진짜 오랜만의(...) 물리 이야기. 군대 복무하면서부터 구상했던 논문 주제가 결국 논문으로 나왔고, 발표도 했고, 학점도(...) 나왔다. 그리 잘 쓴 것 같지는 않지만 어떻게 생각이 이어지는지 log를 남겨두면 도움을 받을 법 한 사람들도 있으리라 생각되어서 최종 결과물과 거기에 다다르는데 있었던 생각의 도약들을 기록으로 남겨본다.

학점이 B+인건 아무래도 '선행연구 검토를 제대로 안해서'가 이유인듯 싶다. 사실 발표 한달 전 쯤(그러니까 논문 완성하기 3주 전 쯤) 구글스칼라를 돌면서 선행연구가 있는지 검토했었는데 전무했지만 발표하면서 기억이 안 나서 '기억상에는 없습니다'라고 불확실한 대답을 해버린지라...=_=;; 교수님이 연구 결과물보다는 연구 과정을 충실히 이행했는가를 중점으로 평가하시는 분이셔서 어쩔 수 없다.

주제는 '자기단극자의 무질량 극한에 대한 탐구'. 영문으로 쓰면서 좀 아쉬웠던 부분은 두 번 나오는 unfortunately 중 하나를 다른 표현으로 바꾸지 못한 것. 하나는 fortunately와 대구로 쓰였으니 상관없는데 다른건 바꿀 수 있지 않았을까. 초록에 나왔다시피 '에너지가 유한한 경우로는 존재할 수 없음'이 결론이다. 사실 좀 더 중요한 결론은 '유한한 에너지를 갖는 광속으로 이동하는 soliton은 존재하지 않는다'인 듯 싶지만.

thesis.pdf


아쉬운 점이라면 발표 후에 깨달은 논문상의 부호 문제(...). metric을 반대로 사용해서 정의할 때 부호를 반대로 썼어야 하는 식이 몇몇 있는데다가, 중간에 Stress-energy 텐서의 부호도 잘못 썼다. 어차피 각 항이 0이 되어야 한다는 조건인지라 결론 자체는 문제가 없지만. 왜 리뷰를 봐 주신 교수님들 중 아무도 이걸 지적하지 않은걸까(...).


Kinematic Angular Momentum의 양자화는 사실 자기장이 0인 조건에서만 성립하는데 그 부분도 생략했다. 뭐, 어차피 상관없겠지.


이상민 교수님께서 리뷰하신 후 "실력도 되는데 좀 더 큰 주제를 잡지 그랬냐"는 식으로 코멘트를 달아주셨는데 워낙 오래 전부터 생각했던 주제라 그냥 썼습니다(...).


Soliton을 다루는 건 이수종 교수님을 찾아갔더니 주제를 말씀드리자 Rubakov 책을 쿨하게 던저주셔서 시작. 그걸 한 학기 내내 거의 혼자서 팠다. 올해 봄학기동안 한 일의 70%는 저거였는듯.[각주:1] 그래서 봄학기에 가장 많은 스트레스의 원인이 되었던 과목이 생각보다 학점이 안 좋아서 한동안 푹 꺼져있기도 했다. 돌이켜보면 발표할 때 실수한 내 잘못이긴 하지만.


Soliton의 경우는 논문에서 사용한 좌표계에서 운동방정식을 만족하는 해를 찾으려 3주동안 손가락 한 마디 정도 되는 이면지를 써보았는데도(주로 내가 계산을 제대로 했는가 검산한거긴 하지만) 내가 사용하는 가정해(ansatz)가 해를 주지 못한다는 결론이 나와서 그냥 뒤집어서 '해가 아예 존재할 수 없음을 보여볼까?'를 시도한거다. 결과는 성공. 특정 형식을 갖는 Lagrangian들의 경우 finite energy&speed of light를 갖는 Soliton solution이 존재하지 않는다는 보다 일반적인 결론이다.


다음은 이수종 교수님을 만나서 신세계의 문(...)을 열기 전까지의 기록. 잘못 계산한 결과에서 도약했다는 것은 log 중간에 나온다. 흑역사도 잘 마무리하면 좋은 자양분이 될 수 있다는 한 사례가 되기를(...) 희망한다. '>>'로 표시된 것은 차후에 덧붙이는 주석.



이런 글이 있었다. 아직도 비슷한 생각을 하고 있는지라 자기 단극자라는 개념에 대한 회의가 주된 고민거리이다.

처음에는 자기 단극자의 Lagrangian이나 Action Integral을 구하려고 했다. 문제는 그 형식이 어떨지 아예 감이 안 잡힌다는 것. 그래서 일반적으로 사용하는 벡터 포텐셜 A를 이용하면 문제가 생기나 봤더니, 벡터 포텐셜을 사용하게 되면 gauge symmetry는 당연하다는 결론만 얻게 되었다.

한창 보고 있는 책이 장론인지라 벡터 포텐셜을 이용해서 자기 단극자가 가질 수 밖에 없는 운동방정식을 텐서 형식으로 구하려고 했는데, 그것 마져도 실패했다. 그러면서 발견한 것이, 자기 단극자는 속도가 광속보다 매우 작은 경우에조차 갈릴레이 변환을 만족할 수 없는 운동방정식을 요구한다는 것이었다. 그렇다면 역으로 자기 단극자의 운동방정식은 전혀 다른 형식, 그러니까 질량이 없어서 광속보다 매우 작은 속도 자체가 불가능한 경우라는 결론에 도착했다. 그래서 지금은 질량없는 전하의 운동방정식을 어떻게 구해야 할까 고민하고 있다. 아무래도 전하가 자기 단극자보다는 다루기 쉬우니까 말이다.

시작은 Aharanov-Bohm 효과를 자기 단극자에서는 절대로 발견할 수 없다였는데[각주:2], 어느 순간 자기 단극자의 질량은 없다로 흘러가고 있다. 만약 그렇다면 magneton보다는 magnetino라는 이름으로 불러야 하지 않을까.

- 2011.10.02

Magnetino가 유도하는 전자기장 방정식을 구했다. 로렌츠 변환 대칭성을 이용해 운동 방향에 수직한 평면에만 전자기장이 존재하도록 하면(델타함수를 이용해 자하량을 만족시킨다) 운동 방향과 같은 방향으로의 로렌츠 변환에도 변하지 않는 전자기장을 만들 수 있다.(델타함수를 재규격화하는 것이 델타함수 이외의 항에서 나타나는 상수를 상쇄시킨다.) 문제는 벡터 포텐셜. 델타함수의 역미분이 애매하다.

재미있는 것은 이렇게 구한 벡터 포텐셜이 전하와 상호작용할 경우 필연적으로 뜬금없이 각운동량이 생성되어야 한다는 것인데, 이 각운동량을 상쇄할 수 있는 것은 자하나 전하 자체에 내재된 각운동량, 즉 스핀 뿐이라는 것. 스핀은 양자화되어있기 때문에 각운동량 또한 양자화되어 있어야 하고, 따라서 전하와 자하의 곱이 양자화되어야 한다. 우연인지 항상 생성되는 각운동량 또한 전하와 자하 사이의 수직거리와는 전혀 상관이 없다. Dirac 양자화 조건과 조금 다른 듯 싶지만 비슷한 결론이라는 것이 재미있다. 졸업논문을 쓰게 되면 이걸로 쓰면 되겠네.

-2012.03.01

Magnetic charge에 Lorentz invariance를 구현하는 방법은 없나? 현재까지 시도 결과는 없다는 결론만 나온다. 정말 답이 없는걸까? photon이 실존하는 particle(그러니까 고전적인 의미의 입자)이라 가정했을 때 얻는 energy-momentum tensor의 00항과 같은 transform을 갖는 것으로 보이긴 하는데...

>>00항과 같은 이유는 전자기장을 계산했기 때문이었다(...)

Classical limit에서의 equation of motion은 알려진 대칭적인 방정식 말고는 존재할 수 없음을 반쯤 증명했다. 서로에 대해 움직이는 magnetic charge와 electric charge가 상호작용하면서 서로에게 가하는 힘에서 운동에 linear한 term을 구할 수 있고 small loop current와 magnetic charge가 서로에 대해 정지해 있는 경우에 가해지는 힘에서 자기장에 선형적인 항을 구할 수 있다. 자기장과 운동에 선형적인 항은 없는지 의문.

>>간단하게 말하면 자기단극자의 운동방정식을 수학적으로 유도했던 시도다.

-2012.04.21

Magnetic charge에 걸리는 Lorentz force가 사실은 Lorentz invariant이라는 것이 확실해졌다. 전혀 틀린 가정에서 재미있는(?) 결과를 도출해낸 셈. 이제 문제는 magnetic charge가 conjugate field를 생성한다고 할 때 equation of motion을 구할 수 있는가이다. 물론 Lagrangian을 이용해서.

>>여기서 conjugate field는 curl이 전기장이 되는 four-vector를 말한다.

-2012.05.04

자기단극에 가해지는 힘 중 자기장과 운동에 전부 선형적인 항은 존재할 수 없음은 자기단극 두개를 이어 붙여서 만든 자기모멘트와 작은 loop의 자기모멘트가 구분할 수 없다는 가정을 이용하면 구할 수 있다. 만약 그런 항이 존재한다면 자기장에서 자기모멘트가 움직일 때 토크가 있어야 하는데 loop의 경우에는 존재하지 않으므로.

Field theory적으로 접근해볼까 고민중. 그런데 가상광자가 각운동량도 전달할 수 있는건지 모르겠다. 각운동량 보존은 어디서 구해와야 하나...

>>간단하게 말하면 자기단극자의 운동방정식을 수학적으로 유도했던 시도다.

-2012.6.2

젠장. 이미 비슷한 방식으로 quantisation을 완료한 논문이 European Journal of Physics에 실렸었다(2003). 그래서 이번에는 오히려 upper bound를 줄 생각. Dirac theory에 따르면 J_z가 보존되는 양이니까 가능할거란 생각이 든다. 문제는 Hamiltonian이 time independent할 경우에만 해당되는 내용이냐는 거지만. vacuum fluctuation과의 order of magnitude를 비교해봐야겠다.

>>해당 논문(2003 Eur. J. Phys. 24 111)의 링크: http://iopscience.iop.org/0143-0807/24/2/351/ 해당 논문에서는 vector potential을 사용하지 않기에 다른 내용이기는 하지만 내용이 겹치기는 한다.

-2012.11.13
... 


글을 공개로 바꾸면서 log를 다시 보니 난 수학에서나 요구할 법 한 논리적 엄밀성을 추구하는 별로 좋지 않은 버릇이 있는지도 모르겠다. 과감한 일반화가 물리의 미덕인데...

  1. 필요에 의해서 9장까지만 연습문제를 전부 풀어봤는데, 슬슬 나머지 장의 연습문제도 풀기 시작해야겠다. [본문으로]
  2. A-B 효과에서 자기장을 전기장으로 바꾸어주면 전기장 부분에서만 scalar potential을 요구하고 나머지에서는 모든 potential이 0이 되는 gauge를 취할 수 있다. [본문으로]
Posted by 덱스터

[27Nov2020] 약간의 업데이트 (6번 이후).




