷가에 바닷물이 들이닥치고 빠져나가는 현상을 조석(潮汐) 혹은 밀물과 썰물이라고 한다. 조석은 달이 지구에 미치는 중력이 일정하지 않기 때문에 생기는 현상이다. 만유인력은 뉴턴의 역제곱법칙을 따르므로, 달에 가까울수록 달의 중력을 강하게 느끼고 달에서 멀수록 달의 중력을 약하게 느끼게 된다. 이렇게 위치에 따라 조금씩 변하는 달의 중력에서 평균값을 빼면 달을 향하는 방향으로는 상대적으로 당기는 힘이 작용하고 달과 수직한 방향으로는 상대적으로 압축하는 힘이 작용하는 것처럼 보이게 되는데, 이를 조석력(潮汐力, tidal force)이라고 한다. 여담으로 일반상대론을 이해하는데 조석력은 매우 중요한데, 유한한 크기를 갖는 자유낙하하는 물체는 등가원리에 의해 중력 그 자체는 경험할 수 없어도 '중력의 차이' 즉 조석력은 경험하기 때문이다. 일반상대론 강의에서 geodesic deviation을 적어도 한 번 정도는 언급하고 지나가는 이유이기도 하며, 가끔씩 보이는 '자유낙하하는 물체가 측지선(geodesic)을 따라 움직이지 않으니 등가원리가 위배된다'는 주장에 대해 내가 '아니 그건 아니지...'라 반응하는 이유이기도 하다. 등가원리는 크기가 없는 이상화된 자유낙하하는 물체에 대해서만 적용되지 시공간의 곡률을 느끼는 유한한 크기의 점입자로 근사된 물체에 적용되는 것이 아니니까.

 

여튼 조석력으로 다시 돌아와서, 조석력을 받는 물체가 그 조석력에 대해 어떻게 반응하는지를 나타내는 물리량을 러브 수(Love number)라고 한다. 아우구스투스 에드워드 휴 러브(Augustus Edward Hough Love)의 지구에 대한 조석력의 영향에 대한 연구로부터 붙은 이름으로, 하필 이름이 이름이라 수많은 논문들의 말장난(...)의 원천이 되기도 한다.

 

손으로 만져가며(?) 실험하기 좋은 전자기학에 빗대보자면 러브 수는 전기 감수율(electric susceptibility)에 대응된다. 물체에 전기장을 걸 경우 전기장에 의해 물체 내부의 전하들 중 양전하는 전기장이 향하는 방향으로, 음전하는 전기장이 향하는 반대 방향으로 힘을 받게 된다. 따라서 전기장에 의해 물체 내부의 전하들이 움직이게 되며, 그 결과로서 물체 전체적으로 전하의 불균형이 발생하는 것을 유전 분극(dielectric polarisation)이라고 한다. 그리고 전기장이 충분히 작을 경우 이 현상에 의해 발생한 극성이 전기장의 세기와 정비례할 것으로 기대할 수 있는데, 이 비례상수를 전기 감수율이라고 한다.

 

그렇다면 러브 수는 조석력에 대한 어떤 반응을 가리키는 것일까? 우리가 가장 쉽게 관찰할 수 있는 조석력에 대한 반응은 아무래도 밀물과 썰물, 혹은 해수면 높낮이의 반응이다. 이를 다르게 말한다면 '물체의 표면이 조석력에 의해 변형된다'고 할 수 있는데, 이렇게 물체의 표면이 조석력에 어떻게 반응하는지를 나타내는 물리량을 1종 러브 수(Love number of first kind) 혹은 러브 수 $h$라고 표기한다. 블랙홀의 경우에는 1종 러브 수가 조석력에 의해 사건의 지평선의 위치가 움직이는 것을 나타낸다고 할 수 있으며, 이렇게 정의되는 1종 러브 수는 고전적으로 유한한 값을 갖는다는 것이 알려져 있다.

 

조석력에 의해 물체가 변형되는 예

 

다만 우리에게 좀 더 쓸모있는 러브 수는 2종 러브 수(Love number of second kind) 혹은 러브 수 $k$로, 2종 러브 수는 조석력을 받는 물체가 중력의 원천(source)으로서 어떻게 변형되는가를 나타낸다. 앞서 잠시 언급했던 전자기학으로 돌아가보자. 전기 감수율은 (전기적으로 중성인) 물체가 전기장 안에 놓였을 때 전기장에 의해 획득하게 되는 전기쌍극자(electric dipole)를 나타내는데, 이것을 '외부 전기장에 의해 물체가 얻는 유도된 쌍극자 모먼트(induced dipole moment)'로 볼 수 있다. 다시 중력으로 돌아오면, 2종 러브 수는 외부 중력원에 의해 받는 조석력으로 물체가 얻는 유도된 질량 극자 모먼트(induced multipole moment)를 나타낸다고 할 수 있다. 편의상 사중극자(quadrupole)에 대응되는 $k_2$를 예로 들자면, 한 방향으로는 확장하고 그 수직한 방향으로는 압축하는 조석력을 받는 물체가 중력원으로서 어떻게 찌그러지는지를 나타낸다고 할 수 있다.

 

---

 

최근 러브 수에 대한 사람들의 관심이 다시 증가한 이유 중 하나로 중력파 관측이 있다. 이론적으로 민감도가 충분히 높은 지상 간섭계 중력파 관측소에서 얻은 중력파 데이터로부터 중성자별의 2종 러브 수를 결정할 수 있기 때문이다. 실제로 LIGO/VIRGO 증력파 관측소에서 중성자별의 쌍성 병합(neutron star binary coalescence)에 대해 관측한 중력파 데이터를 보면 조석 변형률 파라메터(tidal deformability parameter)에 대한 분석이 있는 것을 확인할 수 있다. 조석 변형률은 결국 중성자별의 내부 구조에 의해 결정되기 때문에 중성자별을 이루는 핵물질(nuclear matter)의 상태방정식(equation of state)에 대한 정보가 일부 반영되고[각주:3], 따라서 양자색역학에 대한 보다 심도 있는 이해에 관심을 갖는다면 핵물질의 상태방정식을 결정하는 관측량 중 하나가 될 2종 러브 수에 대해서도 어느 정도 관심을 가질 수 밖에 없는 셈이다.

 

그렇다면 블랙홀의 경우에는 어떨까? 블랙홀의 경우에는 모든 2종 러브 수가 사라진다는 것이 알려져 있다. 블랙홀이 회전하고 있을 경우에 대해서는 약간의 논란이 있었지만 현재로서는 없는 것이 맞다는 쪽으로 결론이 내려지는 분위기이고. 그리고 포스트의 앞에서 잠시 언급한 '머리카락이 없다'는 성질의 현실적인 블랙홀에 대응되는 버전으로서 이 성질을 이해할 수도 있다. 다른 가능한 관점으로 사라지는 2종 러브 수를 일종의 미세 조정(fine-tuning)으로 이해할 수도 있는데, 이건 최근 러브 수가 사라지는 것과 관련있는 숨겨진 대칭성이 있다는 주장이 나온 상태라 받아들이기는 미묘하다. 어쨌든 러브 수가 사라진다는 것은 블랙홀이 실제로 "구멍"과도 같아서 외부에서 어떤 자극을 주어도 그 자극에 대한 정보가 구멍 속으로 사라진다는 것으로 보아도 좋지 않을까?

 

---

 

여기까지는 고전적인 블랙홀의 이야기였다. 그리고 양자장론이 우리에게 가르켜 준 것이 하나 있다고 한다면, 고전적인 성질은 많은 경우 양자역학을 고려하기 시작하면 더 이상 성립하지 않는다는 것이다. 그렇다면 블랙홀의 사라지는 러브 수도 양자역학을 고려하면 실제로는 0이 아닌 것은 아닐까?

 

그리고 최근에 재투고를 위해 수정한 논문이 정확히 이 문제를 건드리고 있다. 양자효과를 고려하면 블랙홀의 러브 수는 실제로는 0이 아니라 유한한 값을 얻는다는 것이 주된 결론. 앞서 블랙홀의 러브 수가 사라지는 것을 머리카락이 없는 성질로 보거나 숨겨진 대칭성에 의한 성질로 이해할 수 있다는 이야기를 했는데, 이 관점의 연장선상에서 블랙홀이 실제로는 양자역학적인 머리카락을 갖는다고 해석하거나 숨겨진 대칭성에 anomaly가 있다고 해석할 수 있을 것이다. 구체적인 계산방법에 대해서는 다음 기회에 언급하기로.

 

가끔 반농반진으로 "우리는 양성자보다 블랙홀을 더 잘 이해하고 있다"는 농담을 하곤 하는데, 어쩌면 그 이유가 블랙홀에 대해서는 양자역학에 의한 효과를 깊게 생각하지 않았기 때문일지도 모르겠다는 생각이 든다.

  1. 얼마 전까지만 해도 블랙홀을 "본다"고 하면 무슨 소리냐고 한 소리 들었겠지만, EHT 이후 우리는 실제로 블랙홀을 "보게" 되었다. 과학의 힘은 대단해! [본문으로]
  2. 4차원으로 한정지을 경우. 다른 차원의 블랙홀은 약간 다른 성질을 갖는 경우가 있다. [본문으로]
  3. 다만 아주 많은 정보를 담고 있지는 않다. 2종 러브 수가 핵물질의 상태방정식과는 관련 없는 관계식(I-Love-Q 관계식이라고 한다)을 만족하는 것으로 보이기 때문. inspirehep.net/literature/1220233 [본문으로]
Posted by 덱스터

표준적인 물리 커리큘럼을 따라 배우면 상호작용에 대한 관점이 대체로 다음 진화(?)과정을 거치게 된다.


힘 → 장과 포텐셜 → 가상입자의 교환


힘을 장과 포텐셜로 다시 이해하게 되는 과정은 대부분의 경우 문제 없이 넘어가는 반면, 장과 포텐셜에 의한 상호작용을 가상입자의 교환으로 다시 이해(?)하게 되는 과정은 많은 경우 '그렇다고 하니 그런가보지 뭐...'라고 넘기게 된다. 이렇게 근본적인 부분에 대해서는 의문을 갖고 제대로 된 설명을 요구하는 것이 마땅함에도 불구하고 말이다[각주:1].


상호작용을 가상입자의 교환으로 이해하는 이유는 무엇일까. 우선은 굴러다닐 수 있는 의자에 앉은 두 사람끼리 캐치볼을 하면 주고 받는 공의 운동량에 의해 서로 멀어지는 과정으로 설명하는 사기(...)는 잠시 잊어버리기로 하자. 이 관점을 제대로 이해하기 위해서는 다음과 같은 배경지식이 필요하다.


1. 양자역학의 섭동이론(perturbation theory)

2. 질량이 없는 입자의 에너지를 이해할 정도의 특수상대론

3. 상호작용을 매개하는 장의 양자화와 Fock space


학부 수준에서는 3번이 좀 무서울 수 있는데 어차피 필요한 배경지식은 다 제공할 예정이니 학부 수준의 양자역학만 제대로 알고 있으면 된다. 대표적인 먼거리힘(long-range force)인 중력이나 전자기학은 스핀 때문에 쓸데없이 복잡하니 질량이 없는 유가와(Yukawa) 상호작용을 생각하기로 하자. 목표는 다음을 보이는 것이다.


유가와 입자에 해당하는 장의 원천(source)이 되는, 거리 $r$만큼 떨어진 두 질점 사이에 유가와 입자의 '교환'에 해당하는 효과에 의해 $\Delta E = -g^2/4 \pi r$만큼의 에너지가 추가로 발생한다.


다르게 말하자면 $1/r$꼴의 포텐셜이 '단일 양자의 교환'으로 볼 수 있는 과정을 통해 만들어지는 것을 확인하자는 것이다. 질점은 정지해 있다고 가정할 예정이니 상대론까지 갈 필요 없이 비상대론적인 계산으로 충분하다 (다만 편의상 $c=1$로 둘 예정).



편의상 두 질점을 $A$와 $B$라고 하고, $A$는 원점 $\vec{0}$에, $B$는 원점이 아닌 $\vec{r} \neq \vec{0}$에 두기로 하자. 그리고 유가와 입자에 해당하는 장(유가와 장[각주:2])을 $\phi(t, \vec{x})$라고 하자 (시간 $t$에 대한 의존성은 중요하지 않으니 앞으로 표시하지 않겠다). 이런 계의 동역학(dynamics)을 기술하기 위해 제일 먼저 할 수 있는 일은 라그랑지안(Lagrangian)을 적는 것이다.

$$ L = L_{A+B} + \int d^3 \vec{x} \frac{[\dot{\phi}(\vec{x})]^2 - [\vec{\nabla} \phi(\vec{x})]^2}{2} - g \int d^3 \vec{x} ~ \phi(\vec{x}) J(\vec{x}) $$

$L_{A+B}$는 질점 $A$와 $B$의 라그랑지안이고 어차피 움직이지 않는다고 가정할 예정이니 구체적인 생김새는 알 필요가 없다. 실제 계산에서는 그냥 에너지 $E$를 줄 예정. 중간의 적분은 유가와 장의 자유 라그랑지안(free Lagrangian)이다. 섭동이론에서는 나머지 부분을 무시한 채 이 부분을 양자화하는 것으로 유가와 입자를 얻는다. 구체적으로는 $\phi (\vec{x})$를 다음과 같이 전개하게 된다(이 유도과정을 알고 싶다면 Tong의 양자장론 노트를 읽으면 좋다.).

$$ \phi (\vec{x}) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t + i \vec{k} \cdot \vec{x} } + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t - i \vec{k} \cdot \vec{x} } \right] $$

현재 고려하고 있는 유가와 입자는 질량이 없는 입자이기 때문에 $E(\vec{k}) = |\vec{k}|$란 조건을 만족한다. 일반적으로는 $E(\vec{k}) = \sqrt{\vec{k}^2 + m^2}$. 여기서 $a_{\vec{k}}$와 $a^\dagger_{\vec{k}}$는 흔히 mode operator라고 부르는데, 단순조화진동자(simple harmonic oscillator)의 대수를 만족한다.

$$ [a_{\vec{k}_1} , a^{\dagger}_{\vec{k}_2}] = (2 \pi)^3 \delta^3 (\vec{k}_1 - \vec{k}_2) $$

단순조화진동자의 스펙트럼은 자연수로 나타낼 수 있는데, 장론에서는 이 자연수가 '그 운동량을 갖는 입자가 몇 개 있는가'를 나타내는 숫자가 된다[각주:3]. 예컨대 생성 연산자 $a^\dagger_{\vec{k}}$를 상태 $| \psi \rangle$에 작용하게 되면 얻는 상태 $ a^\dagger_{\vec{k}} | \psi \rangle$은 $| \psi \rangle$에 비해 운동량 $\vec{k}$를 갖는 유가와 입자가 하나 더 있는 상태가 된다.


마지막 적분인 $-g \int \phi J$는 질점 $A$와 $B$가 유가와 장의 원천임을 나타낸다. 상호작용의 세기 $g$는 섭동전개를 하기 위해 도입한 형식적인 파라메터. 어차피 질점 $A$와 $B$는 움직일 일이 없으니 $J(\vec{x}) = \delta^3(\vec{x}) + \delta^3 (\vec{x}-\vec{r})$로 취급하면 되는데, 나중에 논의를 편하게 하기 위해 $J_A (\vec{x}) = \delta^3 (\vec{x})$와 $J_B (\vec{x}) = \delta^3 (\vec{x} - \vec{r})$로 나누기로 하자. 각각 $J_{A/B}$는 질점 $A/B$가 유가와 장의 원천이 됨을 나타낸다. 이제 유가와 장에 대한 전개식을 집어넣어 interaction Hamiltonian을 계산할 경우 다음 식을 얻는다.

$$ H_{int} = g \int \phi J = g \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t } \left( 1 + e^{ i \vec{k} \cdot \vec{r} } \right) + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t } \left( 1 + e^{ - i \vec{k} \cdot \vec{r} } \right) \right]$$ 

위의 식을 찬찬히 뜯어보면 $H_{int}$는 주어진 상태 $| \psi \rangle$에 작용할 경우 유가와 입자를 하나 더하거나 ($a^\dagger | \psi \rangle$) 하나 빼는 ($a | \psi \rangle$) 연산자라는 사실을 알 수 있다. 따라서 $| \psi \rangle$가 명확한 유가와 입자의 갯수를 갖는 상태일 경우 $\langle \psi | H_{int} | \psi \rangle = 0$임을 알 수 있다.