간단하게 보고있는 것과 보았던 것들.


1. David Tong: Lectures on Quantum Field Theory

http://www.damtp.cam.ac.uk/user/tong/qft.html


병장 시절 군대에서 보던 것. 간단하게 '양자장론이 뭐 하는 녀석이냐' 알기엔 좋다. 상대론과 양자역학 공부만 제대로 했다면 읽을 수 있는 수준이라 생각됨. 재규격화나 루프가 나오지는 않는다. 200여 페이지.


2. Gerard t'Hooft, The Conceptual Basis of Quantum Field Theory

http://www.staff.science.uu.nl/~hooft101/lectures/basisqft.pdf


현재 읽고 있는 녀석. Tong의 Lecture note보다는 얇아서 좋기는 한데 이것도 마찬가지로 간략하게만 다룬다는게 특징. 80여 페이지.


3. Paul Adrien Maurice Dirac, The Principles of Quantum Mechanics


인터넷 잘 뒤지면(...) 스캔본이 나온다.[각주:1] djvu 확장자일테니 데자뷰 리더는 필수.[각주:2] 그 유명한 디랙 맞다. QED의 초창기 발전 방향을 알 수 있음. 사실 Dirac Equation쪽이 제일 인상적이었다. 군대에서 양자역학 공부하려고 빌린 책. 연습문제는 없지만 내용은 충실. 300여 페이지.

이 때 쓰던 notation은 현재 통용되는 notation과 조금 다르다는 것에 유의.


4. Franz Mandl & Graham Shaw, Quantum Field Theory


이것도 인터넷 잘 뒤지면(...) pdf를 구할 수 있다. Peskin 책이 나오기 전에 가장 많이 쓰이던 양자장론 교재인듯 싶다. 7장까지 읽다가(연습문제는 안 풀어봤으니 말 그대로 재미로 읽은거다) 그 이후에 Tong Lecture note 보느라 덮어두었던 기억이 난다. 500여 페이지.


[27Nov2020 추가] 전자기장의 양자화에 요즘은 거의 다루지 않는 Gupta-Bleuler 양자화를 쓴다. 최근에 나온 장론 책에서는 $A_0$의 동역학을 날려버리는 Coulomb gauge에서의 양자화나 아예 이런 이야기를 할 필요가 없는 경로적분 양자화만 다룬다는 것을 생각하면 한 번 정도는 봐두는 것이 좋을지도?


5. Michael E. Peskin & Daniel V. Schroeder, An Introduction to Quantum Field Theory


이것 역시 인터넷 잘 뒤지면(...) djvu 파일을 구할 수 있다. 세 버전 정도 구했는데 하나는 그림이 전부 깨졌고(pdf였다), 하나는 스캔본이었고, 하나는 괜찮았지만 페이지 하나가 아예 스캔이 안되어있었다는 단점이 있었다. 어떻게든 조합하면 쓸만하긴 하다만(...). Tong Lecture note를 보다가 이해가 안 되는 부분이 있으면 참조했던 책. 양자장론 교재로 제일 많이 쓰인다는데 난 정규교육을 받은 적이 없으니 그런걸 알 리가 있나.(대학원 2-3학년 과정이다) 가장 두껍다. 800여 페이지.


[27Nov2020 추가] 전자기장의 양자화를 어물쩍 넘어간다.


4&5번이 정식 교재이다. 1&2는 맛봬기로 독학하기에 좋은듯. 3은 사실 오래된 책이라 재미로 읽는 정도? 그래도 읽다 보면 디랙이 천재는 천재구나 하는 것을 느낄 수 있다. Griffiths 양자역학에 디랙방정식과 QED를 간략하게 넣으면(?) 이 책이 된다. 다만 Solid State Physics의 근간이 되는 Bloch's theorem은 등장하지 않는다. Sakurai의 Modern Quantum Mechanics처럼 양자역학에 대한 특이한 접근법이 인상적이다.



[27Nov2020 업데이트]


6. M. Srednicki, Quantum Field Theory


인터넷에서 출판 전 초고를 구할 수 있다. 집에 있는 것은 4판인가 그럴텐데 오타 수정이 좀 있는 편. 구성 자체가 위키백과를 보는 것처럼 자잘하게 주제별로 나뉘어져 있어 아무 곳이나 펼쳐서 공부하기 시작해도 무리가 없다는 특징이 있다. Spinor-helicity와 같이 옛날 책에서는 자주 누락되는 주제도 등장한다는 장점이 있고. 다만 의외로 이상한 구석에서 '아니 이게 왜 없어?'라 반응하게 되는 경우가 생기는데, 그 예시로 전자의 이상자기모먼트 계산과 양-밀스 이론의 파인만 규칙(다만 tree amplitude를 적기에는 더 편리한 Gervais-Neveu gauge에서 파인만 규칙은 포함되어 있다)이 누락되어 있다.


7. S. Weinberg, The quantum theory of fields


레퍼런스 북. 양자장론이 대충 무엇인지 감을 잡은 상태에서 개념을 확립하는 용도로 읽는 책이지 양자장론을 처음 배우는 용도로 쓰기에는 너무 어렵다. 이 책으로 양자장론을 배우겠다는 것은 (과장을 보태면) 화이트헤드와 러셀의 <수학 원리>로 사칙연산을 배우는 것과 비교할 수 있지 않을까? 하지만 양자장론에 대한 보다 심도 있는 이해를 위해서는 무조건 볼 수 밖에 없는 책이기도 하다. 단점은 역시 가격(...)과 연구 현장에서 쓰는 표기법과는 다소 다른 표기법을 쓴다는 것.


8. M. Veltman, Diagrammatica


와인버그의 책을 읽어야만 하는 이유 중 하나로 '양자장론은 S-matrix theory를 체계적으로 하는 bookkeeping device다'란 관점을 제시한다는 것이 있다. '입자는 장의 양자이다'란 대부분의 양자장론 교재에서 취하는 관점과는 다른 관점이라는 점에서 알아둘 필요가 있는 셈. 하지만 와인버그의 책을 읽지 않아도 그 관점을 공부할 수 있는데, 바로 펠트만의 이 책이 그런 경우. 장론 책이라고 하기에는 S-matrix의 계산에 치우쳐 있지만 얇아서 부교재로 삼으면 좋다. 물론 이 책도 와인버그의 책도 읽기 싫지만 그 관점을 알고 싶다면 여기에서 구할 수 있는 와인버그의 강연록을 보면 된다.


9. M. D. Schwartz, Quantum Field Theory and the Standard Model


Peskin&Schroeder처럼 pheno 계산에 치우친 책. 오타가 좀 많긴 한데 이 부분은 차차 개선되고 있는 듯 하다. Unitarity 관련 부분만 제대로 봐서 평가를 남기기에는 좀 이른 감이 있다.


10. R. F. Streater & A. S. Wightman, PCT, spin and statistics and all that


Algebraic QFT의 고전. 물리를 하는데 크게 도움이 되지는 않지만 양자장론의 형식화와 형식화에 이용되는 수학에 대한 이해를 위해서는 한 번 정도 봐 두는 것이 좋다. 다시 한번 말하지만 물리 문제를 푸는 데는 그다지 큰 도움이 되지 않는다. 양자장론 계산을 생각 없이 하다가 마주할 수 있는 수학적인 문제에 대한 해답을 찾는 용도에 더 가까운 느낌이랄까.


11. T. Lancaster & S. J. Blundell, Quantum Field Theory for the Gifted Amateur


양자장론을 처음 배우는 사람에게 강력하게 추천하는 책. 다만 게이지 장론은 포함되어 있지 않아서 양자장론의 꽃(?)인 양자색역학을 배우려면 다른 책을 구해야만 한다.


12. L. Parker & D. J. Toms, Quantum Field Theory in Curved Spacetime : Quantized Fields and Gravity


휜 공간에서의 양자장론으로는 Birrell&Davies가 더 유명하지만 (그리고 더 오래되었다) 이 책을 언급하는 이유는 양자장론 교재 중 '양자장론에서의 파동함수(wavefunctional)'를 이야기하는 책이 거의 없기 때문이다. 여태 읽어본 책 중에서는 이 책이 거의 유일. 양자역학에서 파동함수를 쓰듯 주어진 시간면 (time slice) 위의 장의 값을 변수로 갖는 파동함수를 써서 양자장론을 할 수 있음을 구체적으로 보여준다는 점에서 한 번 정도는 봐 둘 필요가 있다.


13. J. Collins, Renormalization


Dimensional regularisation을 공부하면서 '이거 사기 아니야?'란 느낌이 들 때 보면 좋다. 다만 이 책에서 쓰는 regularisation scheme은 conventional dimensional regularisation(CDR)이라고 불리고 실제 QCD 계산에서 주로 쓰는 BMHV scheme과는 $\gamma_5$를 다루는 방법이 다르다. Regularisation scheme별 차이를 보려면 논문을 보는 것이 더 빠르긴 하지만서도.


14. H. Elvang & Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity


내 전공에 너무 가까워지는 느낌이긴 한데, 산란진폭 (scattering amplitude) 계산에 특화된 책. 양자장론에 대한 기본적인 이해를 필요로 하기 때문에 양자장론을 처음 배우는 용도로 쓰기에는 적합하지 않지만, 양자장론에 대한 배경지식은 펠트만의 책을 읽은 정도면 충분할듯?

  1. 스캔본이란 스캔이 잘못되어서 문서 중심이 안 맞는다던가 하는 문제가 있는 파일을 말함. [본문으로]
  2. djvu파일 특성상 스캔의 오탈자가 많다. djvu 파일은 글자 세트 하나를 저장하고 이 글자들이 종이 어디에 배치되어 있는지 기록하는 방식인데 스캔을 잘못하면 원래 글자가 아닌 다른 글자로 인식해서 대응시켜 버리기 때문. [본문으로]

'Physics' 카테고리의 다른 글

네 귀중한 교훈들 - 스티븐 와인버그  (8) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
전자기학 교재(?)  (0) 2010.01.28
측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Posted by 덱스터

이전에 쓴 글 중 양자역학의 유래라는 글이 있었다. 현대 양자역학의 근간이 되는 파동방정식 풀이법과 행렬을 이용한 선형대수 연산 및 고유값을 사용하게 된 기원 등을 다룬 글인데,[각주:1] 오랜만에 덧붙일만한 내용이 생각나서 새로운 글을 쓰기로 했다.

 

저번 글에서 양자역학이 형성되어 온 두가지 갈래길을 알아보았다. 이번에는 그 두 갈래길이 남아 아직도 영향을 미치고 있는 묘사(picture)에 대해 살펴보자.

 

수업을 듣던 중 교수님께서 에너지나 운동량 등의 측정값이 양자화되는 이유를 질문하셨다. 누군가가 경계조건(boundary condition)으로 고유값이 결정되기 때문이라고 했고 교수님은 공부를 열심히 했다고 칭찬하시고는 넘어가셨는데 필자가 보기에는 반만 맞는 답이었다. 하지만 타과생인지라 물리학과에 반기를 들기보다는 조용히 넘어갔다. 어째서 반만 맞는 답일까?