여기까지 왔으면 모든 준비가 끝났다. 양자역학 섭동계산을 통해 유가와 입자가 없이 질점 $A$와 $B$만 존재하는 상태 $| \psi^{(0)} \rangle$의 $g^2$ order 에너지 보정을 찾으면 된다. 섭동전개의 유도과정을 설명하는건 귀찮(...)으니 여기에서 위키백과의 유도과정을 보자. $H_{int} = gV$로 적고 결과만 옮겨적을 경우 다음과 같이 쓸 수 있다.

$$ E (g) = E^{(0)} + g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{1}{E^{(0)} - (E^{(0)} + E(\vec{k}))} \left| \frac{1 + e^{i \vec{k} \cdot \vec{r}}}{\sqrt{2 E(\vec{k})}} \right|^2 + O(g^3) $$

여기서 $\langle \psi^{(0)} | V | \psi^{(0)} \rangle = 0$는 위에서 설명한 $H_{int}$의 성질로부터 나온다. 유가와 입자의 에너지가 $E(\vec{k}) = |\vec{k}|$라는 것을 이용하면 다음과 같이 정리할 수 있다.

$$ E (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2 + e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) $$

이제 위의 식에 해석을 줘 보자. 적분 분자의 2는 잘 살펴보면 $H_{int}^A = g \int \phi J_A$로 질점 $A$에 의해 유가와 입자가 생성되었다가 다시 $H_{int}^A$에 의해 질점 $A$가 유가와 입자를 흡수하여 처음 상태로 돌아가는 과정과 질점 $B$에 대해 같은 현상이 일어나는 과정으로부터 나왔음을 알 수 있다. 자기 자신과 상호작용하는 과정이기 때문에 이를 자체에너지(self-energy) 보정이라고 한다.

$$ E_{s} (g) = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{| \langle k | H_{int}^A | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} + \frac{| \langle k | H_{int}^B | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

실제 계산을 수행하려고 하면 $\int d^3 k / k^2$꼴의 적분이기 때문에 이 값은 발산함을 알 수 있다. 양자장론의 모든 곳에서 튀어나오는 무한대중 하나가 바로 이런 자체에너지 보정이다. 우리가 실제로 관심을 갖는 것은 질점 $A$와 $B$ 사이에 유가와 장이 상호작용을 매개함으로서 생기는 에너지이므로, 자체에너지 보정은 좌변으로 넘겨서 잊어버릴 수 있다. 따라서 실제 에너지 변화는

$$ E (g) - E_s (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) =  - \frac{g^2}{4 \pi r} + O(g^3) $$

으로, 다음과 같이 다시 적을 수 있다.

$$ - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{ \langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle + \langle \psi^{(0)} | H_{int}^A | k \rangle \langle k | H_{int}^B | \psi^{(0)} \rangle}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

우변의 분자에 등장하는 $\sum_{k} |k \rangle \langle k|$이 identity operator를 분해한 것으로 볼 수 있음을 고려하면 분자에 등장하는 표현들, 예컨대

$$\langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle$$

를 $| \psi^{(0)} \rangle$ 상태에서 $A$ 질점이 (가상의) 유가와 입자를 하나 만들어낸 다음 $B$ 질점이 그 입자를 흡수하는 과정으로 볼 수 있다. 이런 해석을 바탕으로 장에 의한 상호작용을 그 장에 해당하는 가상입자의 교환으로 이해하게 된다.

  1. '나는 질문 할 생각을 못했는데!'라고 좌절할 필요는 없다. 당장 이 글을 쓰고있는 사람도 그렇듯 이런 근본적인 부분을 몇개 놓치더라도 물리로 어떻게든 밥은 벌어먹고 살 수 있으니까(...). [본문으로]
  2. 스칼라장(scalar field)이란 표현이 더 자주 쓰이지만 장의 이름은 그다지 중요한 것이 아니니 대충 넘어가기로 하자. [본문으로]
  3. 여담으로 미분방정식인 슈뢰딩거 방정식을 풀어서 파동함수를 구해놓고 왜 굳이 생성-소멸 연산자(creation-annihilation operator)를 이용해서 조화진동자를 대수적으로 다시 푸는지 의문을 가졌던 적이 있었는데, 양자장론을 배우면서 그 의문이 해소되게 되었다. [본문으로]
Posted by 덱스터

최근에 썼던 논문은 중력 버전의 다이온에 대한 1-룹 계산이었다. 학사논문도 자기단극자와 관련된 주제였을만큼 자기단극자에 대한 관심이 많은 편이었으니 자기단극자의 중력 버전에 대해서도 관심이 있을 수 밖에 없었는데, 원래 논문의 목표는 현 논문의 결론과는 꽤 많이 달랐다. 계산이 죄다 어긋나서 목표가 달성 불가능할 것으로 보이자 목표를 뒤집어서 뒤집은 결론을 논문으로 만들어버린 것인데, 학사논문도 비슷한 과정을 통해서 논문이 되었으니 기묘한 평행선이라고 할 수 있을지도 모르겠다. '왜 아무도 명시적으로 이야기하지 않는 거지?'라고 여기는 것 중 하나가 논문의 부록A가 된 '전자와 자기단극자 둘을 동시에 기본입자로 취급하면서 UV cut-off가 둘의 질량보다 위에 존재하는 EFT는 있을 수 없다'는 논증인데, 트위터에서 간략하게 언급한 적이 있다.

물론 아무도 이런 이야기를 하지 않은 것은 아니고 부록에 인용으로 언급했던 weak gravity conjecture(WGC)의 자하 버전에서 비슷한 논증을 하는데[각주:1], 여기서는 입자로서 다루는 것에 대한 명시적은 이야기는 하지 않는다. 여튼 이런 특성을 고려한다고 도입한 추가 계산이 10일만에 쓴 짧은 논문의 바탕이 되었다는 점에서 꽤나 운이 좋았던 편. 저 짧은 논문을 쓸 때는 아드레날린 과다방출(..)로 불면증에 심하게 시달려서[각주:2] 약간 제정신이 아닌 상태에서 썼는데, 결과적으로 꽤나 도발적인 결론이 나와버렸다. 실제로 쓸만한 결과일지는 시간이 지나봐야 알겠지만.

 

---

 

여튼 자기단극자 이야기나 계속해보자. 전하와 자하는 그 물체가 광자와 상호작용함을 나타내는데, 둘을 구분하는 것은 무엇일까? 논문 서론에서 언급했듯 와인버그는 전하와 자하는 광자의 두 편광과 어떻게 상호작용하는가---나선도(helicity)의 부호와 상관없이 상호작용하는가 아니면 부호에 따라 반대 방향으로 상호작용하는가---로 구분됨을 보였다. 이 차이로 인해 전하와의 상호작용은 일반적인 벡터포텐셜 $A_{\mu}$로 적히고, 자하와의 상호작용은 dual potential이라고 자주 부르는 $B_{\mu}$로 적히게 된다. $A_{\mu}$가 $dA = F$란 미분형식 방정식으로 적히는 것과는 반대로 dual potential $B_{\mu}$는 $dB = \ast F$란 미분형식 방정식을 만족한다. 전자기학을 배우면서 전자기장은 벡터포텐셜 $A_{\mu}$로 그 동역학을 기술할 수 있다고 배우는 학부생 입장에서는 '잘 와닿지는 않지만 그런가보다~' 싶은 설명이지만, 이렇게 자하의 동역학을 기술하기 위해서는 일반적인 벡터포텐셜 $A_{\mu}$로는 불가능하다는 결론은 사실 학부 수준에서 배우는 양자역학만으로도 논증할 수 있다. 대부분의 양자역학 학부 과정에 아로노프-봄 효과를 포함하기 때문.

 

논증은 간단하다. 다음 조건들이 모순됨을 보이면 된다.

1) 전기-자기 이중성 (electric-magnetic duality) : 전하와 자하 사이에 이중성이 양자역학 수준에서도 존재한다.

2) 국소성 (locality) : 입자가 전자기장과의 상호작용으로 얻는 효과는 그 입자가 위치한 점에서의 장의 값으로 결정된다.

3) $A_{\mu}$의 완전성 : 전자기장의 모든 효과는 $A_{\mu}$장으로 완벽하게 기술할 수 있다.

4) $A_{\mu}$의 게이지 대칭성 : $A \to A + d \lambda$에 해당하는 게이지 대칭에 대해 물리가 변하지 않는다.

 

구체적으로는 dual Aharonov-Bohm effect를 상상하면 된다. 솔레노이드로 생성되는 원통형 영역에 제한된 자기장 대신 똑같이 원통형 영역에 제한된 전기장을 걸어두고[각주:3] 그 주변을 도는 자하를 상상하는 것. 이제 그 주변을 도는 자하가 Aharnonov-Bohm effect의 전하처럼 $A_{\mu}$장으로부터 위상의 변화를 얻을 수 있는지 계산해보면 된다. 답은 아니오. 왜냐하면 이런 모양의 전기장은 전기장이 0이 아닌 원통형 영역 안에서 값을 갖는 스칼라 포텐셜 $\phi$에 값을 잘 주는 것으로 완벽하게 구현할 수 있기 때문. 원통형 영역 밖에서는 $A_{\mu}$장의 값이 항등적으로 0이 되도록 해를 구할 수 있으므로, 자하는 $A_{\mu}$와 상호작용해야만 한다면 dual Aharonov-Bohm effect는 존재할 수 없다. 구체적인 해는 여러분의 지적 유희를 위한 연습문제(...)로 남겨두기로 하자[각주:4].

 

---

 

논문의 원래 목표는 (중력 버전의 자하에 해당하는) NUT charge를 가진 물체가 있을 때, 이 물체의 동역학을 어떻게 기술할 것이냐였다. 물체가 실제로 존재한다면 힘을 걸어서 가속시키거나 감속시킬 수 있어야 하지 않겠냐는게 기본 문제의식. 이 문제의식의 흔적이 부록C인 effective one-body formalism이다. 결과적으로는 계산이 도저히 아귀가 맞지 않아서 반년 이상 헤매다가 방향을 뒤집어서 '일반상대론의 NUT charge를 자하의 중력 버전으로 해석하는 것은 다양한 가능성을 고려해봐도 1-룹 계산에서 붕괴한다'로 결론을 내버리긴 했지만 말이다. 결국 이 결론을 내면서 전기-자기 이중성에 대한 관심 때문에 마찬가지로 관심을 갖게 되었던 Taub-NUT space에 대한 관심이 많이 죽어버리고 말았다.

 

그나저나 자하는 실존할 것인가? 많은 사람들이 '자하는 근시일에 발견된다'가 안전한 베팅이라고 믿고 있고 나도 이 대열에 합류한 상태이긴 한데, 디락이 말년에 자기단극자의 존재 가능성에 대한 입장을 선회했다는 것을 알게 되고는 마음이 약간은 흔들리는 중. 약간의 검색을 돌려보니 도서관에서 본 것은 이 proceeding인 모양이다.

  1. 혹시나 해서 Arkani-Hamed가 썼던 논문을 열어봤는데 역시나 있었다. 역시 기대를 져버리지 않는 Arkani-Hamed. [본문으로]
  2. 평균적으로 하루 서너시간 정도밖에 못 잔 듯 하다. 논문 작성 막바지에는 거의 항상 있는 일인듯. [본문으로]
  3. 실험적으로는 극성을 가진 유전체를 길게 잘 늘어놓는 것으로 구현할 수 있을 것이다. [본문으로]
  4. 여담으로 이 사실을 발견하고는 '전기-자기 이중성은 양자역학 수준에서는 깨져야만 하는구나!'하고 신나서 MS word로 논문 비슷한 무언가를 타닥타닥 작성했던 흑역사(?)가 있다. 버려야 하는 가정은 1)번이 아니라 3)번이란 것을 깨달은 것은 대학원 들어온 뒤 끈이론 공부하면서. 원고가 원고로만 남은 것이 다행이군... [본문으로]
Posted by 덱스터

제목은 아는 사람들은 다 아는(?) 책인 PCT, Spin and Statistics, and All That을 참고했다. 물론 나는 읽다 만(...) 책이지만. 이 포스트의 출발점은 다음 트윗 타래. 한번 정도는 정리해두는 것이 좋겠다는 생각이 들었다.

'세상에서 가장 아름다운 공식'이란 별명이 있는 오일러 공식의 장점(?)은, 네이피어수 (혹은 자연상수) $e$ 위에 올라가는 수학적 물체(mathematical object의 번역으로 이게 맞는지 모르겠다) $a$가 무엇이든 $a^2 = -1$이란 조건을 만족하기만 하면 된다는 것이다.

\[ a^2 = -1 \Rightarrow e^{a \theta} = \cos(\theta) + a \sin(\theta)\]

여기서 $a$는 일반적인 숫자(복소수체에서는 확실히 성립하는데 일반적인 체에서도 되는지는 모르겠다)나 행렬(사원수quaternion는 $2 \times 2$ 행렬과 대응관계를 맺기 때문에 사원수에서도 위의 식이 적용된다), 혹은 클리포드 대수Clifford algebra의 원소(기하대수geometric algebra 계산에서 이 성질을 이용한다) 등 무엇이든 될 수 있다. 그냥 1이 잘 정의되어 있고 제곱해서 -1이 되는 물체가 있다고 하면 언제든 쓸 수 있다는 의미. 다른 특기할 점은 위 공식이 다루기 까다로운 경우가 많은 삼각함수trigonometric function를 지수함수exponential function로 바꾸는 역할을 한다는 것이다. 따라서 주기성을 갖는 물리량이 있는 물리계에서는 위 공식을 반대로 적용해 삼각함수로 써지는 물리량을 지수함수의 '실수부'로 놓는 작업을 자주 한다.

\[ \cos(\theta) = \text{Re}[e^{i \theta}] \]

여기까지는 학부 2학년 수준에서 얼마든지 다루는 내용.

 

전기공학에서는 교류회로를 다룰 때 단위허수 $j$를 $j^2 = -1$으로 도입해 전류와 같은 물리량을 다음과 같이 쓰곤 한다.

\[ I(t) = \text{Re}[I_0 e^{j (\omega t + \delta)}] \]

일반적으로 쓰는 단위허수 $i$가 있는데 왜 하필 $j$일까? 트윗 타래에서 언급했듯 $j = -i$라고 여기는 경우가 있기 때문이다. $(-1)^2 = +1$이므로, 애초부터 단위허수에는 부호를 선택하는 자유도가 남아있었던 셈. $j=-i$라고 여기는 이유는 푸리에 전개가 다음과 같은 꼴을 취하기 때문이다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{-i \omega t} \]

처음 식과 비교해보면 지수함수에 올라간 항은 $-i \omega t$로, $j \omega t$와 부호 차이를 갖고있다. $j = -i$란 인식은 이 차이에서 비롯된 것. 그렇다면 왜 푸리에 전개는 위와 같은 꼴을 택하는 것일까? 예컨대 다음과 같은 표현도 수학의 관점에서 볼 때 푸리에 전개로서는 딱히 결격사유가 없다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{+i \omega t} \]

문제는 인과율causality로부터 얻는 주파수 공간frequency space의 함수 $\tilde{F}(\omega)$가 갖길 원하는 해석적 성질analytic property에 있다. 일반적으로 푸리에 전개를 통해 해석하는 (실)함수 $F(t)$는 입력에 따라 어떤 출력을 예상할 수 있는지를 나타내는 반응함수response function이고, 인과율과 계의 시간불변성time invariance을 가정할 경우 시간차 $t$가 양수일 경우에만 0이 아닌 값을 갖는다.

\[ t<0 \Rightarrow F(t) = 0 \]

그리고 이렇게 '한쪽 방향으로만 값을 갖는 함수'는 라플라스 변환Laplace transform을 쓸 수 있다. 이 방향은 나중에 브롬위치 적분Bromwich integral을 이야기할 기회가 생기거든 돌아오기로 하자. 여튼, 주파수 공간의 함수 $\tilde{F}(\omega)$는 다음과 같이 주어진다.

\[ F(t) = \sum_{\omega} \tilde{F}(\omega) e^{\mp i \omega t} \Rightarrow \tilde{F}(\omega) = \int F(t) e^{\pm i \omega t} dt \]

일반적으로 $\tilde{F} (\omega)$는 실수값만 갖지는 않고, 실수부와 허수부를 모두 갖는다. 따라서 다음과 같은 질문을 해볼 수 있다; 어차피 복소수 값을 갖는 복소함수라면, $\tilde{F} (\omega)$를 복소해석학complex analysis을 통해 다뤄 볼 수는 없을까? 안타깝게도 $\tilde{F}$는 전체 $\omega$ 복소평면에서 해석적인 성질을 가질 수는 없다. 단순하게 복소수 $\omega = \omega_1 + i \omega_2$를 실수부와 허수부로 나누어서 분석해보자.

\[ \tilde{F}(\omega_1 + i\omega_2) = \int F(t) e^{\mp \omega_2 t \pm i \omega_1 t} dt \]

위 표현은 $\mp \omega_2 < 0$일때 $F(t)$가 어지간히 이상한 함수가 아닌 이상 수렴한다. 반대로, $\mp \omega_2 >0$일때 많은 경우 발산해버리고 말 것이다. 따라서, 다음과 같은 결론을 내릴 수 있다.