 

양자역학은 두 경로를 통해 발전했다. 하나는 슈뢰딩거(Erwin R. Schrödinger)의 '파동성을 핵심으로 하는 파동역학'이고, 나머지 하나는 하이젠베르크(Werner Heisenberg)의 '양자성을 핵심으로 하는 행렬역학'이다. 파동역학을 양자역학의 원류로 본다면 물리량이 양자화되는 이유는 경계조건이 존재하기 때문인 것이 맞다. 하지만 행렬역학을 양자역학의 원류로 본다면 물리량의 양자화는 공리(postulate)가 된다. 실제 양자역학은 두 원류가 합쳐진 형태로 발전했기 때문에 이런 의미에서 그 답은 반만 맞는 것이다. 그렇다면 이 두가지 관점은 어떻게 남아있을까?

 

슈뢰딩거의 파동역학은 전자파(electron wave-electromagnetic wave가 아니다!)와 같이 물체에게 파동성이 존재하므로 이미 존재하는 파동광학 등의 결과를 물질로 확장하는 것으로부터 출발하였다. 때문에 시간에 따라 변하는 것은 물질의 상태(state)가 되고, 이것이 반영되어 측정하는 물리량(operator를 말한다)은 시간에 불변하는 것으로 간주되었다. 빛이 화면에 닿아 상을 만들 때 화면의 상태가 변하기 때문에 화면에 그려지는 상이 변화한다고 보기보다는 빛의 상태가 변하기 때문에 상이 변화한다고 생각하는 것이 더 자연스럽지 않은가? 우리가 존재하는 공간이 변화한다고 보는 것보다는 그 공간에 놓인 물질이 변화한다고 보는 것이 아무래도 자연스럽기 때문에 대부분의 학부 양자역학 교재에서는 슈뢰딩거 묘사(Schrödinger picture)를 쓰는 경우가 많다. 슈뢰딩거 묘사를 쓸 경우 운동방정식은 다음과 같다. 잘 보면 고전적인 파동방정식과 닮았다.

 

$$\dot{\left|\psi\right>}=\frac{\mathbf{H}}{i\hbar}\left|\psi\right>$$

 

이번엔 하이젠베르크의 행렬역학을 따라가 보자. 하이젠베르크의 행렬역학은 전 글에서 설명했다시피, 물리량을 측정할 경우 그 값이 양자성을 가진다는 것에서부터 출발하였다. 수소원자스펙트럼은 불연속적으로 분포되어있지 않은가. 그렇기 때문에 하이젠베르크에게 변화하는 것은 물질의 상태가 아닌 물질의 측정값, 즉 물리량이 변화하게 된다. 같은 물질을 다른 시간에 측정하면 다른 물리량을 내놓는 것이므로 물질은 그대로 있고 물리량이 변화해야 한다는 의미이다. 안을 알 수 없는 기계장치가 들어있는 상자가 있고 그 상자의 벽에 화면이 설치되어 있어 시시각각 변화하는 숫자를 보여준다고 상상해보자. 이 경우 상자 자체가 변화한다기 보다는 상자의 화면에 찍히는 숫자가 변화한다고 보는 것이 자연스럽다. 하이젠베르크 묘사(Heisenberg picture)를 쓸 경우 운동방정식은 다음과 같다. 해밀토니안 역학에서 이런 방정식을 본 적이 있을 것이다.

 

$$\dot{\mathbf{A}}=\frac1{i\hbar}\left[\mathbf{A},\mathbf{H}\right]+\frac\partial{\partial{t}}\mathbf{A}$$

 

마지막으로 흔히 상호작용 묘사(interaction picture) 혹은 폴 아드리엔 모리스 디락(Paul Adrien Maurice Dirac)의 이름을 딴 디락 묘사(Dirac picture)를 생각해보자. 이 묘사방법은 양자장론(Quantum Field Theory)이 등장하면서 입자가 만들어지고 사라지기니 특정한 상태를 규정짓기가 힘들어지자 도입한 것으로 볼 수 있다. 물리적인 계(system)의 진화를 규정짓는 것이 해밀토니안(Hamiltonian)인데 이 묘사에서는 해밀토니안을 두가지로 나눈다. 일반적으로 우리가 측정하는 '입자'를 만들어주는 자유장 해밀토니안(free field Hamiltonian)과[각주:2] 이 입자들 사이의 상호작용을 기술하는 상호작용 해밀토니안(interaction Hamiltonian)으로 나누고, 각각 H_0와 H_int로 이름붙인다. 우리가 측정하는 모든 물리량은 자유장 해밀토니안에 따라 변화하고, 우리가 측정할 대상이 되는 상태들은 상호작용 해밀토니안에 따라 변화한다. 하이젠베르크 묘사를 설명하면서 쓴 예제를 사용해 본다면 상자의 화면에 등장하는 숫자가 변화하는데, 상자 자체도 조금씩은 모양을 바꾼다는 것으로 생각할 수 있다. 상자의 모양에 따라 화면에 등장하는 숫자 또한 영향을 받는다면 1. 상자의 모양마다 숫자가 어떻게 나타나는지 2. 상자의 모양이 시간에 따라 어떻게 변화하는지로 나누어 설명하는 것이 편리하다. 때문에 상호작용 묘사에서는 운동방정식이 조금 복잡하다.

 

$$\mathbf{H}=\mathbf{H_0}+\mathbf{H_{int}}\\ \dot{\mathbf{A}}=\frac1{i\hbar}\left[\mathbf{A},\mathbf{H_0}\right]+\frac\partial{\partial{t}}\mathbf{A}\\ \dot{\left|\psi\right>}=\frac{\mathbf{H_I}}{i\hbar}\left|\psi\right>\\\\ \text{where }\mathbf{H_I}\text{ is the solution of}\\ \dot{\mathbf{H_I}}=\frac1{i\hbar}\left[\mathbf{H_I},\mathbf{H_0}\right]+\frac\partial{\partial{t}}\mathbf{H_I}\\ \mathbf{H_I}(t=t_0)=\mathbf{H_{int}}$$

 

물리 덕후 소리를 들을 정도로 이곳 저곳 다 파고 들어가며 닥치는대로 공부하다 보니 물리학 개념이 어떻게 발전해왔는가에 대해서도 이것 저것 알게 된 것이 많다. 아무래도 이런 이해가 있다 보니까 정리가 좀 잘 되는듯. 다음 학기 학부 졸업논문이나 잘 써야 할텐데...

  1. 엄청나게 많은 깨져있는 수식을 복구하느라 조금 힘들었다. 이런 글 엄청 많을텐데...ㅠㅠ [본문으로]
  2. 이 '입자들'로 상태공간을 확장(span)하기 때문이다. 아무래도 알기 쉬운 것들로 공간을 나타내는 것이 더 보기 좋으니까. [본문으로]
Posted by 덱스터
덧글에 찔려서 시작하는 백만년만의 물리 포스팅. 물리 포스팅은 수식 쓰는 시간이 길어서 조금 힘들다. 이번에는 Sakurai의 Modern Quantum Mechanics 140페이지에 등장하는 벡터 포텐셜을 구해보자.

$$\mathbf{A}=\frac{1-\cos\theta}{r\sin\theta}\hat\phi$$

시작은 curvilinear orthogonal coordinate system에서(특히 구면좌표계)의 curl에 대한 표현이다.

$$\nabla\times\mathbf{A}=\frac1{uvw}\begin{vmatrix} u\hat{x_1}&v\hat{x_2} &w\hat{x_3} \\ \partial_1&\partial_2 & \partial_3\\ uA_1&vA_2 &wA_3 \end{vmatrix}\\d\mathbf{s}=udx_1\hat{x_1}+vdx_2\hat{x_2}+wdx_3\hat{x_3}$$

구면좌표계에서는 $u=1, v=r, w=r\sin\theta$인데, 우리가 원하는 curl의 형태는 $\frac1{r^2}\hat{r}$이기 때문에 해를 구하기 위해 다음과 같이 어느 정도 단순화된 해를 가정할 수 있다.[각주:1]

$$\mathbf{A}=A_\phi \hat\phi\\r\sin\theta{A_\phi}=f(\theta)\\\partial_\theta[{r\sin\theta{A_\phi}}]=\sin\theta$$

물론 이 방정식을 풀면(적분상수 C는 남겨둔다)

$$ f(\theta)=C-\cos\theta\\\therefore{A_\phi}=\frac{C-\cos\theta}{r\sin\theta}$$


을 얻는다. C=1로 두면 위에서처럼 음의 z축에서만 폭발하는 vector potential을 만들 수 있고, 내가 구했던 경우는 C=0이었는데 이건 z축에서는 사용이 불가능했다.

$$ \mathbf{A}=-\frac1{r}\cot\theta\hat\phi $$

자기 단극자는 흥미로운 현상이다. 원래 없다는 공리에서 세워진 이론 체계에서 있다는 결론을 도출할 수 있다니 어찌 재미없다고 할 수 있겠는가. 요즘 부대에서 하는 물리 생각의 80% 이상은 이 녀석 생각이다. 잠정적인 결론은 "자기 단극자가 있다면 질량이 없을 것이다"이지만.(그래서 광속으로 이동하는 전하의 전기장에 대해 생각하고 있다.)
  1. 역으로 theta방향 성분만 있는 벡터 포텐셜을 생각할수도 있다. 하지만 이 경우 생기는 문제는 특이점의 집합이 평면이 되어버린다는 것이다. [본문으로]
Posted by 덱스터
2010/08/03 - 엔트로피 - 고전적인 정의
이제 어째서 제 2 법칙이 엔트로피가 생성된다는 법칙으로 이어지는지 살펴보자. 우선 전 글에서 우리가 확인한 두 가지 사항은 다음과 같다.
 
1. 카르노 기관을 뛰어넘는 효율을 갖는 기관은 없다.

2. 이상적인 과정만 존재하는 경우에는 
$$\oint\left(\frac{\delta Q}T\right)_{\text{ideal}}=0$$
이 성립하고, 그 값을 엔트로피의 변화량이라 정의할 수 있다.