  • \[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 위쪽 반평면upper half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.
  • \[ \tilde{F}(\omega) = \int F(t) e^{- i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 아래쪽 반평면lower half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.

일반적으로 $\tilde{F}(\omega)$는 위쪽 반평면에서 해석적인 성질을 갖는 것이 바람직하다고 여겨지기 때문에 푸리에 변환의 부호가 $F(t) = \sum_{\omega} \tilde{F} e^{-i\omega t}$로 결정되는 것이다. 힐베르트 변환Hilbert transform을 이용해 반응함수의 실수부와 허수부를 관계짓는 Kramer-Kronig 관계식 또한 이 부호의 선택에 의존한다. 'Kramer-Kronig 관계식을 증명하기 위해 그리는 적분 컨투어contour를 왜 위쪽 반평면에서 닫아야만 하는가?'란 질문에 대해 답을 주기 때문. 이유는 적분에 들어가는 integrand가 위쪽 반평면에서 완전히 해석적인 성질을 가지므로, 위쪽 반평면으로 컨투어를 닫아야 0이 되기 때문이다. 아래쪽 반평면에서는 무슨 일이 일어날지 모른다는 것은 또 다른 이야기.

\[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \,,\, \text{Im} [\omega_0] \le 0 \Rightarrow \frac{\tilde{F} (\omega)}{\omega - \omega_0} \, \text{analytic on upper half plane} \]

이렇게 사소해 보이는 부호 하나에도 그 부호를 선택해야만 하는 이유가 있기 마련이다.

Posted by 덱스터
For a physicist, on the other hand, every system is open, and (more to the point) approximate. One never really expects that the mathematical problem one formulates and then solves will provide an exact or complete description of a physical system.

한편 물리학자에게 모든 계는 열려있고 (더욱 중요하게는) 근사적이다. 그 누구도 어떤 물리계에 대해 형식화하고 풀어낸 수학적 문제가 그 계에 대해 완벽하거나 완전한 묘사를 줄 것으로 절대 기대하지 않는다.

- Ingmar Saberi(https://arxiv.org/abs/1801.07270)

한번은 기계 설계였나 강의를 들을 당시 조별 프로젝트 발표를 할 일이 있었습니다. 뭔가 간단한 로봇을 설계하는 일이었는데, 제가 속한 조보다 앞서 발표하던 조에서 로봇에 예상하고 있는 부하가 걸리면 변형이 얼마나 일어나는지 계산한 결과를 발표하고 있었습니다. 뭐 숫자와 식을 알고 있으니 단순한 산수일테고, 산수 끝에 얻은 변형에 대한 예측값은 10^-20 m였던가 그렇습니다. 참고로 원자핵의 크기를 대략 10^-15 m 정도로 보죠.

 

그 슬라이드를 보고는 발표를 듣던 교수님이 '숫자놀음은 집어치워라'라면서 대노하셨고 (그 정도로 작은 값이면 그냥 변형이 없는 것이란 말을 덧붙이면서요) 옆에서 비슷한 숫자를 슬라이드에 집어넣고 있었던 같은 조원은 깜짝 놀래서 재빠르게 숫자를 0으로 바꿨습니다. 세 팀이 조별 프로젝트 발표를 하면 그 중 가르침이 되는 팀이 꼭 있는 법이죠.

 

그래서 준비해 본, '어디까지 방정식을 믿을 것인가?'란 주제 하에 묶을 여러 문제들입니다. 물리는 결국 목표로 삼은 현상에 대한 모형을 세우고 그 모형을 이해하는 것으로 목표로 삼은 현상을 이해하는 것인 셈이니, 세워놓은 모형이 어디까지 현상을 제대로 기술하고 있는가에 대해 감을 갖고 있어야겠죠. 깊게 생각 안하고 공부만 하다 보면 '언제 모형을 믿으면 안된다'는 감이 없는 경우가 자주 있단 말이죠. 짤막하게 작성해 두고 아마 생각나는대로 업데이트하지 않을까 싶네요.

 

참, 이 포스트는 Paul J. Nahin의 Mrs. Perkins's Electric Quilt: And Other Intriguing Stories of Mathematical Physics란 책의 내용에서 영감을 받았습니다. 비록 도서관에서 빌려놓고 시간이 없어 서론만 읽은 뒤 방치해뒀다가 연체되어서 연체비만 물고 뒷쪽은 하나도 못 읽었지만 말이죠.

 

---

 

의외로 물리학을 하나도 안 배운 사람이 물리학을 어느정도 배운 사람보다 이상하다는 것을 빠르게 알아차리는 물리학에 대한 문장이 있습니다.

"전하가 자기장 안에서 받는 힘은 전하의 이동 방향과 수직이므로 자기장은 일을 하지 못한다."

이 문장은 왜 틀린 문장일까요?

 

문장의 전제는 맞습니다. 전하가 자기장 안에서 받는 힘은 로렌츠힘으로 기술되고, 이 힘은 전하가 이동하는 방향과 항상 수직이기 때문에 로렌츠힘에 의해 전하가 에너지를 얻는 경우는 없죠. 하지만 자기장은 일을 하지 못한다는 사실이 아닙니다. 사이클로트론과 같은 입자가속기에서는 자기장의 세기를 변화시키는 것으로 입자를 가속시키기는 하지만 이건 자기장이 변하면서 패러데이 법칙에 의해 전기장이 생성되는 원리이기 때문에 반례가 되는 것은 아닙니다. 그러니까, 가만히 있는, 혹은 정적인 자기장이 일을 하는 경우입니다. 그리고 누구나 어릴 적 자석을 가지고 놀아봤다면 모를래야 모를 수가 없는 반례이기도 하죠.

 

가만히 있는 자석과 조금 떨어진 곳에 가만히 있는, 자화되지 않은 철조각을 가만히 두면 철조각은 자석을 향해 날아들죠. 중력을 거스르고 날아오르는 경우도 많고요. 정적인 자기장이라도 일을 할 수 있다는 살아있는 반례죠. 물론 철조각이 자화되면서 남는 에너지를 운동에너지로 바꾸는 과정이므로 로렌츠힘에 의한 일은 아니지만, 자기장(혹은 자력)이 일을 하지 못하는 것은 아니지 않습니까.

 

그리고 여기에는 약간의 뒷이야기가 있습니다. 고전역학과 통계역학만 가정할 경우, 자력은 일을 할 수 없는 것이 맞습니다. 이를 보어-판레이우언 정리라고 부르죠. 그러니까 처음에 제시된 문장은 고전역학과 통계역학만 가정한 범위 안에서는 틀린 문장은 아닌 셈이죠. 단지 우리 우주가 그 범위 안에 온전히 속하지 않는 것일 뿐. 포스트의 처음에 인용한 문장이 더없이 적절하지 않습니까?

 

---

 

다음 업데이트에서는 블랙홀에 대해 이야기해보려고 합니다. 아마 트위터에서 자주 떠들어댄 문제이니 이미 아실 분들도 있을 지 모르겠군요.

Posted by 덱스터

최근 주로 계산하고 있는 것은 산란진폭(scattering amplitude)을 이용해서 천체를 점입자로 근사했을 때 두 천체 사이의 상호작용을 얻는 일. 정확히는 천체를 점입자로 근사하고 두 점입자가 만드는 계(system)의 유효 해밀토니안(effective Hamiltonian) 계산이다. 중력포텐셜 계산이라고 이야기하기도 한다. 대충 이 논문에서 한 일에 스핀을 던져넣는 작업인데, 주로 저번에 했던 일에서 제대로 정리하지 못했던 부분을 청소(...)하고 있다.

 

중력의 성가신 점은 좌표변환이 중력의 게이지 대칭이라는 것이다. 덕분에 중력포텐셜은 게이지를 어떻게 잡느냐에 의존하는 물리량이 되어버리고 만다. 산란진폭을 이용해서 구하는 중력포텐셜은 $\vec{p} \cdot \vec{r}$이 등장하지 않는 isotropic gauge의 포텐셜. 물론 그렇다고 중력포텐셜을 마음대로 쓸 수 있다는 것은 아니다. 서로 생긴 꼴이 다른 중력포텐셜이 실제로는 같은 동역학을 준다면, 두 중력포텐셜의 표현식 사이를 이어주는 canonical transformation이 존재해야 한다. 그러니까 $H_1 (p,q)$가 $H_2 (P,Q)$와 동등하다면 적당한 변수변환 $P(p,q), Q(p,q)$가 존재해서 $H_2 (P,Q) = H_1(p(P,Q),q(P,Q))$이면서 canonical conjugate relation인 $\{ P, Q \}_{\text{P.B}} = \{ p, q\}_{\text{P.B}} $이 (이제부터 Poisson bracket의 subscript인 P.B는 생략하도록 하자) 유지되어야 한다는 것. 흥미로운 점은 서로 다른 해밀토니안을 비교하는데 다음과 같은 식을 만족하는 generator $g$가 존재하는지의 여부로 두 해밀토니안이 물리적으로 동등한지 확인하기도 한다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

예를 들면 이 논문의 4.1장에서 하는 논의라던가. 뒷 항은 $n-1$-PN order에서 보이지 않는 항들이다. 이 식을 어떻게 이해할 수 있을까?

 

의외로 답은 간단하다. $p, q$에서 $P,Q$까지 이어지는 continuous canonical transform을 상상해보자. 대충 $\tilde{p}(p,q;\alpha), \tilde{q}(p,q;\alpha)$란 연속함수가 존재하고 $\forall \alpha, \{ \tilde{p}, \tilde{q} \} = \{ p,q \}$면서 $\tilde{p}(p,q;0) = p, \tilde{p}(p,q;1) = P(p,q)$를 만족한다고 형식화할 수 있다. 이 경우 해밀토니안은 $H=H_1(p,q)=H_2(P,Q)$로 고정되어 있는 상태이다. 해밀토니안이 만드는 flow는 그대로 있고 그 flow를 기술하는 canonical variable들의 coordinate frame이 이동하는 것으로 볼 수 있다.

 

이제 관점을 바꿔보자. canonical variable들의 coordinate frame을 고정하고 해밀토니안이 만드는 flow를 흐르게 시키는 관점이다. 정확히는 $\tilde{p},\tilde{q}$를 좌표축으로 고정한 뒤 $H(\tilde{p},\tilde{q};\alpha)=H_1(p(\tilde{p},\tilde{q}),q(\tilde{p},\tilde{q}))$가 변수 $\alpha$에 대해 어떻게 흐르는지 보는 것이다. 이 경우 $\frac{d}{d\alpha}$는 symplectic vector field이므로 여기에 대응되는 (local) generator $G$가 존재한다. 식으로 쓰자면

$$ \exists G, \frac{\partial}{\partial \alpha} H(\tilde{p},\tilde{q};\alpha) = \{ H(\tilde{p},\tilde{q};\alpha) , G \} $$

이 되는 셈. 다르게 표현하면 다음의 벡터장(vector field) 방정식을 만족하는 벡터장 $\{ G, \bullet \}$가 존재한다고 할 수 있다.

$$ \exists G, \frac{\partial}{\partial \alpha} \{ H , \bullet \} = \mathcal{L}_{\{ G, \bullet \}} \{ H, \bullet \} $$

위 식에서 $\mathcal{L}$은 리 미분(Lie derivative)을 의미한다.

 

위에 적은 미분꼴의 방정식을 차분(difference)꼴로 바꾸면 우리가 이해하고 싶었던 식이 된다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

미분방정식을 차분방정식으로 바꾸는 과정의 논리적 구멍을 메꾸고 싶다면 다음과 같은 미분형식(differential form) 꼴로 바꾼 방정식을 고려할 수 있다.

$$ \delta H(\alpha) = \{ H(\alpha), g \} \,,\, g = G \delta \alpha $$

문제에 perturbation parameter $\epsilon$이 존재한다고 가정할 경우, 위의 방정식은 다음과 같은 차분방정식으로 변경시킬 수 있다.

$$ \Delta H = \{ H, g \} \,,\, \frac{\Delta H}{H} \sim \frac{g}{H} \sim \epsilon $$

Post-Newtonian expansion의 경우 이 perturbation parameter는 $\epsilon = \frac{G\mu}{r c^2} \simeq \frac{p^2}{\mu^2 c^2}$이 된다. 이름대로 $\frac{1}{c}$을 perturbation parameter로서 이해할 수 있다는 의미.

 


23Feb2020 수정사항: 미분형식 꼴로 바꾼 방정식을 이용한 논증 추가.

Posted by 덱스터

대학원 고전역학에서 다룰만한 내용으로 교수님과 이야기하다가 Dirac bracket 이야기가 나와서 간단(?)하게 트위터에서 주절거렸던 내용을 정리. 해당 타래는 이것.



모든 미분방정식은 충분한 숫자의 변수를 도입하는 것으로 1계미분방정식으로 만들 수 있다. 예컨대 $y''+y=0$이란 미분방정식이 있다면 $x=y'$이란 독립변수 $x$를 도입하여 $x'+y=0$으로 만들 수 있다. 해밀턴역학도 어떤 의미에서는 그런 접근의 연장선상에 놓여있다. 르장드르 변환과도 엮여있기 때문에 좀 복잡한 방식으로 이 과정을 이용하기는 하지만.


트윗 타래에서 설명했듯, 해밀턴역학에서 해밀토니안 함수는 위상공간 위에서의 흐름(flow)을 만들어내는 물체로 생각할 수 있다. 해밀토니안 함수와 그에 대응되는 흐름 혹은 벡터장을 연결해주는 역할을 하는 것이 포아송 괄호(Poisson bracket)이다. 연결 방법은 $H \to \{H,\bullet \}$. 물론 위상공간 위에서의 흐름을 만들어내는 해밀토니안이 실제 계의 동역학과 관계가 있어야 할 이유는 없다. 보다 추상적인 임의의 함수도 포아송 괄호를 통해 위상공간 위에서 흐름을 만들어낼 수 있으며, 일반적으로는 계의 보존량 $Q$를 이용해 이런 흐름을 만들어낼 때 $Q$를 대칭 생성자(symmetry generator)라고 부른다. 이쪽은 운동량 사상(moment map)과 연결되는 방향이지만 이 글의 주제에서는 벗어나니 다음 기회에[각주:1].


임의의 함수는 포아송 괄호를 통해 위상공간 위에서의 벡터장과 대응될 수 있다.


위의 관점은 계의 모든 변수가 독립변수인 경우에는 문제 없이 적용이 가능하지만 계의 모든 변수가 독립변수가 아닌 경우, 즉 제약조건(constraint)이 존재하는 계의 경우에는 위의 관점을 적용하는데 무리가 있다. 이 경우 좌표를 새로 잘 정의해서 새 좌표에서는 모든 변수가 독립변수가 되도록 하는 것으로 위의 관점을 살려내는 방법이 있다. 물론 새 좌표를 찾는다는 것은 원칙상 가능하다는 뜻이고, 이 좌표를 찾는 일이 항상 쉬우리란 보장은 없다. 다른 방법은 디락의 디락 괄호(Dirac bracket)를 도입하는 것.


잠시 원래 이야기에서 벗어나 역사적인 맥락을 살펴보면, 디락이 디락 괄호의 도입을 생각하게 된 이유는 양자전기역학이었다고 한다. 디락은 포아송 괄호를 교환자(commutator)로 교체하는 것으로 고전계를 양자화할 수 있다는 것을 발견했는데, 같은 방법을 전자기학에 적용하려니 뭔가 잘 안 맞는다는 것을 알게 된 것이다. 디락은 가우스 법칙에 의해 전자기장이 가질 수 있는 값에 제약이 생기는 것이 원인이라는 것을 알게 되었고, 제약조건이 있는 계의 포아송 괄호에 해당하는 물체를 어떻게 찾아낼 것인가를 고민한 결과 디락 괄호를 찾아내게 된다.