이제 우리가 증명해야 할 것은 위의 두 가지 중간결론만 가지고 다음 결론을 이끌어내어야 한다는 것이다.
$$dS\ge\frac{\delta Q}{T}$$
이 말은 이렇게도 해석할 수 있다.
$$0=\oint dS\ge\oint\frac{\delta Q}{T} \\0\ge\oint\frac{\delta Q}{T}$$
이 결론을 확인하기 위해 임의의 실제과정 사이클을 생각하고, 그 사이클에서 흡열과정과 출열과정을 나누어보자. 편의상 흡열과정은 완전히 이상적이지만 출열과정이 실제과정이라고 하자. 그렇다면 열기관의 효율은 이상과정의 효율을 넘을 수 없으므로
$$\eta_\text{real}=1-\frac{Q_{l_\text{real}}}{Q_h}\le\eta_\text{ideal}=1-\frac{Q_{l_\text{ideal}}}{Q_h} \\\therefore Q_{l_\text{real}}\ge Q_{l_\text{ideal}}$$
라는 결론을 얻는다. 즉, 출열과정에서는 
$$\int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}$$
이 성립한다는 것이다.[각주:1] 물론 아래에 T라는 함수가 붙기 때문에 저 적분이 항상 옳은가는 엄밀하게 증명되지 않았다. 하지만 적분경로를 나누어 각각 T가 일정하다고 볼 수 있는 미세한 구간으로 분할하면
$$\int\delta Q_\text{real/exo}\le\int\delta Q_\text{ideal/exo}\leftrightarrow \frac1T\int\delta Q_\text{real/exo}\le\frac1T\int\delta Q_\text{ideal/exo}\\\leftrightarrow \int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}$$
이므로, 이 부등식은 어떤 적분경로를 택하더라도 성립한다고 할 수 있다. 비슷한 논의를 이용해 흡열과정에서도 같은 부등호가 성립함을 보일 수 있다.
$$eq=\eta_\text{real}=1-\frac{Q_l}{Q_{h_\text{real}}}\le\eta_\text{ideal}=1-\frac{Q_l}{Q_{h_\text{real}}} \\\therefore Q_{h_\text{real}}\le Q_{h_\text{ideal}} \\\therefore\int\left(\frac{\delta Q}{T}\right)_\text{real/endo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/endo}$$
그러므로 일반적으로
$$\int\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\int\left(\frac{\delta Q}{T}\right)_\text{real}$$
혹은 어떤 적분경로를 택하더라도 위의 부등식이 성립해야 하기 때문에
$$\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\left(\frac{\delta Q}{T}\right)_\text{real}$$
이 성립한다. 맨 처음에 증명하고자 했던 식의 우변은 이상적인 과정과 실제 과정을 전부 포함하므로 이렇게 증명은 완료되었다.
$$dS\ge\frac{\delta Q}{T}$$
 
 
 
 


훈련소에서 없는 기억을 되살려가며 해낸 증명인데[각주:2], 배울 때에는 조금 다르게 배웠었던 것으로 기억한다. 나중에 기회가 되면 다시 찾아봐야지 뭐.
  1. 적분에서는 출열과정의 열이 음수로 계산된다. 효율을 따질 때에는 방출된 열의 절대값만을 따졌으므로 부등호가 반전된다. [본문으로]
  2. 첫 주인 가입교 기간 동안에는 할 일이 없다. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
엔트로피 - 고전적인 정의  (7) 2010.08.03
Hamiltonian formulation(1)  (4) 2010.07.14
Contravariant/Covariant/Metric tensor와 Kronecker delta  (2) 2010.02.28
Posted by 덱스터
일단 이 내용은 09년 봄학기 항공역학 기말고사 시험문제였죠. 기초적인 읽을거리 들어갑니다.


한줄로 요약하면 앞에서 나는 새가 상승기류를 만들고, 그 상승기류를 탄 뒤쪽의 새는 편하게 날아간다는 겁니다. 그러면 그 상승기류는 어디서 나오는 것일까요? 다음 비행기 사진을 살펴 보겠습니다.


Wingtip vortex라 부르는 비행기 날개 끝의 소용돌이입니다. 전투기가 나오는 영화나 애니메이션이라면 항상 등장하는 단골 손님이기도 하구요. 이 소용돌이를 잘 보면 날개 아래 쪽에서 시작해서 밖을 선회하며 날개 위 쪽으로 돈다는 것을 알 수 있습니다. 이 소용돌이가 바로 상승기류의 원인이 되는 것이지요.

Regions of upwash and downwash created by trailing vortices

그렇다면 이 소용돌이가 왜 생기는지 알아야 상승기류에 대해 더 잘 이해할 수 있겠지요. 이 소용돌이는 날기 위해 생기는 어쩔 수 없는 현상입니다. 먼저 비행기가 나는 원리를 생각해 보도록 하겠습니다. 비행기가 나는 원리는 간단합니다. 날개 위 아래로 압력차이를 발생시켜서 날개에 뜨는 힘을 유도하는 것이죠. 압력밥솥 위에 달린 종처럼 생긴 물건이 밥을 할 때 치카치카 거리면서 흔들거리는 이유와도 동일합니다.


이를 위해 비행기 날개의 단면은 위쪽으로 살짝 둥근 형태를 취하게 됩니다. 둥근 모습을 하게 되면 위쪽에 더 빠르게 공기가 흐르게 되는데, 이건 날개가 공기를 위쪽으로 더 많이 밀어내어 그 공기가 뒤로 빠져나가기 위해서는 더 빨리 흘러야 하기 때문입니다. 물이 흘러 나오는 호스의 끝을 쥐어 짜면 물이 엄청나게 세게 튀어나오는데, 그 원리와 비슷합니다.

Watering Plants Fallujah.jpg

그리고 베르누이의 법칙(Bernoulli's Principle)에 따르면 유체는 속도가 빠를수록 낮은 압력을 갖습니다. 같은 밀도라고 하더라도 한 방향으로 흐르면 상대적으로 그 유체의 분자 하나하나가 압력을 전달하는 면에 작용하는 운동량이 적어지기 때문이라고 생각하면 됩니다. 그래서 윗면에는 빠른 공기와 낮은 압력이 분포하게 되고, 아랫면에는 느린 공기와 높은 압력이 분포하게 됩니다. 압력 차가 생겨났기 때문에 비행기는 뜨게 되는 것이지요. 그리고 그 압력 차이 때문에 앞서 나온 소용돌이 또한 발생하게 됩니다.


공기는 높은 압력에서 낮은 압력의 방향으로 흐릅니다. 위 그림을 보시면 비행기의 아래쪽에는 높은 압력이, 위쪽에는 낮은 압력이 형성되었다는 것을 보실 수 있습니다. 공기는 그 압력 분포를 따라 이동하는 것이지요. 그리고 그 이동이 날개 끝에서는 소용돌이가 되어 나타나는 것입니다. 바로 이 소용돌이가 선두를 날아가는 새에게서 상승기류를 얻는 원천이 되는 것이지요.

하지만 그렇다고 해서 선두의 새는 손해만 보는 것은 아닙니다. 선두의 양 옆을 날아가는 새들은 선두를 나는 새에게 날개가 더 커지는 효과를 부여합니다. 선두의 새가 느끼는 소용돌이가 감소하게 되는 것이지요. 소용돌이는 진공을 가져오고 진공은 비행시 저항으로 작용하기 때문에 V자 대열은 선두의 새에게도 이득이 되는 셈입니다.

이것으로 글을 마치도록 하겠습니다. 마무리는 역시 멋진 비행기 사진으로... 태양을 날다!!

Posted by 덱스터
Feynman Lectures 3권의 (21.1) 식은 다음과 같다.

\left< b | a \right>_{\text{in } \bold A}=\left< b |a\right>_{\bold A=0}\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

무슨 뜻인고 하면, 자기포텐셜 A가 존재할 때 전이확률을[각주:1] 구하려면 A가 0일 때의 전이확률에 자기포텐셜을 선적분한 만큼 추가적인 위상을 곱해주어야 한다는 것이다. 이 뜬금없는 식은 어디에서 등장한 것일까? 어떤 이유에서든 양자물리는 고전역학에 뿌리를 두고 있으므로 고전역학의 어디에서 왔는지 살펴보자. 먼저 Lagrangian in Electromagnetism에서 마지막 결과물로 얻은 고전적인 장-전하 반응 Lagrangian을 끌어오자.

L=\sum_j\frac1{2}m\dot{x_j}^2-q(\varphi-\dot{x_j}A_j)=\frac1{2}m\vec{v}\cdot\vec{v}-q(\varphi-\vec{v}\cdot\vec{A})

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 속도 벡터. 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {x_i}}=m\dot{x_i}+qA_i

conjugate momentum을 구했으니 Legendre 변환을 취한다.

H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+q\varphi

얼레. 이상한 포텐셜도 끼어들었는데 제대로 된 에너지가 결과로 나왔다. 하지만 명심해야 할 사실은, Hamiltonian은 좌표의 시간변화율이 끼어들 자리가 없다는 것이다. d(x_i)/dt를 p_i로 바꾸어주어야 한다는 사실을 잊지말자.

\dot{x_i}=\frac{p_i-qA_i}m \\\therefore H=\sum_i\frac1{2m}(p_i-qA_i)^2+q\varphi

이제 Schrodinger equation으로 자기력을 다룰 때 어째서 괴상한 방식으로 자기포텐셜이 도입되었는지 그 유래가 조금은 보일 것이다. 이제 Schrodinger 방정식을 풀어보자. 일반적으로 이 방정식을 풀 때 상태함수는 위치좌표를 기저로 쓰므로 운동량을 적당히 바꾸어 넣는다.

H=\frac1{2m}(-i\hbar\vec\nabla-q\bold A)\cdot(-i\hbar\vec\nabla-q\bold A)+q\varphi

우변의 첫 항이 사실 좀 많이 거슬린다. 계산이 너무 귀찮게 생겼다. 그런데 운동량과 자기포텐셜이 뒤섞여 있는 저 항은 잘 하면 계산하기 쉽게 바꿀 수 있을 것도 같다. 먼저 위의 Hamiltonian을 다시 써보자.

H=-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi

다음 방정식은 쉽게 보일 수 있다. 이 녀석을 응용할 수 있지 않을까? (F는 f의 역도함수)

\left(\frac{d}{dx}-f(x)\right)g(x)~e^{F(x)}=g'(x)~e^{F(x)}

일단 입자가 a에서 b까지 1차원 경로로 이동하는 경우는 다음과 같이 쓰면 쉽게 정리할 수 있다.

\Psi(x,t)=\Psi_0(x,t)\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

적분이 아직 난감하다고 해도, 미분은 엄청 간편해졌다.

i\hbar\frac{\partial\Psi}{\partial t}=H\Psi=\left[-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi\right]\Psi \\=\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0 \\=i\hbar\frac{\partial}{\partial t}\left(\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\Psi_0\right)

특히, A가 시간과 무관한 경우라면 계산이 엄청나게 간단해진다.

i\hbar\frac{\partial\Psi_0}{\partial t}=\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0

이제 처음에 등장한 식이 어떻게 얻어졌는지 조금은 보일 것이다.
  1. 실제 확률은 절대값의 제곱을 취하지만, 여기서는 간단히 두 상태의 내적으로 취급하자. [본문으로]
Posted by 덱스터
2009/04/24 - 어는점내림/끓는점오름을 다른 상수에서 구하기

위 글에서 내가 한 가정들 중에서는 엄밀하지 못한 가정이 하나 숨어있다. 원글에서도 밝혔지만 엔트로피에 대한 가정 말이다.

3. 엔트로피의 특징
엔트로피는 용매 자체가 가진 엔트로피($S_1$)와 용질 자체가 가진 엔트로피($S_0$)와 용매가 존재함으로서 생겨나는 엔트로피($S_p$)의 합으로 생각한다. 이 때, 용질의 존재가 만들어내는 추가적인 엔트로피는 다음과 같이 가정한다.
$$S_{p}=k\ln\Omega'\\\Omega'{=}\text{C}({N_1+N_s},{N_s})$$

여기서 C는 Combination 함수를 말한다.
$$\text{C}(n,k)\equiv\frac{n!}{k!(n-k)!}$$

기존 엔트로피(그러니까, $S_0$ 와 $S_1$)에 대한 가정은 문제가 없다. 엔트로피를 로그함수로 정의한 이유가 이렇게 증가하는 복잡도를 단순한 덧셈으로 나타내고 싶었기 때문이다. 문제는 섞였을 때 만들어지는 엔트로피이다. 공간을 무작위로 나돌아다니는 분자들인데 어떻게 그 분자들의 복잡도가 단순한 조합(combination)함수로 나타내질 수 있느냐는 것이다.

결론은 의외로 간단하다. 어차피 통계역학은 그 기본 가정이 불연속성이므로 공간마저도 불연속적인 격자(grid)로 가정할 수 있다. 이제 한 격자의 크기를 한 분자가 겨우 들어갈 정도로 작게 잡고, 그 격자를 한줄로 쭉 늘어놓는다. 집합론에서 무한집합에 대해 $\aleph_0\times\aleph_0=\aleph_0$를 증명하는 것과 비슷한 방식을 사용하면 된다. 이렇게 격자를 한줄로 쭉 늘어놓으면 $N_1%2BN_s$개의 빈 상자에 $N_s$개의 용질 분자를 집어넣고 나머지를 용매 분자로 채우는 문제와 동일한 문제가 된다. 따라서 매우 간단해 보이는 조합함수이지만 상대적으로 정확한 엔트로피를 구할 수 있는 것이다.

물론 여기에는 용액이 액체이기 때문에 빈 격자가 없다는 가정이 포함된다. 빈 격자도 있으면 빈 격자도 계산에 넣어야 하기 때문이다. 따라서 구한 상수를 구하는 식은 초유체나 기체 용액에 적용하기에는 무리가 있다.
Posted by 덱스터
2008/12/21 - 제레미 리프킨, 엔트로피

 

무질서도로 번역되는 엔트로피(Entropy)란 개념은 열역학 제 2법칙과 밀접한 관계를 갖습니다. 제 2법칙이 엔트로피 증가의 법칙으로 통용되는 것만 보아도 그것을 쉽게 알 수 있겠지요.

엔트로피에 대한 접근은 크게 두가지로 볼 수 있습니다.(정보 이론에서도 다룬다고 하는데 이건 무시.. 세스 로이드의 『프로그래밍 유니버스』란 책에서 간략하게 다루고 있는데 그걸 참고하셔도 좋을 듯 합니다.) 하나는 완전한 고전역학적인 접근이고 다른 하나는 완전한 통계역학적인 접근입니다. 고전역학적인 접근은 우리가 어느 물체에 대해 평균적인 값으로 측정하는 물리량(압력이나 부피, 밀도 등)을 기반으로 엔트로피를 정립해 나가는 것이고 통계역학적인 접근은 분자들의 상태의 수를 이용해서 엔트로피를 정립해 나가는 방식입니다. 보통은 통계역학적인 접근, 혹은 미시적인 접근을 주로 사용하지만 좀 독특한(일반적인 접근인 미시적인 접근과는 반대되는 접근이라는 점에서) 접근방식인 고전역학적인 접근을 써 보려고 합니다.[각주:1]

 

먼저 카르노 기관(순환Cycle)을 짚고 넘어가야 합니다. 카르노 기관은 엔트로피라는 개념이 정립되기 전부터 등장해서 엔트로피를 고전적으로 정의하는데 커다란 버팀목이 되었던 가상적인 엔진입니다. 이 엔진의 특징은 '모든 과정이 역으로 진행 가능하다'입니다.

카르노 기관(Carnot engine/cycle)

모든 과정이 역행 가능한 기관. 네 단계로 구성된다.

1. 등온팽창. 엔진과 같은 온도를 가진 열 공급원에서 에너지를 흡수한다. 같은 온도를 갖기 때문에 이 과정은 역으로 동일하게 진행될 수 있다.
2. 단열팽창. 엔진은 외부와 열 교환을 할 수 없다. 이때 팽창은 준정적Quasi-static으로 일어난다. 준정적이란 말은 평형상태와 유사하게라는 뜻으로, 이 경우에는 기체(또는 유체working fluid)의 팽창이 내부의 압력과 외부의 압력이 동일한 상태에서 일어나는 것이다. 이렇게 준정적인 과정으로 기체가 팽창할 경우 과정은 역으로 진행될 수 있다.
3. 등온압축. 엔진과 같은 온도를 가진 열 흡수원에 에너지를 방출한다. 등온팽창과 마찬가지의 이유로 역으로 동일하게 진행될 수 있다.
4. 단열압축. 단열팽창과 마찬가지로 열 교환을 할 수 없으며, 마찬가지의 조건과 이유로 과정은 역으로 진행할 수 있다.

그리고 열역학 제 2법칙의 공리가 등장합니다. 두 가지 공리가 있습니다.[각주:2]

Clausius Statement
열은 자연적으로 저온부에서 고온부로 전달될 수 없다.[각주:3]

Kelvin-Plank Statement
단일열원에서 열을 얻어 모두 일로 바꾸는 것은 불가능하다.

살펴보겠지만, 두 공리는 서로 동등한 관계를 지닙니다. 둘 중 하나만 부정되어도 다른 하나마저 부정되어야 하지요. 먼저 첫 서술을 부정해 보겠습니다. 열이 자동적으로 저온에서 고온으로 이동하는 겁니다. 그러면 어떤 순환이 두 열원 사이에서 작동하면서 저온부에 버리는 열이 고온으로 이동하면 외부에서 보기에는 고온에서 얻은 열을 전부 일로 바꾼 것으로 보이게 됩니다. 둘 째 서술이 부정되는 것이지요.

둘 째 서술을 부정해 볼까요? 단일열원에서 열을 얻어 모두 일로 바꾸는 기관을 냉동기에 연결합니다. 그러면 저온부에서 고온부로 스스로 이동하는 현상이 일어나게 됩니다. 첫 서술이 부정되는 겁니다. 결국 서로 동치라고 볼 수 있겠지요.

뭐 어찌되었든, 이를 이용하면 카르노 기관이 최고의 효율을 가진 기관이라는 것을 보일 수 있습니다. 카르노 기관은 기본적으로 외부에 영향을 미치지 않는 기관입니다. 모든 과정을 그대로 역으로 진행할 수 있기 때문이지요. 하지만 이 기관보다 효율이 좋은 기관을 도입한다면? 이런 이상적인 기관에서 일을 얻어서 카르노 기관을 역으로 진행시키는 데 사용한다면 열이 역류하는 현상이 일어납니다. 이는 Clausius의 서술에 위배되기 때문에 결국 그런 기관은 존재할 수 없다는 것이지요.

그리고 동일한 열원 사이에서 작동하는 카르노 기관들은 전부 같은 효율을 지닙니다. 하나가 다른 하나보다 더 효율이 좋으면, 하나를 냉동기로 사용하고 하나를 냉동기를 작동시키는 엔진으로 사용하면 열이 역류하는 현상을 볼 수 있겠지요. 이 역시 Clausius의 서술과 반대되기 때문에 존재할 수 없습니다.

그러면 같은 열원이란 무엇일까요? 동일한 온도를 가진 열원을 같은 열원이라고 말합니다. 그리고 카르노 기관의 효율은 그 기관이 작동하는 두 열원의 온도의 함수로 주어집니다. 이는 고온부와 저온부 그리고 그 사이에 중간단계의 열원이 존재함을 가정하고 고온부와 저온부 사이에서 작동하는 기관 하나, 고온부와 중간단계 사이에서 작용하는 기관 하나, 중간단계와 저온부 사이에서 작동하는 기관 하나를 놓은 다음 고온부에서 바로 저온부로 연결된 기관과 중간단계를 걸처 작동하는 기관 둘의 합이 같은 효율을 가져야 한다는 것을 이용해서 보일 수 있습니다.[각주:4]  고온부의 온도를 $t_h$, 저온부의 온도를 $t_l$, 중간 단계의 온도를 $t_m$이라고 한다면 저온부와 고온부 사이 그러니까 $t_h$와 $t_l$ 사이에서 작동하는 카르노 기관의 효율은 이런 꼴로 나타날 것입니다.

$$\eta_{hl}=F(t_h,t_l)=1-\frac{Q_l}{Q_h}$$

$Q$는 카르노 기관에서 들어오거나 나가는 열의 양을 말하고, 첨자는 그 온도를 말합니다. 앞으로는 편의상 열을 주고받는 비율에 초점을 맞추겠습니다. 이 열을 주고받는 비율은 다음과 같이 식의 형태로 쓸 수 있지요.
$$\frac{Q_l}{Q_h}=f(t_h,t_l)$$

중간 단계에 걸쳐있는 나머지 두 카르노 기관에 대해서도 같은 식을 써 볼 수 있습니다.
$$\frac{Q_h}{Q_m}=f(t_h,t_m) \\\frac{Q_m}{Q_h}=f(t_m,t_l)$$

그리고 효율이 같다는 것에서 다음 식을 유도할 수 있습니다.

$$\eta_{hl}=1-\frac{Q_l}{Q_h}=\eta_{h|m|l}=1-\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\frac{Q_l}{Q_h}=\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\therefore f(t_h,t_l)=f(t_h,t_m)f(t_m,t_l)$$

마지막 식을 다음과 같이 정리할 수 있는데

$$\frac{f(t_h,t_l)}{f(t_m,t_l)}=f(t_h,t_m)$$

이렇게 되면 좌변에서만 $t_l$이 등장하므로, $f$는 변수분리가 가능한 함수가 됨을 알 수 있습니다. $t_l$만 변화했을 때 값이 변해서는 안 되기 때문에 분모인 함수가 $t_l$에 의해 받는 영향만큼 분자의 함수가 영향받아야 되기 때문이죠. 그러면 일단 함수를 나눈 다음 생각해 봅시다. 함수 $f$를 대충 분리해서
$$f(t_1,t_2)=\phi(t_1)\theta(t_2)$$

라고 둔다면

$$f(t_h,t_m)=\frac{\phi(t_h)}{\phi(t_m)}$$

을 얻게 되지요. 그런데 우리는 온도의 측정에 제한을 둔 적이 없기 때문에 함수 $\phi$를 온도를 정의하는데 사용할 수도 있습니다. 이를 열역학적 온도라고 부릅니다.

$$T=\phi(t)$$

이제 열역학적 온도를 이용해 카르노 기관의 열효율을 정의할 수 있게 됩니다.

$$\eta_{hl}=1-\frac{T_l}{T_h}=1-\frac{Q_l}{Q_h}$$

물론 이를 이용해 기준온도를 두고[각주:5]   다른 열역학적 온도를 측정하는 것도 가능하지요. 위의 식에서 흡수/방출하는 열이 온도와 정확히 비례하기 때문입니다.

$$T_2=\frac{Q_2}{Q_1}~T_1$$

이제 엔트로피를 도입할 수 있게 됩니다. 먼저 다음 값을 한번의 카르노 순환(cycle)에 대해서 계산해 봅시다.

$$\oint \frac{\delta Q}T$$

이때 $Q$는 계 안으로 흘러들어오는 열로 정의합니다. 단열과정에서는 열이 전혀 흐르지 않기 때문에 등온과정만 생각하면 되는데, 등온과정에서 $T$는 일정하므로 적분은 다음과 같습니다.