다시 원래 이야기로 돌아와서, 제약조건이 있다는 뜻은 전체 위상공간 중 그 부분집합에 해당하는 $f_i(\vec{p},\vec{q})=0$을 만족하는 $(\vec{p},\vec{q})$만 실제 계의 상태를 나타낸다는 관점으로도 이해할 수 있다. 일반적으로 해밀토니안에 의해 만들어지는 흐름은 이 제약조건을 만족하는 위상공간 속 부분다양체(submanifold) 위에서 출발하더라도 그 밖을 벗어나게 되리라고 예상할 수 있다.


해밀토니안에 의해 만들어지는 흐름(연두)은 제약조건을 만족하는 부분다양체(연파랑) 위에서 출발하더라도 그 부분다양체 위에서 움직이는 방향(녹색)과 그 부분다양체에서 벗어나는 방향(적색)을 모두 포함한다.


이제 문제는 포아송 괄호를 통해 얻은 해밀토니안 함수에 대응되는 흐름에서 제약조건을 만족하지 못하게 하는 방향의 흐름을 제거하는 것이다. 위의 그림에서 적색 화살표에 해당하는 성분을 제거하는 것이 목표인 셈. 이 목표는 제약조건을 만족하는 경우 0이란 값을 갖는 제약조건에 해당하는 함수 $f_i$들을 적당히 더하는 것으로 이루어진다. $f_i$에 의해 만들어지는 흐름 $\{f_i,\bullet\}$은 일반적으로 0이 아니기 때문. 수식으로 나타내면 다음과 같다.

\[ H \to \{ H, \bullet \}_{\text{Dirac}} = \{ H + c_i f_i , \bullet \} \]


이제 문제는 1. 충분한 숫자의 $f_i$를 찾아서 어떤 방향으로 벗어나더라도 벗어나는 방향을 제거할 수 있을 것 2. 계수들 $c_i$를 결정할 것 두가지로 나뉘게 된다. 첫번째 문제에 대한 답은 제약조건을 primary/secondary constraint와 1st class/2nd class constraint로 분류하는 과정과 관련이 있는데[각주:2] 여기서는 일단 충분한 숫자의 $f_i$들을 구했다고 가정하기로 하자.


디락 괄호는 포아송 괄호에 보정을 가해서 제약조건을 만족시키도록 한 것으로 볼 수 있다.


계수들 $c_i$는 어떤 해밀토니안 함수를 통해 생성된 흐름이더라도 제약조건 $f_i$의 값을 0으로 유지시켜야 한다는 것으로부터 구할 수 있다. 따라서 다음 방정식의 해를 구해야 한다는 뜻이다.

\[ \forall i \,, \{ H, f_i \}_{\text{Dirac}} = 0 \]


이 문제는 다음 가설풀이(ansatz)를 적용해서 풀 수 있다. 이런 가설풀이를 도입하는 이유는 포아송 괄호의 성질들 중 필요한 성질들을 보존하기 위함인데, 그 이야기까지 하기에는 글이 너무 길어지므로 대충 넘어가기로 하자.

\[ c_i(H) = - \{ H, f_j \}M^{ji} \]


위의 가설풀이를 적용하면 이제 풀어야 할 방정식은 아래와 같이 바뀐다.

\[ \{ H, f_i \}_{\text{Dirac}} = \{ H, f_i \} - \{ H, f_k \} M^{kj} \{ f_j, f_i \} = 0\]


고맙게도 위 방정식은 단순한 역행렬 계산으로 풀 수 있다.

\[ M^{ij} \text{ is the solution to } M^{ij} \{ f_j, f_k \} = \delta^i_k \]


이 정도가 디락 괄호의 핵심적인 아이디어에 속한다.

  1. 오스카 와일드의 표현을 따르자면 '다음 기회가 있다면'.(...) [본문으로]
  2. 나도 잘 구분 못한다. 어차피 아이디어를 이해할 때 명칭은 아주 중요한 것은 아니니 대충 넘어가자. [본문으로]
Posted by 덱스터

입자물리에서 표준모형(standard model)이란 현재 우리가 알고 있는 모형 중 가장 자연을 잘 기술하는 모형을 의미합니다. 물리학에 관심이 있으시다면 들어보셨을 네 개의 힘과 쿼크, 중성미자 등등이 이 표준모형을 구성하고 있죠. 그리고 대부분의 (입자)물리학자들의 꿈은 표준모형을 넘어서는 것입니다. 그래야 교과서에도 기록되고 운이 좋으면 노벨상도 받는 영광을 누릴 수 있을 테니까요. 그렇다면 현재 알려진 가장 정확한 자연에 대한 기술이 실패하고 있는 지점은 어디일까요?


표준모형이 자연을 기술하는데 실패하고 있는 지점은 의외로 많으며, 그 중 하나는 뮤온의 이상자기모멘트(anomalous magnetic moment)입니다. 뮤온은 경입자(lepton)의 하나로, 전자의 무거운 형제라고 생각하시면 얼추 맞습니다. 현재(2018년 12월) 위키백과의 해당 페이지에서 인용하고 있는 측정된 뮤온의 이상자기모멘트는 다음과 같습니다.

\[a_\mu = 0.001~165~920~9(6)\]


반면에 표준모형이 예측하는 뮤온의 이상자기모멘트는 다음과 같죠.

\[a_\mu^{SM} = 0.001~165~918~04(51)\]


두 값은 약 3.5 표준편차만큼의 차이를 보입니다. 3.5 표준편차는 두 값이 실제로 같았을 경우 1/1000보다도 작은 확률로 이런 차이를 보여야 한다는 의미로, 실험이 어딘가 잘못되었거나 우리가 가진 이론이 어딘가 잘못되었을 가능성이 높다는 정황증거가 되지요. 현재 페르미랩(Fermilab)에서는 이 차이가 실존하는지 검증하기 위한 정밀측정 실험이 진행되고 있습니다.




이상자기모멘트가 흥미로운 관측량이라는 것은 알겠는데, 그래서 이상자기모멘트란 무엇일까요? 이상자기모멘트를 이해하기 위해서는 각운동량과 자기모멘트에 대한 이해가 선행되어야 하므로, 우선은 이 둘에 대한 이야기를 해보도록 하죠.


물리학은 정량적인 측정량을 정성적인 측정량보다 우선시하는 학문입니다. 그러므로 다루고자 하는 대상의 특성을 숫자로 만드는 것이 중요하죠. 예컨대 운동량(momentum)이란 물체가 얼마나 격하게 일정한 방향으로 움직이고 있는지 그 양을 계량화한 것을 의미합니다. 같은 물체라도 더 빠르게 움직이고 있다면 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 가질 것이고, 같은 속도로 움직이고 있는 두 물체라도 더 무거운 물체가 더 많은 운동을 하고 있다고 할 수 있으니 더 큰 운동량을 갖는 식이죠. 물론 물체는 일정한 방향으로 움직이지만은 않습니다. 팽이와 같이 한 자리에서 뱅그르르 도는 운동을 하는 경우도 있지요. 이런 회전운동을 계량하기 위해 만들어진 물리량이 각운동량(angular momentum)입니다.


각운동량은 자신이 잡은 기준점에 대해 상대적으로 움직이기 때문에 갖는 오비탈 각운동량(orbital angular momentum)과 그 물체가 스스로 회전하기 때문에 갖는 스핀(spin)이란 두 값으로 분류할 수 있습니다. 흥미롭게도 우리가 아무런 내부구조도 없는 순수한 점으로 취급하는 전자와 같은 기본입자들조차 스핀을 가지며, 기본입자들이 어떤 스핀을 가지는가는 우리가 보고 있는 우주의 형성에 큰 영향을 미치고 있습니다. 물론 아무것도 없는 점이 회전하고 있다고 생각할 수는 없으므로 '전자가 회전하고 있다'는 설명을 너무 곧이곧대로 받아들여서는 안되고, '어떤 이유인지는 모르겠으나 전자는 고유한 각운동량을 갖는다'고 이해하시는 것이 좋겠습니다. 이제 이 모든 이야기의 출발점이 되었던 이상자기모멘트로 돌아오면, 이상자기모멘트는 입자가 갖는 스핀으로부터 예상되는 자기모멘트가 그 측정값으로부터 얼마나 벗어나는지를 나타내는 값입니다. 이제 자기모멘트에 대해 이야기할 시간이 되었군요.


자석 중에는 전기의 힘으로 자력을 발휘하는 전자석이란 물건이 있습니다. 전자석은 전하를 가진 물체가 움직여서 전류를 만들면 그 전류에 의해 자기장이 발생하는 원리를 이용한 자석입니다. 물론 대부분의 전자석처럼 전하가 크게 도는 운동을 해야만 자석이 만들어지는 것은 아닙니다. 전하가 제자리에서 뱅글뱅글 도는 것으로도 자석이 만들어질 수 있지요. 이렇게 회전하는 대전된[각주:1] 물체가 자신의 회전운동으로 만들어내는 작은 자석을 계량화한 값이 자기모멘트입니다. 그리고 자기모멘트는 회전운동으로부터 만들어졌으므로, 어떤 물체의 자기모멘트는 그 물체의 스핀과 비례할 것이라고 예상할 수 있습니다. 이 예상을 반영하여 한 물체의 자기모멘트를 그 물체의 스핀으로 나눈 것을 자기회전비율(gyromagnetic ratio)이라고 부르며, 랑데 g 인자(Landé g-factor)는 자기회전비율을 기본입자를 기술하기에 유용한 단위로 측정한 값을 의미합니다. 물론 이 이야기에는 기본입자인 전자나 뮤온도 포함되며, 앞서 잠깐 이야기했듯이 뮤온 자기회전비율의 이론으로 계산한 값과 실험으로 측정한 값 사이의 불일치는 현대물리가 마주하고 있는 가장 큰 문제 중 하나이기도 합니다.




그렇다면 가장 '자연스러운' 자기회전비율은 얼마일까요? 여기에 답하기 위해서는 기본입자들의 스핀에 대해서 좀 더 이해해야 할 필요가 있습니다.


앞서 우리는 기본입자들 또한 스핀을 가질 수 있다는 사실을 배웠습니다. 그렇다면 기본입자들은 아무런 스핀이나 가질 수 있는 것일까요? 물론 여기에 대한 대답은 '아니오'입니다. 현재 알려진 기본입자들은 스핀이 1(글루온/광자/W,Z 보손)이거나 1/2(쿼크/전자/중성미자 등), 혹은 최근 발견되어 누구나 이름은 들어본 적이 있는 힉스 입자처럼 0입니다. 일반적으로 양자역학에 따르면 스핀은 정수(0,1,2 등)거나 반정수(1/2,3/2,5/2 등)를 가져야만 하죠. 여기에서 스핀을 단순한 숫자로 적기는 했지만, 각운동량은 단순한 숫자가 아니라 어떤 단위로 계량되는 값이기에 실제 스핀은 $\hbar$로 쓰는 디락 상수를 단위로 잰 값이라고 생각하셔야 합니다.


흥미로운 점은 기본입자들이 전자기적으로 상호작용한다는 것을 반영하는 최소한의 조건(이를 minimal coupling이라 부릅니다)을 요구할 경우 스핀 1/2 입자를 기술하는 방정식인 디락방정식으로부터 g 인자의 값이 2여야 한다는 결론을 얻게 된다는 것입니다. 앞서 이야기했던 이상자기모멘트란 실제 g 인자의 값이 2에서 얼마나 벗어나는지를 잰 것으로, g 인자의 값은는 양자역학적인 효과에 의해 예측된 값인 2로부터 벗어나게 됩니다. 이상자기모멘트가 적어도 소수점 셋째 자리에서 시작한다는 것은 그만큼 양자역학적인 효과를 무시해도 좋으며, 많은 경우 g 인자의 값을 2로 취급해도 문제가 없다는 것을 의미하죠. 그렇다면 다른 입자의 경우에는 어떨까요?


Belinfante는 디락방정식의 선례를 따라 minimal coupling을 요구할 경우 스핀이 s인 기본입자는 g 인자의 값으로 1/s를 갖는다는 가설을 내놓은 적이 있습니다. s에 1/2를 대입할 경우 우리가 잘 아는 전자나 뮤온의 g=2라는 결론을 얻게 되죠. 그렇다면 다른 스핀을 갖는 기본입자의 경우는 어떨까요? 현재 표준모형에 남아있는 전하를 가지면서 스핀이 1/2이 아닌 입자로는 W 보손이 있으며, W 보손의 g 인자는 2.11[각주:2]정도인 것으로 알려져 있습니다. 그리고 W 보손의 스핀은 1이죠. 따라서 자연스러운 자기회전비율은 g=1/s란 Belinfante의 가설은 벌써부터 반례와 마주하게 되죠. 그래서, 가장 자연스러운 값은 무엇일까요?


W 보손의 g 인자 값이 2에 가깝다는 실험결과에 대해서 들으신 다음이라면 '가장 자연스러운 g 인자의 값은 2가 아닐까?'란 의심을 해볼 수 있겠지요. 흥미롭게도 이 단순무식한 답이 실제 답일 가능성이 높습니다. Holstein은 다음과 같은 정황근거를 제시합니다.[각주:3]


1) 고에너지 콤프턴 산란(Compton scattering)이 좋은 성질을 갖기 위해서 필요한 값이다.

2) GDH 합 규칙(sum rule)이 자연스럽게 측정하는 값이다.

3) 중력자 산란과 광자 산란 사이의 KLT 관계를 자연스럽게 반영하기 위해 필요한 값이다.

4) 열린 끈이론(open string theory)으로부터 예측되는 값이다.

5) 일반상대론에서 전기장의 영향 아래 움직이는 입자의 스핀을 기술하는 BMT 방정식이 가장 간단해지는 값이다.

6) 전하가 있는 회전하는 블랙홀(Kerr-Newman)을 점입자로 취급하는 극한에서 얻는 값이다.


위 목록의 흥미로운 점이라면 중력이 등장한다는 것입니다. 1번과 2번을 제외하면 모두 중력과 접점을 갖고 있습니다; 중력자 산란이나 일반상대론, 블랙홀은 당연히 중력과 떼려 해도 뗄 수 없는 관계이며, 끈이론의 경우에는 닫힌 끈(closed string)을 자연스럽게 고려하면서 닫힌 끈의 한 상태인 중력자를 이야기할 수 밖에 없게 되지요. 표준모형에서는 일반적으로 중력을 다른 힘들과 같은 위치에 두고 다루지는 않기 때문에 은근슬쩍 나타난 중력은 예상 밖의 등장이라고 할 수 있겠습니다. 하지만 예상 밖의 등장이라고 해서 그것이 우연이라고 단정할 수는 없는 법이죠.




이 포스트의 제목인 중력과 자기회전비율의 관계를 이야기하려면 이 관계가 가장 명확하게 드러나는 새로운 기술법으로부터 출발하는 편이 좋겠습니다. 주인공은 스피너-헬리시티 변수(spinor-helicity variable)입니다.


스피너-헬리시티 변수는 우리가 사는 세계인 3+1차원의 세계에서 회전을 기술하는 군인 $SO(1,3)$군이 행렬식이 1인 $2 \times 2$ 복소행렬들의 집합인 $SL(2,\mathbb{C})$군으로 확장될 수 있다는 사실에서 출발합니다. 표준적인 양자역학을 따른다면 우리가 다루는 모든 상태(state)는 이 $SL(2,\mathbb{C})$군의 표현(representation) 중 하나로 수렴해야 하죠. 스피너-헬리시티 변수는 단순히 모든 상태를 $SL(2,\mathbb{C})$군의 가장 기본적인 표현(fundamental representation)과 그 켤레복소수(complex conjugate)에 해당하는 표현만을 이용해 기술하는 것을 의미합니다. 이 모든 전문적인 내용을 이해하지 못하셨다면 단순히 '최대한 군더더기를 없애고 입자들의 상태를 표현하는 방법'이라고 생각하셔도 좋습니다.