$$\oint \frac{\delta Q}T=\frac{Q_h}{T_h}+\frac{-Q_l}{T_l}$$

(두번째 항에 음의 부호가 붙어있는 이유는 저온부로 열이 방출되기 때문입니다.) 그런데 위에서 카르노 기관의 등온과정에서 흡수하거나 방출하는 열은 온도에 비례한다고 정의내렸었죠.[각주:6] 따라서 저 값은 영이 됩니다.
$$Q\propto T \\\therefore\oint \frac{\delta Q}T=\frac{Q_h}{T_h}-\frac{Q_l}{T_l}=0$$

더군다나 어떤 열역학적인 기구라고 하더라도 이상적으로만 작동하고 원래대로 돌아오는 주기운동을 하는 경우라면 수많은 작은 카르노 기관을 모아 만들 수 있습니다. 그러므로 이상적인 경우만 존재한다면 다음 결론을 얻습니다.
$$\oint\left(\frac{\delta Q}T\right)_{\text{ideal}}=0$$

다른 뜻으로는, 위 미분값이 완전미분이라는 것이지요. 완전미분량이기 때문에 위 미분을 어떤 스칼라 함수의 미분으로 볼 수 있다는 것입니다. 스칼라 함수라면 상태에 의존하는 값이라는 의미고, 그러므로 상태에만 의존하는 이 스칼라 함수를 하나의 물리량으로 볼 수 있다는 뜻입니다. 이 물리량이 바로 엔트로피입니다. 대신 엔트로피의 차이만 정의되지 엔트로피의 절대값은 정의되지 않습니다. 위치에너지와 비슷하지요.[각주:7]

$$\left(\frac{\delta Q}T\right)_{\text{ideal}}= dS \\\therefore\oint dS=0$$

통계역학 이전의 열물리에서 엔트로피라는 물리량이 어떻게 얻어졌는지를 보이는 것은 끝났고, 열역학 제 2법칙의 또 다른 버젼인 '엔트로피는 계속 생성된다'는 다음에 다루어 보도록 하죠. 스포일러: 이건 어떤 순환이라고 하더라도 이상적인 경우보다 효율이 떨어진다는 사실을 이용해 증명합니다.


많이 오래 전에 쓰다 만 글이라 문체가 조금 다릅니다. 별로 상관없지만...-.-;;

  1. 열역학 제 1법칙에 대한 확실한 이해가 필요할 수 있습니다. 제 1법칙은 에너지 보존의 법칙과 동치입니다. [본문으로]
  2. 공리는 '증명 불가능한 가정'입니다. 수학에서도 공리를 필요로 하는 것처럼, 물리학에서도 공리를 필요로 합니다. 뉴턴역학에서는 뉴턴의 세 법칙으로 공리가 나타났지요. 양자물리에서는 슈레딩거 방정식이 공리로 이용됩니다. [본문으로]
  3. 확률적으로 가능성이 낮은 것이지 불가능한 것은 아닙니다. 열역학 제 2 법칙은 사실 진리라기보다는 확률적으로 어쩔 수 없이 성립하는 결과라는 것이 대체적인 입장이구요. [본문으로]
  4. 시험문제에 나오더군요 OTL. 노승탁, 『최신 공업열역학』4판, 문운당, p.103~105 [본문으로]
  5. 기준온도는 물의 삼중점으로 273.16K입니다. [본문으로]
  6. 보인 것이 아니라 정의한 것입니다. 열역학적 온도를 정의하면서 따라온 부가적인 정리에 가까우니까요. [본문으로]
  7. 일반상대론이 등장하면서 '절대값'이 중요해졌다는 것도 통계역학적으로 열역학을 다루기 시작하면서 엔트로피의 절대값이 중요해졌다는 것과 닮았습니다. [본문으로]
Posted by 덱스터
2009/05/06 - Lagrangian formulation(1)

Electromagnetism in Schrodinger Eqn.이라는 글을 쓰다가 생각해보니 쓸데없는 식이 들어와 글을나누었다. 그러면 일단, 시작해보자.

Lagrangian을 사용하는 역학을 조금만 비틀어주면 Hamiltonian을 사용하는 정석적(?)인 Hamilton역학을 얻는다. 먼저 Lagrangian의 정의는 운동에너지와 위치에너지의 차이이다. 이 내용을 수식으로 쓴다면

$$L(q_i,\dot{q_i},t)=T-V=\frac12mv^2-V$$

이다. 그리고 Lagrangian을 이용한 운동방정식(Euler-Lagrange equation이라고 부른다)은 각 일반화된 좌표(generalized coordinates) q_i마다 다음과 같다.

$$\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0$$

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 일반화된 속도 벡터.(좌표의 시간변화율을 말한다.) 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

$$p_i=\frac{\partial L}{\partial\dot {q_i}}$$

이 값을 conjugate momentum이라고 부른다. 이제 Legendre 변환을 취한다.

$$H(q_i,p_i,t)= \sum_i p_i\dot{q_i}-L(q_i,\dot{q_i},t)$$

독립변수가 변하는 것에 주목할 것.(일반적으로 우변의 항은 일반좌표의 시간변화율 d(q_i)/dt가 남아있기 때문에 Hamiltonian으로 쓰려면 모두 p_i로 바꾸어야 한다.) 좌표를 일반적인 직교좌표계로 두고 계산해보자.

$$p_i=\frac{\partial L}{\partial\dot{x_i}}=m\dot{x_i}\\H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+V\\H=\sum_i\frac{{p_i}^2}{2m}+V$$

얼레. 에너지다.(독립변수인 p_i로 쓴 점에 유의) 이래서 보통 Hamiltonian을 에너지라고 해석하기도 한다(양자역학을 배울 때 Hamiltonian을 에너지라고 가르치기도 하는데 그 이유가 여기있다). 그렇다면 운동방정식은 어떻게 될까? 우선 Lagrangian을 쓸 때 운동방정식은 이것이었다.

$$\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0$$

Hamiltonian은 일반좌표의 성분이 전부 Lagrangian에서 나오기 때문에(Hamiltonian은 Lagrangian의 일반좌표 q_i와 일반좌표의 시간변화율 d(q_i)/dt 두 독립변수 중 시간변화율을 conjugate momentum으로 바꾼 것이다. 따라서 앞쪽의 p_i는 일반좌표 q_i와 독립적인 변수가 되고, 따라서 편미분하면 0이 된다.)[각주:1] 위의 식을 이렇게 바꿀 수 있다.

$$\frac{\partial L}{\partial q_i}=-\frac{\partial H}{\partial q_i}=\frac d{dt}\frac{\partial L}{\partial \dot{q_i}}=\dot {p_i}\\\frac{\partial H}{\partial q_i}=-\dot{p_i}$$

하나의 운동방정식을 구했다. 이제 두 번째 운동방정식을 구할 차례다.(Lagrangian의 운동방정식이 N차원 변수 x의 값과 그 시간변화율에 대한 2계도함수라면 Hamiltonian의 운동방정식은 N차원 변수 x와 N차원 변수 p에 대한 1계도함수이다. 따라서 하나씩 더 필요.) 우선 Lagrangian과 Hamiltonian의 완전미분을 생각해보자.

$$dH= \sum_i (\dot{q_i}~dp_i + p_i~d\dot{q_i})-dL \\dL=\sum_i\left(\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}+\frac{\partial L}{\partial{q_i}}~dq_i\right)+\frac{\partial L}{\partial t}dt$$

식을 정리하면 다음처럼 된다.(p_i의 정의를 이용)

$$dH= \sum_i \left(\dot{q_i}~dp_i + p_i~d\dot{q_i}-\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}-\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt \\dH= \sum_i \left(\dot{q_i}~dp_i -\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt$$

그런데 Hamiltonian은 conjugate momentum과 일반화된 좌표, 시간에 대한 종속변수이므로

$$dH= \sum_i\left(\frac{\partial H}{\partial{p_i}}~dp_i+\frac{\partial H}{\partial{q_i}}~dq_i\right)+\frac{\partial H}{\partial t}dt$$

가 되어여만 한다.(완전미분의 정의를 생각해보자.) 언제 어디서나 어떤 경우에도 바로 위의 식과 그 위의 식이 일치해야 하므로, 우리가 내릴 수 있는 결론은

$$\frac{\partial H}{\partial{p_i}}=\dot{q_i}~,~\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}$$

이다. 그리고 Hamiltonian을 시간에 대해 완전 미분한 결과는

$$\frac{dH}{dt}=\sum_i\left(\frac{\partial H}{\partial{p_i}}~\dot{p_i}+\frac{\partial H}{\partial{q_i}}~\dot{q_i}\right)+\frac{\partial H}{\partial t} \\=\sum_i\left(-\frac{\partial H}{\partial{p_i}}\frac{\partial H}{\partial{q_i}}+\frac{\partial H}{\partial{q_i}}\frac{\partial H}{\partial{p_i}}\right)+\frac{\partial H}{\partial t} \\=\frac{\partial H}{\partial t}$$

이라 Hamiltonian이 시간에 대한 explicit dependence가 없을 경우 일정한 값을 갖는다.

Lagrangian을 쓸 때와 Hamiltonian을 쓸 때의 차이점은 Lagrangian이 N개의 차원을 갖는 일반화된 좌표공간에서의 움직임을 2계도함수로 풀 때(Euler-Lagrange 방정식이 2계도함수이다) Hamiltonian은 2N차원의 일반화된 좌표-운동량공간(위상공간-phase space-으로 부른다)에서의 움직임을 1계도함수로 푼다는 것이다. 작아 보이는 차이지만 좌표와 좌표의 시간변화율은 완전히 독립이 아니기 때문에 perturbation[각주:2] 다룰 경우 Hamiltonian이 유리하다고 한다.(좌표와 운동량은 독립된 변수로 취급한다.)

다음번에는 Classical Dynamics of Particles and Systems 5판 7.11에 Hamilton's principle을 꼬아서 운동방정식을 유도하는 특이한 방법이 있어서 그걸 다뤄볼 생각이다. 아직 Lagrangian formulation(2)도 쓰지 않은 판에 이걸 쓸 지는 의문이기는 하지만. 이 방법이 Feynman의 경로적분(path integral)과 밀접한 관련이 있어보이는데 그것까지 할 지는 모르겠다.


ps. 고전역학에서 양자역학으로 넘어가는 데에는 위에 나온 미분방정식들보다는 푸아송 괄호(Poisson bracket)가 더 큰 역할을 했다. Shankar책에서 고전적인 계가 어떻게 양자역학적으로 바뀌는지에 대한 부분이 나오는데(아마 quantization이라고 하면서 푸아송 괄호를 commutator로 바꾸고 값에 ih-bar를 붙였던 것 같다) 참조하면 좋을 것이다.
  1. 그런데 그냥 변수가 다르니 편미분하면 0이라고 생각하는게 쉬울지도... [본문으로]
  2. Perturbation theory란 정확한 값을 구할 수 없기 때문에 근사값을 점차 좁혀가는 방법을 말한다. 원주율을 유리수의 합으로 계산하는 것과 비슷하다. [본문으로]
Posted by 덱스터
항공역학(사실상 유체역학이다만)을 배우다 보니 꽤 간단하면서도 중요한 식들을 보게 되는데, 그중 단연 으뜸이라고 할 수 있는 녀석은 이 녀석이다. Kutta-Joukowski Theorem

L'=\rho_{\infty}V_{\infty}\Gamma

대문자 감마(Gamma)는 circulation이라고 불리는 녀석인데, 여기서는 이렇게 정의한다.