최근까지만 해도 스피너-헬리시티 변수는 질량이 없는 입자에 대해서만 그 기술법이 알려져 있었습니다. 이 변수가 질량이 있는 입자에 대해서도 쓸 수 있도록 확장된 것은 채 2년이 지나지 않았죠. 이 변수를 쓰게 되면 여태 이야기한 g 인자와 중력과의 관계를 더욱 쉽게 이해할 수 있게 됩니다. 이제부터 우리가 주로 다룰 문제는 다음 파인만 도표(Feynman diagram)으로 나타낼 수 있으며, 질량이 있는 입자(검은 선)가 질량이 없는 입자(연파랑 물결선)를 방출하는 과정에 대한 산란진폭(amplitude)입니다. 산란진폭이란 산란실험의 중요한 물리량인 산란단면적을 계산하기 위해 필요한 물리량으로, 자세한 설명을 다루기에는 이 글이 너무 길어지므로 다른 글에서 설명하도록[각주:4] 하겠습니다. 또한 산란진폭 업계의 표준을 따라 모든 운동량은 들어오는(incoming) 방향으로 취급하도록 하겠습니다.

입자 셋을 다루는 파인만 도표


자세한 설명은 논문으로 넘기기로 하고 결과만 적어보면, 위와 같은 일반적인 입자 셋의 산란진폭은 다음과 같은 꼴로 적을 수 있습니다. 여기서 질량이 있는 입자는 질량 m에 스핀 s인 입자라고 가정하였으며[각주:5], 질량이 없는 입자의 헬리시티는[각주:6] h로 가정하였습니다.

\[ M_3^{h} = (mx)^h \left[ g_0 \frac{\langle {\bf 21} \rangle^{2s}}{m^{2s-1}} + g_1 x^{1} \frac{\langle {\bf 21} \rangle^{2s-1} \langle {\bf 2} 3 \rangle \langle 3 {\bf 1} \rangle}{m^{2s}} + \cdots + g_{2s} x^{2s} \frac{\langle {\bf 2} 3 \rangle^{2s} \langle 3 {\bf 1} \rangle^{2s}}{m^{4s-1}} \right] \]


이 산란진폭을 보면 총 2s개의 파라메터 $g_i$가 등장하며, 모두 각자의 해석이 존재합니다. 예컨대 질량이 없는 입자의 헬리시티를 h=1로 둘 경우 이 산란진폭은 입자가 전자기적으로 어떻게 반응하는지를 나타내며[각주:7], 첫번째 파라메터인 $g_0$는 입자의 전하량을 결정합니다. 흥미로운 점은 두번째 파라메터인 $g_1$인데, 이 경우 $g_1$은 g 인자를 결정하는 역할을 하며, $g_1$이 0이여야만 g 인자의 값이 2가 됩니다. 어떤 의미에서는 $g_0$만 남기고 나머지 파라메터를 전부 0으로 결정한 $M_3 = x \langle {\bf 21} \rangle^{2s}$이 가장 단순하고 자연스럽다고 할 수 있으니[각주:8] 이런 관점에서도 g=2가 가장 자연스러운 자기회전비율이라고 주장할 수 있겠지요.


위의 산란진폭에서 질량이 없는 입자의 헬리시티를 h=2로 둘 경우 이 산란진폭은 입자가 중력과 어떻게 상호작용하는지를 나타내게 됩니다[각주:9]. 흥미롭게도 중력이 입자의 질량과 상호작용하는 방식이 정해져 있을 뿐만 아니라 스핀과도 상호작용하는 방식이 정해져 있다는 성질에 의해 $g_1$이 0 이외의 값을 가지는 것은 금지되어 있습니다. g 인자가 자연스러운 값 2를 갖기 위해서는 $g_1$이 0이어야 한다는 사실을 의식할 수 밖에 없는 결과이지요. 그리고 실제로도 둘은 관련이 있습니다.




1986년 Kawai-Lewellen-Tye 세 사람은 (끈이론의 맥락 안에서) 중력자를 포함한 산란진폭을 글루온만 있는 산란진폭의 (적절한 처리를 거친) 제곱으로 쓸 수 있다는 사실을 발견합니다. 이를 KLT 관계라고 부르며, 이 관계를 양자효과를 고려한 경우까지 확장한 것을 BCJ(Bern-Carrasco-Johannsson) 관계라고 부릅니다. 이런 관련성은 색-운동학 이중성(colour-kinematics duality), 중력은 양밀 제곱 (GR=YM^2), 혹은 더블 카피 (double copy) 관계라는 이름을 쓰기도 합니다. 위에서 Holstein이 언급한 g=2에 대한 여섯가지 정황증거 중 세번째 정황증거가 이 관계를 이용하죠.


글루온은 양밀이론(Yang-Mills theory)의 스핀 1인 질량이 없는 입자를 지칭하는 말로, 우리가 아는 전자기력의 광자와 닮은 사촌이라고 생각하셔도 좋습니다. 따라서 KLT 관계는 광자를 포함한 산란진폭을 적절한 처리를 거쳐 제곱하면 중력자를 포함한 산란진폭으로 바꿀 수 있다는 것을 의미한다고 볼 수 있지요. 어째서 KLT 세 사람이 이런 관련성을 알아내게 되었는지 이해하기 위해서는 끈이론에서 중력과 양밀이론이 어떻게 구현되는지 알아야 합니다.


끈이론에서 입자는 끈의 각기 다른 진동 모드로 구현됩니다. 진동 모드란 끈이 얼마나 격하게 진동하는가를 나타내는 것으로, 대체로 진동이 격해질수록 그 진동 모드에 해당하는 입자의 질량과 스핀이 증가하게 됩니다. 둘은 진동이 격해짐에 따라 서로 비례해서 증가하는 모습을 보이는데, 이를 레제 궤적(Regge trajectory)이라고 부릅니다. 레제 궤적은 핵물리 발전 초창기에 강한 핵력을 통해 상호작용하는 입자들의 스핀과 질량 사이에 선형(linear)[각주:10] 관계가 존재한다는 관찰을 바탕으로 세워진 가설인데, 끈이론의 태동기에는 끈이론이 레제 궤적을 만들어낸다는 사실 때문에 많은 사람들이 끈이론을 가망있는 핵물리 모형으로 여기고 뛰어들게 되었죠.


각기 다른 진동 모드. N이 클 수록 격렬하게 진동하고 스핀과 질량이 증가한다.



끈이론에서 다루는 끈의 종류는 크게 두가지로 나눌 수 있습니다; 열린 끈(open string)과 닫힌 끈(closed string)이죠. 열린 끈은 신발끈처럼 양 끝이 이어져 고리를 이루지 않는 끈을 지칭하며, 닫힌 끈은 고무줄처럼 양 끝이 이어져 고리를 이루는 끈을 말합니다. 열린 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 1인 진동 모드가 포함되며, 닫힌 끈의 경우 질량이 없는 입자에 해당하는 진동 모드 중에는 스핀이 2인 진동 모드가 포함됩니다. 따라서 열린 끈의 경우에는 질량이 없고 스핀이 1인 입자가 등장하고 닫힌 끈의 경우에는 질량이 없고 스핀이 2인 입자가 등장합니다. 질량이 없고 스핀이 1인 입자로는 글루온과 광자가 있고, 질량이 없고 스핀이 2인 입자는 중력자로 유일하다는 것이 알려져 있습니다. 따라서 열린 끈을 다루게 되면 질량 없는 스핀 1 입자가 필요한 양밀이론을 포함하게 되며, 닫힌 끈을 다루게 되면 질량 없는 스핀 2 입자가 필요한 중력을 포함하게 되지요.


흥미로운 점은 열린 끈 두 개를 가져다가 양 끝을 이으면 닫힌 끈을 만들 수 있다는 것입니다. 그리고 이런 관계에서 양밀이론의 산란진폭을 제곱하면 중력이론의 산란진폭을 얻을 수 있다는 KLT 관계가 유도됩니다. 닫힌 끈의 산란진폭은 열린 끈의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있으므로, 중력이론의 산란진폭은 양밀이론의 산란진폭 한 쌍을 가져다가 곱한 것으로 이해할 수 있다는 것이지요.


열린 끈 둘의 끝을 잇는 것으로 닫힌 끈을 만들 수 있으며, 이 성질은 KLT 관계의 근간이 됩니다.


이 모든 이야기가 앞서 도입한 스피너-헬리시티 변수와 무슨 관계가 있을까요? 우리는 입자 셋의 산란진폭에는 총 2s개의 파라메터 $g_i$가 등장할 수 있으며, 그 중 $g_1$은 광자/글루온과의 상호작용의 경우 g 인자와 밀접한 관계를 맺고 중력자와의 상호작용의 경우 항상 사라져야 한다는 것을 배웠습니다. 만약 이 입자가 광자/글루온과의 산란진폭을 제곱하는 것으로 중력자와의 산란진폭을 얻을 수 있는 KLT 관계를 만족하게 된다면 광자/글루온 산란진폭의 $g_1$은 중력자 산란진폭의 $g_1$으로 변하게 됩니다. 그런데 중력자 산란진폭의 $g_1$은 항상 0이어야 한다는 것이 알려져 있으므로 이 입자의 광자/글루온 산란진폭의 $g_1$ 또한 0이어야 한다는 결론을 내릴 수 있으며, 이로부터 이 입자의 g 인자는 항상 2란 값을 만족해야 한다는 사실을 알 수 있습니다. 어떤 의미에서는 중력이 g 인자의 값이 2가 되도록 강제한다고 할 수 있는 것이죠.




우리는 자기회전비율이라는 입자의 전자기장과 상호작용하는 방식을 나타내는 한 파라메터가 전자기력과는 전혀 상관없어 보이는 중력과의 상호작용과 어떻게 연결될 수 있는지 알아보았습니다. 그리고 그 관계를 가장 명확하게 드러내는 방법은 최근에 개발된 표기법인 스피너-헬리시티 변수라는 것도 알게 되었죠. 이 새로운 도구는 우리에게 어떤 도움을 줄 수 있을까요?


미래를 예단하는 것은 멍청한 헛소리를 하는 가장 빠른 지름길이므로 여기서는 무엇을 할 수 있을지 조심스러운 전망을 내놓기보다는 이미 알려진 흥미로운 결과를 이야기해보려고 합니다. 중력과의 가장 '단순한' 상호작용이지요.


스피너-헬리시티 변수로 쓸 수 있는 가장 단순한 중력자와의 상호작용은 다음과 같습니다.

\[ M_3 = x^2 \langle {\bf 21} \rangle^{2s} \]


그리고 중력이 있는 계에서 가장 단순한 물체는 아무런 특징이 없는 (no hair) 블랙홀이라는 사실이 알려져 있죠. 따라서 이 산란진폭이 블랙홀과 중력자의 상호작용을 나타내는 것은 아닐까 가설을 세워 볼 수 있겠죠. Arkani-Hamed는 그 가설이 실제로 밝혀진다면 흥미로울 것이라고 이야기한 적이 있습니다. 블랙홀이 '기본입자'처럼 반응한다는 것을 의미한다면서요. 그리고 실제로도 이 산란진폭이 (고전적인 크기의 스핀을 갖는) 블랙홀의 산란진폭과 일치한다는 것을 보일 수 있습니다. 위에서 Holstein이 언급한 '블랙홀의 g 인자는 2다'란 명제를 생각해본다면, 어쩌면 이 사실은 그리 놀라운 일이 아닐지도 모릅니다. 하지만 스피너-헬리시티 변수라는 새로운 도구가 없었더라면 우리는 이 그렇게까지는 놀랍지 않은 일을 알 길이 없었겠지요. 이 새로운 도구가 어떤 길로 우리를 안내하게 될 지 기대하게 되는 이유이기도 합니다.

  1. 대전된 물체는 전체적으로 전하를 가진 물체를 말합니다. [본문으로]
  2. loop effect라 불리는 양자효과를 고려한 값으로, 양자효과를 제하면 남는 값은 정확히 2입니다. https://arxiv.org/pdf/hep-ex/0209015.pdf [본문으로]
  3. 이 목록에는 등장하지 않지만, 대부분의 초대칭이론의 경우에도 g 인자의 값이 2로 고정된다는 사실이 알려져 있습니다. 또 다른 강력한 정황증거인 셈이죠. [본문으로]
  4. 끈이론 개론 시리즈의 2편이 산란진폭을 다룰 예정입니다. [본문으로]
  5. 때때로 중요하지 않다고 생각되면 수식에서 질량을 나타내는 m을 생략하겠습니다. [본문으로]
  6. 헬리시티는 질량이 없는 입자의 스핀을 말합니다. 질량이 없는 입자의 경우 스핀의 방향을 뒤집을 수 없기 때문에 특별히 헬리시티란 이름을 붙입니다. [본문으로]
  7. 광자의 스핀이 1이기 때문에 일어나는 현상입니다. [본문으로]
  8. 이렇게 $g_0$만 남기고 다른 파라메터를 전부 0으로 날려버리는 선택은 질량이 없는 극한으로 아무런 문제 없이 보낼 수 있는 유일한 선택지이기도 합니다. [본문으로]
  9. 중력자의 스핀이 2이기 때문에 일어나는 현상입니다. [본문으로]
  10. 비례관계를 보다 전문적으로 일컫는 말이라고 생각하시면 됩니다. [본문으로]
Posted by 덱스터

얼마 전에 했던 삽질 관련 내용 정리.



이 잘 알려진(하지만 나는 몰랐던) 상식을 증명하는 방법은 Schwarz-Christoffel transform을 이용하는 것. 이 변환은 복소평면의 윗 반평면(upper half plane)을 다각형의 내부로 보내는 등각변환이다. 완전한 등각변환이라고 하기에는 꼭지점에서의 등각성이 깨지긴 하지만 그 정도는 무시하기로 하고(...). 2차원 이상유체 문제나 도파관 문제를 풀 때 이 변환을 이용하는 경우가 있는데, 요즘 물리과에서는 보통 풀 일이 없는 문제들이라 생소한 사람들도 많을듯. 구체적인 설명은 위키백과의 해당 항목으로 넘기기로 하자.


Schwarz-Christoffel map이 하는 일. 변수 z에서의 upper half plane을 등각성을 유지한 상태로 변수 w에서의 다각형 내부로 보낸다.


이 변환을 통해 증명하고 싶은 것은 'open string disk amplitude에서 vertex operator를 집어넣는 점들 중 일부가 한 점으로 수렴하고 이 점들을 a1, a2, ...으로 쓰기로 하자. 한 점으로 수렴하는 극한의 산란진폭은 a1, a2, ...에 해당하는 입자들이 산란하는 산란진폭과 나머지 입자들이 산란하는 산란진폭에 해당한다'는 주장인데, 다르게 이야기하면 'a1, a2, ... , c가 산란하는 진폭과 c, b1, b2, ...(b1, b2, ...는 vertex operator들 중 a1, a2, ...에 해당하지 않는 나머지)가 산란하는 진폭으로 나누어지며 그 사이를 c에 해당하는 상태가 진행하는 극한에 해당한다'가 된다. 단순히 말하면 c에 해당하는 internal propagator가 on-shell에 가까워져서 먼 거리를 이동한다는 이야기.


편의상 4ptc scattering을 생각하기로 하고 t-channel이 on-shell로 가는 극한을 생각하자. 이때 $SL(2,R)$를 이용해 vertex operator를 집어넣는 점 셋을 고정할 수 있다. 정석적인 선택은 $(0,\sigma,1,\infty)$. 따라서 다음 그림과 같은 형태의 Schwarz-Christoffel map을 찾는 것이 목표가 된다.


t-channel에서 intermediate state가 on-shell에 가까워지면 먼 거리를 이동하는 극한과 동등하다는 것을 보이기 위해 필요한 Schwarz-Christoffel map


여기서 $\bar{\sigma_1}$은 왼쪽의 꺾이는 점(혹은 1번과 4번 string이 intermediate state에 해당하는 string으로 합쳐지는 점)에 해당하고 $\bar{\sigma_2}$는 오른쪽의 꺾이는 점(혹은 intermediate state에 해당하는 string이 2번과 3번 string으로 갈라지는 점)에 해당한다. 이제 위 그림에서 $\sigma \to 1$의 극한이 $f(\bar{\sigma_2}) \to +\infty$로 가는 극한, 즉 $\bar{\sigma_1}$에 해당하는 점에서 $\bar{\sigma_2}$에 해당하는 점까지 이동하는 거리가 무한히 늘어나는 극한과 일치한다는 것을 보이면 된다. 이 변환은 다음 미분방정식의 해로서 주어진다.

\[ f'(z) = A (z-x)^{1}(z-0)^{-1}(z-\sigma)^{-1}(z-[\sigma + a(1-\sigma)])^{1} (z-1)^{-1} \]


이 식은 다음과 같이 분수들의 합으로 정리할 수 있다.

\[ f'(z) = A\left\{ \frac{\alpha}{z-0} + \frac{\beta}{z-\sigma} + \frac{\gamma}{z-1} \right\} \]


약간의 Mathematica 계산을 통해[각주:1] $\alpha = \frac{-x(a\sigma - a - \sigma)}{\sigma}$, $\beta=\frac{a(\sigma - x)}{\sigma}$, $\gamma = (1-a)(1-x)$가 된다는 것은 금방 확인할 수 있다. 영 못 믿겠으면 손으로 계산하는 것도 방법. 여기서 $a$와 $x$가 고정되어 있다면 $\alpha$, $\beta$, $\gamma$ 모두 유한한 값으로 고정된다는 것을 알 수 있다. 적분은 단순한 $1/z$의 적분이므로 바로 계산이 가능하다. 단, 복소변수이기 때문에 약간의 주의가 필요. Argument를 결정하는 branch cut은 편의상 -Im(z)축 방향으로 뻗도록 하는 것이 좋다.

\[ f(z) = A\left\{ {\alpha}\text{Log}z + {\beta}\text{Log}(z-\sigma) + {\gamma}\text{Log}(z-1) \right\} + B \]


state 1은 $-A\alpha$방향, state 2는 $-A \beta$방향, state 3는 $-A \gamma$방향, state 4는 $A(\alpha+\beta+\gamma) = A$방향에 위치한다는 것을 알 수 있다. 그러므로 위의 그림에 맞게 $A$의 값을 정하면 $A<0$이 된다. 이제 string worldsheet이 갈라지는 점들($f(\bar{\sigma_1})$과 $f(\bar{\sigma_2})$)의 위치를 살펴보자. 여기서 중요한 것은 Im(w)축상의 위치가 아니라 Re(w)축 방향의 거리이므로 Log의 argument에 해당하는 항은 잠시 무시해도 좋다. 우선 왼쪽의 합쳐지는 점의 위치를 구하면 다음과 같다.

\[ f(\bar{\sigma_1}) = A \left\{ \alpha \log |x| + \beta \log |x-\sigma| + \gamma \log |x-1| \right\} + i \cdots + B \]


오른쪽의 합쳐지는 점의 위치는 다음과 같이 주어진다.(수식이 약간 깨지는데 중요한 부분은 다음 문단에 있으므로 굳이 편집하지는 않겠다)

\[ f(\bar{\sigma_2}) = A \left\{ \alpha \log |\sigma + a(1-\sigma)| + \beta \log |a(1-\sigma)| + \gamma \log |(a-1)(1-\sigma)| \right\} + i \cdots + B \]


$\sigma \to 1$의 극한에서 발산하는 항만 모아보면 다음과 같다.

\[ f(\bar{\sigma_2}) = A \left\{ \beta \log |(1-\sigma)| + \gamma \log |(1-\sigma)| \right\} + \cdots \]


참고로 이 극한에서는 $\beta + \gamma \to 1 - x$이기 때문에, 오른쪽의 갈라지는 점은 $+\infty$의 방향으로 밀려나는 것이 맞다(부호를 $x<0$와 $A<0$로 결정했기 때문). 여기서 발산하는 항들은 전부 로그에 들어가는 값이 0으로 수렴하는 극한 때문에 등장했으므로, 이런 현상은 4ptc scattering에만 국한된 것이 아니라 일반적인 산란 상황에서도 관찰할 수 있을 것으로 기대할 수 있다. vertex insertion point가 모이게 되면 amplitude factorisation이 되는 극한, 혹은 intermediate state가 long distance propagation을 하는 IR divergence가 있는 극한으로 생각할 수 있다는 의미.


$\sigma \to 1$ 극한은 두 갈라지는 점 사이의 거리가 무한이 멀어지는 극한으로 생각할 수 있다


다만 이 논증은 worldsheet에서의 이야기이고, 실제 target space로 바로 연결되지는 않는다. 하지만 induced metric을 생각해보면 worldsheet상에서의 거리가 무한히 멀어지는 것과 target space상에서의 거리가 무한히 멀어지는 것은 비슷하다고 봐도 무방해 보인다.

  1. Apart 함수를 쓰면 된다. [본문으로]
Posted by 덱스터

지도교수님과 회식을 하던 도중 이런 이야기가 나왔습니다.

최근 들어 논문 원고만 쓰고 블로그는 방치해뒀다는 약간의 자책감과 글을 쓰지 않는 버릇을 들이다가는 생각하는 법도 잊어버린다는 약간의 위기감과 연구에 진척이 나질 않는데 잠시 숨을 돌려볼까 하는 약간의 일탈감에 힘입어 오랜만에 글을 써 볼까 키보드를 잡았습니다. 주제는, 교수님의 이야기에서 아이디어를 얻어, 제 전공이 있는지조차 모르는 사람들을 위한 안내서가 좋겠다 싶었죠. 제가 제 전공에 대해 글을 쓸 정도로 제 전공을 잘 아느냐고 물으신다면 양심의 가책은 느끼겠지만, 그런 것에 전혀 구애받지 않고 배짱으로 들이대는 것이 젊음의 특권 아니겠습니까(?)


이제부터는 나이를 묻거든 얼굴에 철판을 깔고 살기로 했습니다


과거 인기를 끌었던 사극 중 <태양인 이제마>가 있습니다. 사상의학의 개척자 이제마의 일대기를 다룬 드라마였는데, 드라마 중간에는 양의학을 접한 이제마가 다음의 말을 하는 장면이 있습니다.

"양의학은 부분을 깊게 살펴 빠르게 효과를 보지만 전체를 고려하지 않아 근본적인 대책이 되지는 못한다"(기억에 의존한 대사라 정확하지 않을 수 있습니다)

인터넷의 영원한(?) 떡밥 중 하나인 '한의학과 양의학 중 어느 쪽을 믿을 것인가'란 질문은 잠시 제쳐두고, '부분을 깊게 살핀다'는 말에 초점을 맞춰보겠습니다.


'부분을 자세히 파고들어 전체를 이해해보겠다'는 접근방식을 환원주의(reductionism)라 부릅니다. 예컨대 시계가 어떻게 작동하는지 알고 싶다면 시계를 구성하는 톱니바퀴들 사이의 관계를 이해하면 된다는 것이지요. 환원주의는 근대과학의 주된 구심점으로 작동했습니다. 현실 세계는 복잡하지만 현실 세계에서 '중요하지 않은 부분'을 쳐내고 나면 보다 단순한 현상으로 환원되고, 환원된 단순한 현상은 우리가 충분히 이해할 수 있으며, 단순화된 현실을 다루는 것으로 얻은 지식을 현실 세계로 다시 외삽하면 현실 세계를 이해할 수 있다는 것이 과학의 근간이었으니까요. 20세기부터 이어진 근대과학의 눈부신 성장을 보면 이런 접근법이 매우 성공적이었다고 평할 수 있겠죠.


입자물리, 혹은 고에너지물리는 이런 환원주의의 끝에 놓인 학문 중 하나입니다. 예로부터 사람들은 자신을 둘러싼 세계를 이해하고자 노력했습니다. 각종 신화 및 설화를 살펴보면 '왜 번개가 치는가?' 혹은 '왜 무지개가 생기는가?'와 같은 질문에 대한 답을 어렵지 않게 찾을 수 있다는 것이 그 방증이지요. 그리고 (어떤 의미에서는 지나치게) 성공적이었던 환원주의를 이 런 문제들에 적용해보는 사람들이 나타나는 것은 필연이라 할 수 있겠지요. 환원주의에 따르면 우리는 우리를 둘러싼 세계를 보다 작은 부분으로 나누어 그 작은 부분을 이해하는 것으로 원래 이해하고자 했던 세계를 이해할 수 있습니다. 이렇게 계속 세계를 작은 부분으로 나누어 나가다 보면 물질의 구성 요소라 여겨지는 소립자들을 이해하는 문제와 마주하게 됩니다. 소립자물리, 혹은 입자물리를 환원주의의 끝에 놓인 학문이라 부르는 것은 이러한 맥락에서입니다. 입자물리학의 성배를 최종이론(final theory), 혹은 모든 것의 이론(TOE; Theory Of Everything)이라 부르는 것 또한 이 연장선상에 있습니다.




입자물리는 고에너지물리라고도 부릅니다. 물리학자들이 작은 물체들의 행동을 가장 정확하게 묘사한다고 믿는 양자역학에 따르면 보다 작은 것을 보기 위해서는 보다 높은 에너지를 필요로 하므로, 가장 작은 것을 보고자 한다면 가장 높은 에너지를 이용해야만 하기 때문입니다. 그리고 실제로는 입자가 아닌 것들 또한 다룬다는 점에서 고에너지물리라는 명칭이 보다 정확하다고도 할 수 있지만, 용어의 혼동을 방지하고자 이 글에서는 입자물리라는 이름을 계속 사용하도록 하겠습니다.


입자물리는 그 이름이 시사하듯이 입자들의 행동을 다룹니다. 그렇다면 먼저 입자가 무엇인지 정의하는 것이 필요하겠지요. 양자역학이 등장하기 이전까지 물리학자들이 세계를 바라보는 관점에 커다란 영향을 미쳤던 뉴턴의 입장을 따른다면 입자는 하나의 점이고, 따라서 점입자(point particle)이란 용어를 쓰기도 합니다. 기하학에서 다루곤 하는 '크기와 부피를 갖지 않는 추상적인 점'이 바로 입자라는 것이지요. 물론 이 정의는 '얼마나 공간을 차지하는가'의 관점에서 주어지는 것으로, 점입자는 다른 물리적인 성질 즉 질량이나 전하와 같은 성질은 얼마든지 가질 수 있습니다. 또한 우리가 책을 한 권, 두 권 세는 것처럼 입자도 한 개, 두 개 셀 수 있지요. 이런 입자의 정의는 직관적으로는 잘 와닿기는 하지만 실제 연구를 하는 사람들에게 있어서는 충분히 세밀하지 못하다는 단점이 있습니다.


보다 현대적인 입자의 정의는 헝가리 출신 미국 물리학자 유진 위그너(Eugene Wigner)에 의해 정립되었습니다. 위그너 분류법(Wigner classification)은 다음과 같은 아이디어를 따릅니다.


1. 이론상 어떤 물체의 에너지와 운동량은 정확하게 측정할 수 있다. 그러므로 물체의 에너지와 운동량을 기본적인 변수로 잡자.

1'. (특수)상대론에 따라 에너지와 운동량을 조합하여 질량을 정의한다.

2. 어떤 물체든 그 물체를 회전시키면 그 회전에 반응한다[각주:1]. 물체의 운동량을 변화시키지 않고 물체를 회전시켰을 때 물체가 반응하는 방식을 따라 같은 운동량을 갖는 물체를 분류하자.

2'. 회전에 반응하는 방식을 스핀으로 정의한다.


운동량이라는 개념이 생소할 분들을 위해 운동량을 약간 설명해보자면, 운동량이란 말 그대로 '물체가 얼마나 많은 양의 운동을 갖고 있는가?'를 계량화한 것입니다. 같은 속도로 달리는 소형차와 거대한 트럭을 비교하면 거대한 트럭 쪽(무거운, 혹은 질량이 큰 쪽)이 보다 많은 운동을 갖고 있다고 할 수 있습니다. 또한 같은 소형차라고 해도 보다 빠르게 달리는 소형차가 보다 많은 운동을 갖고 있다고 할 수 있지요. 뉴턴의 입장에서는 이 두 관찰 결과를 반영하여 운동량을 질량과 속도의 곱으로 정의합니다. 운동량의 현대적인 정의는 이와는 조금 차이가 있지만 필요 이상으로 길어지게 되므로 이 정도에서 설명을 마치겠습니다.


정리하자면 현대적인 입자의 정의에서는 입자를 다음과 같은 것들에 의해 무엇인지 식별할 수 있는 대상으로 봅니다; 운동량 및 에너지가 몇인가(질량이 몇인가), 그리고 스핀은 몇인가. 이 과정을 통해 분류한 입자 한 개 한 개를 모아 입자 여러개를 묘사하는 것 또한 가능하다고 여깁니다. 물론 이 관점에서는 뉴턴의 입장에서와 마찬가지로 '전하가 몇인가'란 질문을 통해 서로 다른 입자를 식별할 수 있는 여지는 남아 있습니다. 하지만 이 정의에 '입자의 크기는 얼마이고 위치는 어디인가?'란 질문이 비집고 들어올 틈은 보이지 않죠. 그렇다고 입자의 크기나 위치를 묻는 질문이 의미가 없다고는 할 수 없습니다. 분명히 모든 존재하는 것은 어딘가 공간을 조금이라도 차지하고 있으니까요.




'입자의 크기가 무엇인가?'란 질문에 답하려면 '입자의 크기는 어떻게 측정하는가?'를 묻는 것이 더 나을 수도 있습니다. 이렇게 어떤 개념을 그 개념을 얻어내는 과정을 이용하여 정의하는 것을 조작적 정의(operational definition)라 부릅니다[각주:2]. 입자의 크기는 어떻게 측정할 수 있을까요?


우리는 손에 닿지 않는 물건의 크기를 가늠하는데 눈을 사용하곤 합니다. 눈이 하는 역할은 그 물건의 표면에서 반사된 빛을 잡아채는 것이지요. 그리고 이 과정을 다르게 표현하면 빛과 물건이 충돌을 일으킨 뒤 튕겨져 나온 빛을 관찰하는 것이라고 할 수 있습니다. 비슷한 방법을 입자의 크기를 측정하는 데 써볼 수 있습니다. 각기 다른 입자끼리 충돌시켜 보는 것이죠. 이처럼 입자와 입자를 충돌시키는 실험을 산란실험이라고 부릅니다. 가장 기본적이고 가장 투박하면서도 그에 걸맞지 않을만큼 강력한 실험이지요. 최근 힉스 입자의 발견으로 (약간의 희망을 담아 멋대로 수식어를 붙여본다면) 대중에게 널리 알려진 LHC에서 하는 실험도 이런 종류의 실험입니다. 그 이름(Large Hadron Collider; 큰 강입자 충돌기)이 암시하듯 LHC에서는 물리학자들이 강입자라고 분류하는 입자들을 매우 빠르게 가속시켜 서로 충돌시키는 실험을 하고 있습니다. 강입자는 나중에 이야기의 주연으로 등장하게 되지만 강입자에 대해서는 그 때 설명하기로 하죠.


산란실험은 반복수행을 염두에 두고 설계된 실험입니다. 작고도 작아 정확한 제어가 힘든 소립자들을 이용해야 하는 실험이라는 점이 반영된 셈이죠. 이렇게 반복수행을 염두에 두고 설계된 실험에서는 총 반복한 실험 횟수에 대하여 어떤 결과가 몇 번 얻어졌는지 그 비율을 관측하는 것이 실험의 목적이 됩니다. 그리고 이 비율은 입자의 '크기'를[각주:3] 정의하는 기준이 됩니다. '큰 물체일수록 더 많은 빛을 반사한다'란 일상생활에서의 관찰 결과를 소립자의 세계까지 확장한 것이지요. 재미있게도 산란실험은 '입자가 어디에 위치하고 있는가'에 대한 부분적인 답 또한 줍니다. 한 입자가 다른 입자와 충돌을 일으켰다면, 두 입자는 서로 같은 위치를 지나친 것이니까요. 어떻게 보면 당연해 보이는 '같은 위치를 지나쳐야만 충돌을 일으킨다'는 성질은 사실 상당히 강력한 제약이 됩니다. 이에 대해서는 다음 글에서 이야기하도록 하겠습니다.


물리학자들은 산란실험으로 결정되는 '크기'를 산란단면적(scattering cross-section)이라 부릅니다. 현대 입자물리학 역사의 큰 줄기는 산란실험으로 얻은 산란단면적의 정보로부터 이 산란단면적과 일치하는 예측치를 주는 이론을 역추적하는 일과 주어진 이론으로부터 원하는 산란과정에 해당하는 산란단면적을 계산해내는 일로 요약할 수 있을 정도로 산란단면적은 입자물리학에서 거대한 주축을 담당하고 있습니다. 끈이론은 이 거대한 주축으로부터 탄생했습니다.