\Gamma=-\oint\vec V\cdot d\vec s

2차원 유동을 다룰 때 나오는 식이다. 예상하겠지만, circulation은 어떤 폐곡선을 따라 적분하느냐에 따라 값이 휙휙 뒤바뀐다. 그리고 전자기학 공부 조금이라도 깊게 한 사람은 알겠지만, Stokes정리[각주:1] 의해 대문자 감마를 다른 방식으로 구할 수 있다.

\Gamma=-\oint\vec V\cdot d\vec s~~~~~\\=-\int \vec\nabla\times\vec V dA[각주:2]

유체역학에서는 유동장 속도 벡터에 curl을 취한 벡터를 vorticity라고 부른다. 일반적으로 여기에 문자 하나를 배정해 주는데 크시(Xi)를 주로 쓰는 듯. 별로 중요하지는 않아 보이지만. 이 값은 그 위치에서 유동 성분이 어떤 각속도를 가지고 도는지를 나타낸다. 크시의 크기는 각속도의 두배.

\vec\xi=\vec\nabla\times\vec V

항공역학이다 보니 항공기에서 나타나는 유동을 주로 다루게 되는데, 일반적으로 vorticity는 0이다.(이러면 속도 벡터를 모함수의 물매(gradient)로 생각할 수 있어 potential flow라고 부른다.) 단순하게 생각해서 항공기가 앞으로 날아가면 항공기 입장에서는 공기가 앞에서 불어오는 것처럼 보인다. 그리고 앞에서 일정하게 불어오는 공기에게 각운동량 따위가 있을리가 없다. 어딘가를 중심으로 회전해야 각운동량이 생기기 때문이다.[각주:3] 뭐 일단 자세한 설명은 생략하고, 실제 물체가 있는 곳 주위를 제외한 다른 부분에서는 대부분 vorticity가 0이다. 이런 부분을 따라 contour를 그리는 것이다. 그런데 비행기가 뜨기 위해서는 lift가 존재해야 하고, 위의 정리를 따르면 circulation이 0이면 안된다. 그런데도 velocity potential 자체는 정의할 수 있다. magnetic scalar potential과 비슷한 개념이라고 생각하면 될 듯 하다.[각주:4] 당연히 이 녀석은 Riemann surface 비슷하게 한 지점에서 하나의 값만 정의되지는 않는다. complex variable analysis에서 residue와 비슷하다고 해야 하나?

잡담은 여기까지 하고(무언가 헤맨 느낌이 들지만), 직접 증명해보자. 일반적으로는 complex potential을 이용한다고 하는데, 그런 고등한 방식은 우리에게 어울리지 않는다.(이 방법으로 증명한 것을 보고 싶으면 여기로) 좀 더 바로 바로 와 닿는 증명은 없을까? 구멍이 조금 있어 엄밀하지는 못하지만(메꿀 수는 있는 구멍이다.) 이런 방식으로 증명하는 것도 가능하다.

대충 다음처럼 airfoil 하나를 준다. Kutta조건을 만족하려면 아래처럼 흐르게 된다.


이전 글에서 긁어왔던 그림. 이번에도 여기에서

circulation이 생겼다. 그러면 이제 이 airfoil이 하나의 점처럼 보일 때까지 시야를 확대한다.

대충 이런 느낌이다.

이제 중요한 부분. 이렇게 매우 먼 지점에서 유체의 y방향 운동량 성분의 변화를 분석한다. 먼저 r이 매우 커지면 가장 중요한 성분은 다음 세 가지가 된다.

\text{at large } r\gg1\text{, flow field is characterized by}\\\\ \begin{array}{cc} \text{flow from infinity}&V_\infty\hat x\\ \text{source flow}&\frac\Lambda{2\pi r}\hat r\\ \text{vortex flow}&-\frac\Gamma{2\pi r} \hat\theta \end{array}\\\\ \text{on the first order of } \frac1r

r의 -1차항까지 분석하는 이유는 우리가 적분할 때 r의 order를 갖는 weighting factor를 부여할 것이기 때문이다. 일단 확실한 것은 airfoil이 있어도 유체가 새로 생성되거나 사라지지는 않는다는 것이다.

\Lambda=0

먼저 들어오는 y 운동량을 측정하자. 일단 다음과 같이 그림을 잡으면 미소시간 dt동안 들어온 y방향 성분을 알 수 있다.


a>>1으로 두기 때문에 위에서 얻은 근사식을 적용한다. 흘러 들어오는 질량은 수직길이당 \rho_\infty V_\infty dt 이므로 적분은 대충 다음처럼 생겼다.

p_{y,i}=\int_\infty^\infty \rho_\infty V_\infty dt\frac\Gamma{2\pi r}\cos\theta dl~~~~~~~~~~~~~~~~~\\ =\int_\infty^\infty \rho_\infty V_\infty dt\frac\Gamma{2\pi a\sec\theta}\cos\theta~ d(a\tan\theta)\\ =\int_{-\pi/2}^{\pi/2} \rho_\infty V_\infty dt\frac\Gamma{2\pi}d\theta\\ =\frac12\rho_\infty V_\infty \Gamma dt

뒷쪽에 대해서도 같은 식을 구할 수 있다. 다만 이 때는 vortex가 유도한 y성분의 속도 방향이 아래쪽이므로,

p_{y,o}=-\frac12\rho_\infty V_\infty dt

이다. 따라서 airfoil이 전체 유동장에 주는 힘은

\text{momentum transferred into the fluid flow} = p_{y,o}-p_{y,i}\\ =-\rho_\infty V_\infty\Gamma dt\\\\ \therefore \text{force transferred into the fluid flow}={p_{y,o}-p_{y,i}\over dt}\\ =-\rho_\infty V_\infty\Gamma

이제 뉴턴 3법칙을 이용한다.

\text{lift} = -\text{force transferred into the fluid flow}\\\\ \therefore L'=\rho_\infty V_\infty\Gamma~~~~~~~~~~~~~~~~~

증명 완료. 이런 방식으로 증명하게 되면 Navier-Stokes 방정식처럼 potential flow를 가정할 수 없는 경우에도 Kutta-Joukowski 정리가 대략적으로 성립한다는 것을 보여줄 수 있을지도 모른다는 생각이 들었지만 생각해보면 점성때문에 r의 -1차 항이 0으로 배는 빠르게 수렴하는구나. 교수님께서는 이 식이 점성이 있어도 대충 맞는다고 하셨는데 그렇게 잘 맞게 하려면 어떻게 contour를 잡는지에 대한 감각이 필요할 것 같다.

쓰고 나서 보니 막쓴 항들이 보이는데 너그러운 마음으로 무시해 주시길 바란다, 정 찝찝하면 dt를 Δt로 바꾸시면 되겠다.
  1. 전자기에서 주로 만나서 몰랐는데, 이 인물이 원래는 유체역학을 하던 사람이라고 한다. 교수님 말씀하시길: "천재는 무언가 하면 이곳저곳에 흔적을 남기는 법이야"(맞나?) [본문으로]
  2. 2차원이다. 3차원이 아닌 공간에서 curl을 쓰는 것이 이상하기는 하지만, z축을 임의로 도입하고 z방향의 변화는 항상 0이 된다고 가정하면 된다. [본문으로]
  3. 물론 각운동량이 존재해도 어딘가 중심을 가지고 회전하지는 않는 것처럼 보일 때가 있다. [본문으로]
  4. 비록 전자기 시간에 '이런게 있음 ㅇㅇ'하고 대충 넘어가신 것 같기는 하지만. [본문으로]
Posted by 덱스터
Thin airfoil theory는 말 그대로 날개가 얇다고 가정을 한 상태에서 날개 주변의 유동에 대해 해석적인(analytic) 해를 구하는 것이다. 상당히 극단적인 가정이 많이 들어가기는 하지만 의외로 잘 맞아서(실험 데이터와 오차범위를 비교해놓은 것을 보면 정확하다는 말만 나온다.) 이전에 공학과 흑묘백묘론이라는 글을 쓰는 모티브가 되기도 했다. 물론 모티브는 내 엉망인 글 솜씨에 의해서 망해버렸지만.

근사를 하는 과정은 다음과 같다.

1. 점성항을 제거한다.
Navier-Stokes 공식을 Euler 공식으로 바꾸는 것이다. 이렇게 공식을 바꾸어주면 그나마 풀 수 있는 문제로 바뀌게 된다.[각주:1]

2. 회전하지 않는다고 가정한다.
속도 벡터장의 회전도(curl)를 항등적으로 0으로 취급한다는 뜻이다. 1번과 함께 이 조건이 만족되면 속도를 스칼라 함수의 물매(gradient)로 쓸 수 있다고 해서 potential flow라고 부른다. 컴퓨터 없이 유체역학을 공부하게 되면 이런 종류의 흐름만 배울 것이다.

3. 날개를 camber만 남긴다.
camber는 날개의 윗 단면과 날개의 아랫 단면의 정중앙을 지나는 곡선이다. 임의의 수직선을 생각했을 때 camber가 날개를 정확히 반으로 가른다고 생각해도 좋고, 윗 단면과 아랫 단면의 평균이라고 생각해도 좋다. 중요한 것은 날개에 이 녀석만 남겨서 두께를 0으로 만들어 버린다는 것이다.

4. x축에 vortex를 적절히 배치한다.[각주:2]
말 그대로 적절히 배치한다. 이 배치를 잘 조절해서 camber만 남긴 날개와 유체의 흐름이 평행하도록 만들어주는 것이다. 비행기가 날 때 공기가 날개를 뚫고 흐르지는 않는 것을 모사한다.

정확한 것은 책을 찾아보세요. 블로그는 언제까지나 블로그이다.

문제는 결국 이 방정식으로 줄어들게 된다. gamma는 x축 위의 vortex 분포, V는 무한지점에서 불어오는 속도(그래서 아래첨자가 무한대이다), alpha는 받음각(angle of attack), x는 좌표, z는 camber의 공식. 0에서부터 c까지 적분한다는 소리는 날개의 앞쪽 끝에서 뒤쪽 끝까지 적분한다는 의미이다.

\frac1{2\pi}\int_{0}^{c}\frac{\gamma(\xi)d\xi}{x-\xi}=V_\infty\left(\alpha-\frac{dz}{dx}\right)

Anderson의 Fundamentals of Aerodynamics 4th Ed.을 쓰고 있는데, 여기서는 날개를 완전히 평평한 판으로 근사했을 때(dz/dx=0)의 해를 다음과 같이 구해놓았다.

\gamma(\theta)=2\alpha V_\infty\frac{1+\cos(\theta)}{\sin(\theta)}\\x=\frac{c}2(1-\cos(\theta))

재미있는 것은 이 식이 경험법칙인 Kutta condition을 만족한다는 사실이다. Kutta 조건은 어떤 실험을 해 보아도 날개 끝 지점에서 유체의 움직임은 끝의 생김새와 평행하다는 것이다. 수식으로 바꾸면 gamma가 날개의 끝 지점에서는 0이라는 말이다.