연관글:


비전공자를 위한 끈이론 개론(2) - 산란행렬의 계산 (작성중)

비전공자를 위한 끈이론 개론(3) - TBA (작성 예정?)


  1. 여기서 반응이라는 것은 '책상 위의 책을 뒤집으면 더 이상 앞면이 보이지 않고 보이지 않던 뒷면이 보이는 것'처럼 그 물체를 기술하는 방법이 바뀐다는 것을 의미합니다. [본문으로]
  2. 보다 물리학, 특히 고전역학에 익숙한 독자들을 위해 약간의 설명을 덧붙이자면, '힘을 받지 않는 물체가 등속운동하는 기준계'가 관성기준계에 대한 일반적인 정의라면 '힘을 받지 않는 물체들을 각기 다른 방향으로 던져 그 물체들이 등속운동을 하는 것으로 보이도록 잡은 좌표계'가 관성기준계의 조작적 정의에 해당합니다. [본문으로]
  3. '크기'에 따옴표를 친 이유는 크기를 (조작적으로) 정의하는 다양한 방법이 있을 수 있기 때문입니다. 대부분의 경우 크기에 대한 각기 다른 정의는 물체의 크기에 대해 다른 답을 줍니다. 다양한 크기의 정의법을 보고 싶으신 분은 이 글을 참고하시면 좋겠습니다(링크된 글에서 전자의 크기를 정의하기 위해 사용하는 조작적 정의들은 이 글에서 사용한 정의와는 차이가 있습니다). [본문으로]
Posted by 덱스터

전하와 자하를 동시에 두면 이로부터 만들어지는 전자기장이 각운동량을 갖는다는 사실은 잘 알려져 있다. 처음으로 이 계산을 한 것이 톰슨이었다던가. 이 계산은 각운동량의 양자화로부터 전하와 자하의 양자화를 유도해내는 과정인 Dirac quantisation 혹은 Dirac-Schwinger-Zwanziger quantisation을 정당화하는데 이용되기도 한다.


여튼, 정석적인 계산방법은 전하를 원점에, 자하를 적당한 z축상의 한 점에 둔 뒤 원통좌표계를 써서 각운동량을 계산하는 것인데 이 방법 말고 벡터미적분학을 적절히 이용해서 쉽게(?) 계산하는 방법이 있다. 이 방법이 있다는 것은 알고 있었는데 정확한 과정을 떠올리는데 만 하루가 걸리고 나니 조금 슬프지만.


먼저 전하를 원점에, 자하를 $\vec{r'}$에 두자. 그리고 다음과 같이 벡터 $\vec{\rho} := \vec{r} - \vec{r'}$를 정의한다. 전하와 자하가 만들어내는 전자기장은 다음과 같이 계산할 수 있다.

\[ \vec{J} = \int \vec{r} \times \vec{P} = \int \vec{r} \times \left( \vec{E} \times \vec{B} \right)  \]


전기장과 자기장을 쓰기 위한 단위계는 cgs를 택하기로 한다.

\[ \vec{E} = \frac{e \vec{r}}{r^3} \] \[ \vec{B} = \frac{g \vec{\rho}}{\rho^3} \]


실제 계산에 문제가 되는 항은 다음 항이다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} \]


벡터 삼중곱을 쓰면 이 항은 다음과 같이 쉽게 정리할 수 있다.

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = \vec{r} \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} - \frac{\vec{\rho}}{r \rho^3} \]


이제부터 벡터미적분학의 묘미가 시작된다. 다음 등식은 어렵지 않게 증명 가능하다.

\[ (\nabla \phi) \cdot (\nabla \varphi) = \nabla \cdot (\phi \nabla \varphi) - \phi \nabla^2 \varphi \]


이 식을 $\vec{a}/a^3$꼴의 식에 적용한다.

\[ \frac{ \vec{r} \cdot \vec{\rho}}{r^3 \rho^3} = \nabla \frac{1}{r} \cdot \nabla \frac{1}{\rho} = \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) - \frac{1}{r} \nabla^2 \frac{1}{\rho} \]


다음 항등식은 전자기학을 공부했으면 심심찮게 만날 수 있다.

\[ \nabla^2 \frac{1}{r} = - 4 \pi \delta^3 (\vec{r}) \]


정리하면

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \vec{r} \nabla \cdot \left( \frac{1}{r} \nabla \frac{1}{\rho} \right) + \frac{1}{r} \nabla \frac{1}{\rho} \]


또는, Einstein summation convention을 도입할 경우,

\[ \frac{\vec{r} \times ( \vec{r} \times \vec{\rho})}{r^3 \rho^3} = 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) \]


가 되어 total divergence만 남는 것을 확인할 수 있다. 따라서,

\[ \vec{J} = e g \int 4 \pi \frac{\vec{r}}{r} \delta^3 (\vec{\rho}) + \nabla_j \left( \frac{\vec{r}_i}{r} \nabla_j \frac{1}{\rho} \right) = 4 \pi e g \hat{r'} + \oint \text{boundary terms} \]


으로 정리할 수 있으며, 약간의 order of magnitude analysis를 통해 boundary term은 0이 된다는 것을 증명하면 정리는 끝난다. 해당 증명은 어렵지 않으니 생략.

\[ \therefore \vec{J} = 4 \pi e g \hat{r'} \]


단위계가 엉망인데 계산과정이 중요한 것일 뿐이니 적당히 알아서 집어넣으시길...

Posted by 덱스터

산란진폭의 재귀적 구성을 다룬 원고로, 그룹미팅 발표용으로 준비했던 자료를 TeX으로 문서화해봤습니다. 연구과목 보고서로 때우기 위해 작성한 불순한(?) 의도도 있긴 한데 뭐 상관없겠지요. 생각보다 길어져서 계산으로 실제 다뤄봤던 예시는 포함하지 않았습니다. 어차피 참고문헌에 다 들어있으니 알아서 찾아보시면 될 듯(무책임).



Posted by 덱스터

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




위상수학에 대해 가장 널리 알려진 예시라고 한다면 도넛과 머그잔이겠지요. 거기에 질세라 노벨위원회에서 올해 수상자를 발표할 때 위상수학을 설명하면서 베이글과 프레츨을 예시로 들었습니다. 이 물체들이 어떻게 위상수학적으로 같고 다른지는 찰흙을 가지고 장난을 치다가 부모님께 혼나본 경험이 있으시다면 이해할 수 있으시겠지요. 아쉽게도 위상론적 물질에서 필요한 위상수학적인 양은 천 숫자(Chern number)라는 값으로, 앞선 예시들과는 달리 쉽게 머리 속으로 그릴 수 있는 것들은 아닙니다.


위상수학에서는 우리가 머리 속으로 그릴 수 있는 평범한 도형들을 다양체(manifold)라는 개념을 이용해 정의합니다. 구체적인 정의는 논의를 괜히 쓸데없이 복잡하게 만들테니 필요없겠지요. 천 숫자는 접속(connection)이란 특별한 종류의 수학적인 물체를 다양체 위에 올려놓았을 때 그 접속에 대한 위상론적인 정보를 담고 있는 값입니다. 그러면 우선 접속이 무엇인지에 대해 알아야 위상수학이 어떤 역할을 하는지 알 수 있겠지요.


그다지 좋은 예는 아니지만[각주:1] 접속을 이해하는데 쓸 수 있는 장난감으로 굴렁쇠가 있습니다. 비록 저 자신은 굴렁쇠를 실제로 굴려본 적이 없고 교과서 사진으로나 봤을 뿐이지만 동전은 자주 굴려봤으니 자신감을 가져도 좋겠지요. 다시 굴렁쇠로 돌아와서, 어떤 위치에서 굴리기 시작한 굴렁쇠를 적당한 경로를 따라 원래 위치로 돌아오는 것을 생각해 봅시다. 만약 굴렁쇠의 각 점에 눈금이 매겨져 있었다면 굴리기 전의 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금과 굴리고 같은 위치로 돌아왔을 때 굴렁쇠와 바닥이 맞닿은 점을 가리키는 눈금은 다르겠지요. 홀로노미(holonomy)나 모노드로미(monodromy)는 이 눈금이 얼마나 달라지는가를 잡아내기 위해 정의된 수학적인 물체입니다. 하지만 오늘 논의에서는 다루려던 내용이 아니므로 두 용어에 대해서는 이 정도에서 설명을 마치도록 하지요.


접속이란 개념을 이해하기 위해서는 굴렁쇠를 굴린 경로 위의 각 점에 굴러가고 있는 굴렁쇠를 관찰하는 관찰자를 올려놓는 것이 좋습니다. 각 점에 앉아있는 관찰자는 굴렁쇠의 눈금 중 어떤 눈금이 바닥과 닿아있는지를 기록할 수 있겠지요. 그리고 한 점에 앉아있는 관찰자가 관찰한 눈금은 바로 옆에 앉은 관찰자가 관찰한 눈금과 일정한 관계를 맺고 있습니다. 굴렁쇠는 미끄러지지 않고 굴렀을테니, 두 관찰자 사이의 거리만큼 굴렁쇠와 바닥이 닿은 눈금이 변했을테니까요. 이처럼 한 점에서 관찰한 무언가의 값을 바로 옆의 점으로 끌고가면 일반적으로는 그 값이 변합니다. 수학에서는 이런 정보를 담은 것을 접속이라고 부릅니다. 한 점에서의 정보를 바로 옆의 점으로 연결시켜 준다는 점에서 더없이 적절한 용어(접속은 영어로 connection이라 부릅니다)라고 할 수 있겠지요. 한 점에서 바로 옆의 다른 점으로 움직이는 방법은 움직일 수 있는 방향만큼이나 다양하기 때문에 접속은 '어떤 방향으로 움직이는가'에 대한 정보도 함께 담고 있어야 합니다. 방향에 대한 정보를 가지고 있다는 점에서 접속은 벡터장과 매우 비슷합니다.


약간은 의외의 사실일 수 있겠지만, 어떤 다양체에는 벡터장을 임의로 올려놓지 못한다는 것이 알려져 있습니다. 가장 간단하고 머리 속으로 그려볼 수 있는 예시로는 털난 공 정리(hairy ball theorem)이 있습니다. '털난 공을 빗을 수 없다'란 표현으로 유명한 이 정리는 공의 표면(2차원 곡면이므로 $S^2$라 부릅니다) 위에 올려놓은 벡터장은 항상 0이 되는 지점이 있어야 한다고 주장합니다. 크기가 0이 아닌 벡터장을 공에 납작하게 붙은 털에 빗댄 것이지요. 실제로 그런지 의심이 드는 분이라면 바람이 부는 지구 표면을 생각해 보시면 좋습니다. 과연 지구 표면의 모든 점에서 동시에 바람이 불 수 있을까요? 털난 공 정리에 따르면 지구의 적어도 한 점에서는 바람이 불고 있지 않아야 합니다.


위의 정리는 위상수학적인 결과입니다. 털난 공이라고는 했지만 그것이 꼭 공일 필요는 없는 것이지요. 공이 조금 찌그러져 있다거나 허리같은 길쭉한 부분이 있다거나 해서 벡터장이 0인 지점이 하나는 있어야 한다는 사실이 변하지는 않는다는 말입니다. 천 숫자는 털난 공 정리와 비슷하게 다양체 위에 올려놓은 접속이 임의로 주어질 수는 없다는 것을 말해줍니다. 천 숫자를 계산하면 정수를 얻지만 이 정수가 정확히 무엇을 세는가에 대해서는 저도 좋은 설명이 없다는 점이 아쉽군요. 다만 한 가지 확실하게 말할 수 있는 것은 두 접속에 대해 계산한 천 숫자가 서로 차이가 난다면 하나의 접속에 작은 변화를 누적시켜서 다른 접속으로 바꾸는 것이 불가능하다는 것이고, 이런 의미에서 천 숫자가 위상론적인 불변량이라는 것입니다.




천 숫자에 대해 이해하려면 우선 접속에 대해 더 자세히 알아야 합니다. 그러므로 접속에 대해 좀 더 이야기해보도록 하죠.


잘 만들어진 굴렁쇠라면 모든 점이 서로 엇비슷하게 생겼을 겁니다. 굴렁쇠에 눈금을 새겼더라도 어떤 눈금을 1로 두고 그 눈금부터 번호를 매길 것인가에 대한 자유가 남아있는 것이지요. 때문에 각 점에 앉아있는 관찰자가 각자 굴렁쇠를 하나씩 들고 '나는 이 눈금을 1로 세겠다'고 주장하는 것을 생각해 볼 수 있습니다. 이 눈금을 1로 세는 점을 기준점이라고 부르도록 하죠. 각 점에 앉아있는 관찰자가 임의로 기준점을 재조정하더라도 실제로 굴렁쇠가 굴러가는 것에는 영향을 미치지 않아야 합니다. 이렇게 기준점을 재조정하는 것을 게이지 변환(gauge transform)이라 부르고, 기준점 재조정에 영향을 받지 않는 것을 게이지 대칭(gauge symmetry)이라 부릅니다. 입자물리에 관심이 있으신 분들이라면 게이지 보존(gauge boson)이란 단어를 들어보셨을텐데, 그 단어에서 말하는 게이지와 지금 여기에서 말하는 게이지는 같은 수학적인 물체입니다. 단지 그 수학적인 물체를 무엇을 나타내기 위해 쓰고 있느냐의 차이 정도만 있을 뿐이지요.


접속은 언제까지나 '한 점에서 읽어낸 값을 바로 옆의 점으로 옮기는 방법'을 결정해주기 때문에 값을 읽어낸 점에서 관찰자가 선택한 기준점과 값이 옮겨질 점에서 관찰자가 선택한 기준점에 영향을 받습니다. 그래서인지 기준점을 재조정하는 과정인 게이지 변환을 할 경우 각 점이 얼마나 다르게 기준점을 재조정했는지의 정보까지 들어가야 해서 보다 복잡하게 변화하지요. 다르게 말하자면 '각 점에서의 기준점 선택'에 영향을 받는다는 의미에서 진짜 물리적인 의미를 갖는 대상이라고 보기는 힘들다고 할 수 있습니다. 게이지 변환에 영향을 받지 않는 것들, 즉 게이지 불변(gauge invariant)인 것만이 실제 물리적인 의미를 갖는 대상이라고 생각해야 한다는 것이지요. 그렇다면 접속으로부터 충분히 물리적인 의미를 갖는 대상을 얻어낼 수 있는지가 문제가 됩니다.


한가지 방법은 아주 작은 폐곡선을 생각하고 그 폐곡선을 따라 굴렁쇠를 원래 위치로 굴린 것과 굴리기 전의 굴렁쇠의 차이를 확인하는 것입니다. 같은 점에서 굴렁쇠를 비교하는 것이기 때문에 기준점을 옮긴다고 해도 눈금의 차이는 변하지 않지요. 마치 12와 16의 차이가 112와 116의 차이와 같은 것처럼 말입니다. 이를 곡률(curvature)이라고 부릅니다.[각주:2] 곡률은 작은 폐곡선의 경우 그 폐곡선을 경계면으로 갖는 곡면의 넓이에 비례해서 눈금의 차이가 커진다는 관찰에 기반을 두고 있습니다. 작은 곡면은 평행사변형으로 근사할 수 있고 평행사변형은 두 방향(마주한 변은 같은 방향이므로 두 방향만 갖습니다)을 갖기 때문에 곡률은 방향에 대한 정보를 둘 가지고 있어야 합니다. 또한 이 두 방향이 겹치게 되면 넓이를 갖는 평행사변형이 만들어지지 않기 때문에 주어진 두 방향에 대해 반대칭적(antisymmetric)이어야 하죠.


곡률은 물리적인 정보를 담습니다. 게이지 이론으로 이해할 수 있는 전자기학을 예로 들자면, 전자기장에 해당하는 접속의 곡률은 우리가 실제로 측정할 수 있는 전기장과 자기장으로 인식됩니다. 또한 실제 천 숫자를 계산할 때는 접속을 이용하는 것이 아니라 접속의 곡률을 이용합니다. 이것을 이용해 여러가지 위상론적인 물체들을 만들 수 있습니다. 예를 들어 3차원 공간의 한 점을 감싸는 구의 표면 위에서 전자기장의 천 숫자를 계산하면 그 표면을 통과하는 총 자기장의 양을 얻는데, 천 숫자는 정수로 주어지므로 그 구 안에 들어있는 자기장의 원천 즉 자하의 총량은 정수로 주어진다는 것을 알 수 있습니다. 전하와 마찬가지로 자하 또한 양자화되어야 한다는 것을 의미하는 것이지요. 약간 원래 논의에서 벗어나기는 했지만, 고에너지 물리학에서는 이런 방식으로 위상수학을 이용해 위상론적인 물체들을 다루곤 합니다. 위상론적인 원인이 있고 입자의 성질을 갖기 때문에 이런 물체들을 위상론적 솔리톤(topological soliton)이라고 부르지요. 다른 위상론적인 물체로는 인스탄톤(instanton)들이 있는데 시간을 허수로 만드는 다소 설명하기 껄끄러운 일들을 해야 하므로 넘어가도록 하겠습니다.


천 숫자가 위상론적인 물질에서 물리적인 의미를 갖는 사례 중 하나는 정수 양자 홀 효과(integer quantum Hall effect)입니다. 금속에 아주 강한 자기장을 수직축으로 걸었을 때 전기장을 수평축으로 걸면 자기장과 전기장에 수직한 방향으로 전류가 흐르는데, 정수 양자 홀 효과는 이때 흐르는 전류와 전기장의 비를 측정한 것(홀 전도도라고 부릅니다)이 폰 클리칭 상수(von Klitzing constant)의 정수배로 나타나는 현상을 말합니다. 정수 양자 홀 효과에서는 이 홀 전도도가 천 숫자로부터 계산할 수 있다는 것이 알려져 있습니다.


정수 양자 홀 효과에서 계산하는 천 숫자는 조금 독특한 공간에서 계산합니다. 2차원 공간을 돌아다니는 전자들을 운동량으로 분류했을 때, 이 운동량이 만드는 공간에서의 적분이죠. 이 공간 위에서도 접속을 정의할 수 있습니다. 특정 운동량을 갖는 전자의 위상을 측정할 때 기준으로 삼는 위상을 운동량마다 다르게 설정해 줄 수 있기 때문이죠. 이를 베리 접속(Berry connection)이라고 부르고, 베리 접속으로부터 얻는 곡률을 베리 곡률(Berry curvature)라고 부릅니다. 양자 홀 효과와 관련된 천 숫자는 베리 곡률로부터 얻어지며, 이를 TKNN 불변량이라고 부릅니다.


정리해보자면, 실제로 위상론적 물질에서 쓰이는 위상수학은 접속과 관계된 천 숫자라는 불변량들이고 천 숫자가 실제로 힘을 발휘하는 경우의 예로 정수 양자 홀 효과를 들 수 있었습니다. 논의를 벗어나기는 했지만 고에너지 물리학에서는 위상수학을 어떻게 이용하는지를 다루면서 솔리톤에 대한 이야기도 꺼냈지요. 위상수학에 대한 이야기만 잔뜩 하고 정작 물리 이야기는 거의 하지 않았다는 점이 조금 마음에 걸리지만, 일단은 여기까지가 현재 할 수 있는 범위 내에서는 최선인 것 같네요.




천 숫자를 중심으로 살펴보긴 했지만 실제로는 더 많은 위상수학이 쓰입니다. 예를 들어 애니온(anyon)의 경우에는 매듭 군(braid group)과 관련이 있지만 잘 알지 못하는 관계로 넘어갔습니다. 글에서 언급된 자기단극자의 경우 한 차원 낮추게 되면 소용돌이(vortex)의 양자화를 얻는데, 이건 천 숫자로 표현하기에는 껄끄러운 점이 있어서 넘어갔죠.


마지막 글은 솔직히 쓰기는 할지 모르겠습니다. 요즘 일이 많아서... ㅠㅠ

  1. 수학적으로 정합적(consistent)인 묘사가 불가능하다는 점에서 좋은 예는 아닙니다. [본문으로]
  2. 참고로 일반상대론에서 말하는 '휜 공간'의 곡률과 이 곡률은 같습니다. 단지 곡률을 정의하기 위해 사용하는 접속이 다를 뿐이죠. [본문으로]
Posted by 덱스터

2016년 노벨 물리학상은 위상론적인 물질과 관련된 연구를 한 사울레스, 홀데인, 그리고 코스털리츠에게 돌아갔지요. 제 전공과는 조금 거리가 있는 주제인지라 그냥 넘어가려고 했었는데, 트위터에서 어쩌다가 개인 DM으로 해설을 부탁받아버려서 제가 아는 범위 내에서만 썰을 풀어봅니다. 그 말인즉, 노벨상 수상자들이 무엇을 했는지 설명하기보다는 노벨상 수상자들이 무엇을 했는지 알기 위해 필요한 사전지식들에 대해 설명해보겠다는 소리죠.


세 번 정도에 걸쳐 다음 주제를 주로 다룰 생각입니다.

1) 새로 발견된 상전이는 이전의 알려졌던 상전이와 어떻게 다른가

2) 실제로 이용하는 위상수학은 무엇에 대한 위상수학인가

3) 왜 위상론적 물질에서 경계면이 중요해지는가


그러면 시작해보죠.




기초적인 질문부터 시작해보도록 합시다. 물질의 상은 어떻게 구분할까요? 누구나 물과 얼음은 다르다는 것을 본능적으로 알고 있습니다. 하지만 기계에게 물과 얼음의 차이를 이해시키고자 한다면 "딱 보면 몰라?"보다는 나은 설명이 필요하겠죠.


한없이 투명한 무언가가 담겨 있는 양동이를 생각해봅시다. 양동이가 전혀 움직이지 않는다면, 이 양동이에 담긴 것이 물인지 아니면 얼음인지 구분하는 것은 쉽지 않겠죠. 어떻게 하면 물인지 얼음인지 구분할 수 있을까요? 답은 손을 대보면 됩니다. 액체인 물이라면 손이 한없이 투명한 표면을 뚫고 들어갈 것이고, 고체인 얼음이라면 손은 단단한 벽과 마주한 것처럼 전혀 표면을 뚫을 수 없겠지요. 이 차이를 두고 '얼음과 물의 층밀리기 탄성(shear elasticity)이 다르다'고 합니다. 층밀리기 탄성을 이해하는 좋은 방법 중 하나는 평평한 책상 위에 올려놓은 책을 떠올려 보는 것입니다. 책의 윗면에 손을 놓고 마찰력을 이용해 책의 윗면을 책상과 평평하게 이동시키면 책은 원래의 네모난 모양을 잃어버리고 각 페이지가 층층이 밀린 듯한 모습으로 변해버리겠지요. 이런 변화를 층밀리기 변형(shear)이라고 부릅니다. 우리는 얼음과 같이 층밀리기 변형에 대해 단단하게 저항하는 성질을 갖는 물체를 고체라고 부릅니다. 반대로 물처럼 층밀리기 변형에 대해 전혀 저항하지 못하는 물체는 액체라고 부르지요.


위의 예시처럼 '어떤 계의 상이 변했다'고 말하고자 한다면 그 계의 특징적인 물리량이 어떻게 변했는지를 살펴보면 됩니다. 물과 얼음의 경우에는 층밀리기 변형에 대한 저항이 이런 물리량 중 하나에 해당하겠지요. 이런 특징적인 물리량을 두고 질서 변수(order parameter)라고 부릅니다. 잘 정한 질서 변수는 그 상전이를 완벽하게 묘사해낼 수 있습니다. 이 사실을 바탕으로 만들어진 것이 란다우-긴즈부르크(Landau-Ginzburg) 이론입니다. 란다우-긴즈부르크 이론에서는 '무엇이 상전이를 일으키는가'란 질문보다는 '무엇이 상전이의 특성을 나타내는가'란 질문이 중요합니다. 이제 상전이를 이해하기 위해 우리가 던져야 할 질문은 '어떻게 해야 좋은 질서 변수를 찾을 수 있을까?'가 되겠지요.


물리계 중에는 대칭성을 가진 계들도 존재합니다. 대칭성을 정확히 정의하려면 논의가 복잡해지지만[각주:1] 여기에서는 일상에서 '대칭'이라는 단어가 사용되는 정도로만 이해해도 충분합니다. 정삼각형은 세 꼭지점을 돌리는 것에 대해 회전대칭을 가지고 있고, 대부분의 물고기는 (거의) 좌우대칭입니다. 물리계가 대칭성을 가진다는 것도 비슷한 의미를 지닙니다. 물리계를 전체적으로 돌리거나(회전대칭) 전체적으로 조금 이동시킬 경우(병진대칭) 그 전과 구분되지 않는다는 것이죠. 과거에는 '계가 가진 대칭성이 좋은 질서 변수를 결정한다'고 믿었습니다. 심지어는 계가 가진 대칭성만 가지고도 그 계의 상전이가 완전히 결정된다는 주장도 있었지요. 이것을 보편성(universality)이라고 부릅니다.


보편성은 계가 상전이를 하고 있는 바로 그 순간에는 눈금 바꿈 대칭(scale symmetry)을 가진다는 것에 근거를 둡니다. 어떤 물리계의 어떤 물리량을 측정하고자 한다면 그 물리량을 측정하는데 기준이 되어주는 기준자가 있어야 합니다. 예를 들어 길이를 측정한다고 하면 1cm마다 눈금이 하나씩 그어져 있는 자가 필요하지요. 눈금 바꿈 대칭이란 물리량을 측정하는데 기준으로 쓴 기준자의 눈금을 바꿔도 바꾸기 전과 구분하지 못한다는 것을 의미합니다. 예컨대 어떤 물리계를 한 사람은 a란 크기의 눈금을 가진 기준자로 관찰하고 다른 사람은 b란 크기의 눈금을 가진 기준자로 관찰할 경우 둘은 서로 같은 계를 관찰했지만 다른 상태를 관찰했다고 인식하는 것이지요. 만약 눈금 바꿈 대칭이 없었다면 그 계는 어떤 특성 길이(characteristic length) c를 갖기 때문에 전자는 c/a라는 값이 특별하다는 것을 눈치채고 후자는 c/b라는 값이 특별하다는 것을 눈치채며, 일반적으로 c/a와 c/b는 같지 않기 때문에 둘은 서로 다른 계를 관찰하고 있다고 생각하게 됩니다. 한편 그 특성 길이가 0이거나 무한대가 된다면 두 값은 같으므로 그 물리계는 눈금 바꿈 대칭을 가지고 있다고 할 수 있겠지요.


계가 A라는 상과 B라는 상 사이에 끼어서 상전이를 하는 순간에는 계를 A라는 상으로 바꾸려는 작용과 B라는 상으로 바꾸려는 작용이 균형을 이루기 때문에 작은 변화라고 해도 아주 먼 거리까지 영향을 미칩니다.[각주:2] 팽팽하게 당겨진 실에서는 한쪽으로 움직이려는 힘과 반대쪽으로 움직이려는 힘이 균형을 이루고 있기 때문에 한 끝을 튕기면 그 진동이 반대 끝까지 전달되는 것과 비슷하다고 해야할까요? 이렇게 한 계가 눈금 바꿈 대칭을 가진 경우에는 매우 큰 눈금을 가진 자로 측정해도 살아남는 특징이 계의 특징을 결정한다고 생각할 수 있습니다. 통계역학의 관점에서는 매우 큰 눈금을 가진 자로 측정할 경우 물리량을 측정하는데 관여하는 원자의 수가 엄청나게 많기 때문에 각 원자의 상세한 특징은 거대한 숫자에 쓸려나가 버립니다. 따라서 계의 상세한 특징은 상전이를 기술하는데 별로 영향을 미치지 않는다고 생각할 수 있는 것이지요. 한편 계의 대칭성은 작은 눈금을 이용하든 큰 눈금을 이용하든 영향을 받지 않습니다. 따라서 계의 대칭성은 상전이를 기술하는데 중요한 역할을 한다고 추정할 수 있고, 이것이 앞서 설명한 보편성의 근거가 됩니다.


여기까지가 위상론이 상전이를 이해하는데 필요하다는 사실을 깨닫기 전까지의 이야기였습니다. 정리하자면, 여태까지는 계가 가진 대칭성만 잘 이해하면 계의 상전이를 잘 이해할 수 있다고 믿었던 것이죠.




나머지 내용도 언젠가 올리긴 올릴텐데 과연 노벨상 수상식이 있기 전에 올라갈 것인지는 모르겠군요...=-= 다른 할 일이 많아서...




23. Oct. 2016> 생각해보니 중요한 내용 몇가지를 언급하는 것을 잊어버렸는데, 란다우-긴즈부르크 이론에서 대칭성과 함께 중요한 것은 계가 몇차원에 정의되었는가이며 상전이를 두고 나누어진 두 상은 계의 대칭성이 깨졌는가 깨지지 않았는가를 이용해 구분합니다. 계의 대칭성이 깨지지 않았다면 질서 변수가 계의 대칭성을 보존하는 변환에 대해 변하지 않지만 계의 대칭성이 깨졌다면 질서 변수가 계의 대칭성을 보존하는 변환에 따라 변화하게 되지요. 해당되는 질서변수의 구체적인 예로 철의 자화(magnetisation)를 들 수 있는데, 대칭성이 깨지지 않은 고온의 탈자 상태에서는 회전에 대해 자화가 변하지 않지만(0이니까요) 저온의 자화된 상태에서는 회전하게 되면 자화된 방향이 변하게 되죠.

  1. 관심이 있으신 분은 제가 예전에 적은 노트(영문)의 앞부분에 해당 내용이 있으니 참고하세요.2016/08/08 - Particles in Curved Space [본문으로]
  2. 이 설명은 잠열이 없는 상전이, 즉 2차 상전이에 해당하는 설명입니다. 잠열이 있는 1차 상전이에서는 잠열이 작은 변화를 완충해주는 역할을 하기 때문에 이 경우에 해당하지 않습니다. 주로 임계현상(critical phenomena)의 연구가 2차 상전이에 집중되어 있는 것도 이런 이유에서이죠. [본문으로]
Posted by 덱스터

수업시간에 마주한 Frobenius' theorem이 특수상대론의 유명한 문제인 '회전하는 원반의 둘레는 얼마인가?'와 연결된다는 것을 깨닫고 작성을 시작한 노트. 별 내용도 없는데 생각보다 작성하는데 시간이 오래 걸렸다. 특수상대론을 다루는 부분은 작업 시작한 날 3시간만에 전부 정리했는데 나머지 부분에서 제대로 된 설명을 만드느라 헤매서....


처음 쓰기 시작했을 때는 '오 이거 재미있다!'란 생각으로 타자를 쳤는데 다 치고 나니까 '뭐야 이거 당연한 소리였잖아...'란 느낌만 든다. 안 그런 일이 드물기는 하지만...


Frobenius Theorem in General Relativity.pdf


'Physics > Concepts' 카테고리의 다른 글

Canonical transformations and equivalence of Hamiltonians  (0) 2020.02.23
Elementary introduction to Dirac brackets  (2) 2019.01.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Posted by 덱스터

(필명으로 운영하는 이 블로그 말고) 나중에 제대로 된 개인 홈페이지를 만들었을 때 올려놓아도 괜찮겠다 싶어서 학생 세미나도 준비할 겸 작성한 텍. 쓰다보니 너무 길어졌다.

Notion of Particles in Curved Space public.pdf


Unruh effect를 다루기 위해 넣은 Unruh-DeWitt detector는 진짜 열적 분포를 갖는 결과가 나오도록 하고 싶었는데 계산을 간단히 하려고 1+1차원에 갇혀있었던 것이 문제가 된 듯. 노트의 각주에 달아놓기는 했지만 3+1차원에서 계산하면 열적 분포가 제대로 나온다. 조금 신경쓰이는 부분은 $1/E$에 비례하는 항 때문에 구한 response function이 E에 대해 우함수가 아니라는 것인데, 이건 전이 확률이 에너지 준위차에만 의존하지 않고 에너지가 높은 쪽으로 전이하는 확률과 낮은 쪽으로 전이하는 확률이 서로 다르다는 것을 의미해서 그렇다. 여태 본 계산 중에는 이런 계가 없었던 것으로 기억하는데 무언가 잘못한 것이 있는 것은 아닌가 싶어서.

'Physics > Concepts' 카테고리의 다른 글

Elementary introduction to Dirac brackets  (2) 2019.01.29
Frobenius Theorem in General Relativity  (0) 2016.09.29
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
Posted by 덱스터
이전버튼 1 2 3 4 5 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함