아래 그림이 Kutta 조건을 만족할 때의 유동 모습이다. 일단 책에 나온 해의 그래프는 다음과 같이 그려진다.

c를 1로 잡았다. y축은 어차피 분포를 보여주기 위한 목적이 전부이니 무시.

자, 어떻게 다음 적분방정식(integral equation)의 해가 저렇게 깔끔한 성질을 보여줄까?

\frac1{2\pi}\int_{0}^{c}\frac{\gamma(\xi)d\xi}{x-\xi}=V_\infty\alpha

결론부터 말하자면, 당연히 깔끔할 수 밖에 없다. 일반적으로 적분방정식의 해는 여러개가 나오는데 그 중에서 우리가 원하는 조건에 맞는 녀석만 남도록 경계조건(boundary condition)을 적용했기 때문이다.[각주:3] 방정식 자체는 alpha와 V의 부호를 동시에 바꾸어도 동일하다는 점에 주목하길 바란다. 이 말은 위에서 구한 분포가 반대 방향에서 불어오고 있을 때에도 유효한 답이 된다는 말과 똑같은 소리이다.

\frac1{2\pi}\int_{0}^{c}\frac{\gamma(\xi)d\xi}{x-\xi}=(-V_\infty)(-\alpha)
의 해도\gamma(\theta)=2\alpha V_\infty\frac{1-\cos(\theta)}{\sin(\theta)}\\x=\frac{c}2(1-\cos(\theta))
가 된다.


다르게 표현한다면 다음 해도 사실은 유효하다는 것이다.부호 반대.

\gamma(\theta)=2\alpha V_\infty\frac{1-\cos(\theta)}{\sin(\theta)}\\x=\frac{c}2(1-\cos(\theta))

하늘색이 새로운 해의 분포

그래서 수업시간에 교수님께서 질문하신 "왜 답이 이렇게 깔끔한지 알기나 하냐?"에 대한 답은 "깔끔하도록 제한해주었으니까요"가 되겠다.



2012.11.14
좌우 대칭으로 바꾸어주면서 gamma의 부호도 바꾸어주어야 하는데 그 부분이 빠졌다.(시계방향 회전을 좌우대칭으로 바꾸면 반시계방향 회전이 된다.) 따라서 실제 위의 방정식을 만족하는 해는 다음 식이 된다.


\gamma(\theta)=2\alpha V_\infty\frac{\cos(\theta)-1}{\sin(\theta)}\\x=\frac{c}2(1-\cos(\theta))


양력은 음수가 되는 것을 알 수 있다. 전혀 쓰일 이유가 없는 해인 것이다.


  1. N-S 방정식을 완전히 풀어낸 해는 모두 합쳐도 손으로 꼽을 수 있을 정도밖에는 안된다. 그 중 하나가 원통 내부를 흘러가는 유체의 유동방정식인데, 이 녀석도 유체가 안정적으로(laminar) 흐를 때에만 유용한 녀석이라 좀 문제가 있다. 수도꼭지에서 물을 틀면 물이 매끈한 원기둥처럼 나올 때가 있고 이곳 저곳 울퉁불퉁한 흐름이 생기는 경우도 있는데 후자가 근처에서 가장 쉽게 관찰할 수 있는 불안정한(turbulent) 경우이다. 그나마 제대로 푼 식이라도 제한적으로만 의미가 있다는 뜻이다. CFD(Computational Fluid Dynamics)가 발전한 이유이기도 하고. [본문으로]
  2. 전자기학에 비유한다면, 적절한 전하밀도를 분포시키는 것이다. [본문으로]
  3. 양자역학의 산란 파트에서 Born approximation을 할 때에도 적분방정식을 푼다. 이때 나오는 독립적인 해가 두개인가 되는데, 그 중 하나는 경계조건으로 날려버린다. [본문으로]
Posted by 덱스터
요즘은 양자를 하기 전에 고전적인 장론에 대해 좀 더 알아야 할 것 같아서 이 책을 보고있다.

The Classical Theory of Fields (4 Revised, Paperback)
Landau, L. D./Butterworth-Heinemann
고급 전자기학과 일반상대론을 다룬다.

여태 역학의 관점에서만 상대론을 공부해서 나한테만 새로운건지는 모르겠는데, 시공간상의 거리(Spacetime interval; 직역하면 시공간 간극이 맞겠지만)로부터 논리를 세우는 과정은 인상적이었다. 그런데 친구한테 듣기로는 요즘 상대론 책은 전부 그렇다고 한다. 내가 구세대라니 OTL

그런데 첫 챕터부터 읽는데[각주:1] 틀린 것 같은 부분이 있어서 확인해봤다. 결과는 옳기는 하더라도, 과정상 틀린 부분이 있다는 기분이 들었던 것. 바로 metric tensor와 관련된 부분이다. 책에서는 Kronecker delta 텐서를 indice lowering/raising하는 것으로 metric tensor가 얻어지는 것처럼 서술했는데, 원래는 둘은 서로 독립적인 존재이다.

metric tensor는 공간의 특성, 즉 거리의 측정법을 규정한다. 두 점 사이의 변위를 d{\bold x}^i로 쓸 때, 두 점 사이의 거리는 다음으로 정의한다.(표기는 Einstein summation notation을 따른다)

ds^2=g_{ij}d\bold x^id\bold x^j

여기서 g_{ij}가 metric tensor이다.[각주:2] 일반적인 유클리드 공간이라면 metric tensor는 Kronecker delta가 된다. 그리고 일반적으로 말하는 평평한 시공간(flat spacetime)에서는 (정의하기 나름이지만) 0번째 항이 1이고 나머지 항은 -1인 대각행렬(diagonal matrix)이 된다. 만약 시공간이 꼬여있으면 그건 일반상대론한테 물어보도록. 리만(Riemann)을 찾아가도 되겠지만 일반상대론보다 일반적이지는 않을 거다.[각주:3]

metric tensor의 원래 정의는 위와 같지만, contravariant의 indice를 내려주는 역할을 하기도 한다. 사실 covariant를 dual 벡터로 정의하기 때문에 생기는 특성이기는 하지만 말이다.

\bold A_i=g_{ij}\bold A^j

그렇다면 covariant의 indice를 올려주고 싶다면 어떻게 하면 될까? 그건 metric tensor의 dual을 이용한다.

\bold A^i=g^{ij}\bold A_j

그렇다면 dual은 어떻게 구할까? 위의 두 과정을 합쳐보자.

\bold A^i=g^{ij}g_{jk}\bold A^k=\delta^i_k\bold A^k

어차피 벡터 A는 무엇이 되어도 상관없기 때문에 떼어버리면(아래 식의 우변은 metric tensor의 대칭성을 이용한 것이다.)

g^{ij}g_{jk}=\delta^i_k=g_{kj}g^{ji}

신비롭게도 행렬로 쓴다면 둘은 서로 역행렬 관계이다. 결론을 제대로 서술하자면, metric tensor와 Kronecker delta는 무관하고, metric의 dual이 Kronecker delta를 이용해 구해진다는 것이다.

오늘의 태클은 여기까지.
  1. 공부의 정석은 정독이다. [본문으로]
  2. 단, symmetric tensor가 되어야 한다. [본문으로]
  3. 일반상대론에서는 유사리만공간(pseudo-Riemannian manifold)을 이용하고 내적이 좀 더 복잡하다. 자기 자신과의 내적이 음이 될수도 있도록 일반화된 공간이 유사리만공간이다. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

엔트로피 - 고전적인 정의  (7) 2010.08.03
Hamiltonian formulation(1)  (4) 2010.07.14
자기 단극자, Dirac String, 기타 등등  (0) 2010.01.01
Lagrangian formulation(1)  (2) 2009.05.06
물리학이란 학문에 대해서  (19) 2009.03.07
Posted by 덱스터

2010. 1. 28. 00:09 Physics

전자기학 교재(?)

Shankar책으로 장의 양자화(field quantization)를 공부하려고 하는데 Lagrangian Density가 튀어나온 배경을 모르겠어서 검색해보다가 이런 책을 발견했다.


철저한 카피레프트 정신에 기반한 책인데 의외로 쓸만한 것 같다. Goldstein 역학을 사려다가 상대론 책이 없구나 하면서 Carrol 상대론 책을 샀기 때문에(왜 하필 Goldstein 책을 뒤저보라는 각주가 붙어있는지...)[각주:1] 전혀 필요한 정보를 얻지 못하고 있었는데 그때 혜성같이 나타나 구원(?)해주었다.

Feynmann의 졸업논문도 가지고 있기는 하지만(여기에서도 그 Lagrangian을 다루었으니..) 거기는 좀 나중에 보는게 나을 듯 싶다. Lagrangian을 이용하는 방법은 양자역학 도입 전부터 있었으니까 완전히 고전적으로 다루는 것부터 이해하는 편이 나아보인달까.

일단 군론은 잠시 접어두고 이것부터 해야지...
  1. 상대론 교재에서 고민했던건 Landau의 고전장론을 살지 Carrol책을 살지였다. 결국 Carrol책이 더 많은 내용을 담은 것 같아서 샀는데 Landau를 샀어도 괜찮았을것 같다는 기분이 ㅠㅠ [본문으로]

'Physics' 카테고리의 다른 글

GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
Posted by 덱스터

양자역학에서 상태는 추상적인 켓(ket)벡터

$$\left|\psi\right\rangle$$

로 나타난다. 이 벡터가 시간에 따라 진화하는 법칙이 슈뢰딩거(E. Schrödinger) 방정식으로, 1926년 처음으로 변위(x)에 대한 식을 유도해낸 이의 이름을 붙인 것이다. 당시 슈뢰딩거가 식을 유도해내었을 때에는 위 벡터를 변위공간에 투영한 것(

$$\psi(x)\equiv\left\langle{x}\middle|\psi\right\rangle$$

)의 시간에 따른 진화를 다루는 방정식이었고, 그 방정식의 생김새를 보고 파동함수라고 이름붙였다. 나중에 상태를 추상적인 벡터로 나타내기 시작한 것은 디랙(P.A.M. Dirac)의 업적이다.

[각주:1]

 
이름에서 알 수 있듯이, 슈뢰딩거는 입자가 보이는 파동적 성질에 착안해서 방정식을 만들었다. 드브로이(L. de Broglie)가 빛의 양자성에서 영감을 얻어 제시한 물질파 가정은 물질에 파동적인 성질이 존재한다는 것을 암시한다. 물질의 파동적인 성질은 이후 전자를 이용한 회절실험과 간섭실험으로 증명되었고, 슈뢰딩거 방정식에 등장하는 2계미분의 근간이 되었다.[각주:2] 1차원 입자 하나에 대해 쓰는 슈뢰딩거 방정식이 다음과 같이 생기게 된 것은 그 때문이다.[각주:3]
 

$$i\hbar\frac\partial{\partial{t}}\Psi(x)=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x)+V(x)\Psi(x)$$

1차원, 입자 하나의 슈뢰딩거 방정식

 
이렇게 슈뢰딩거가 물질이 가지는 파동적인 특성에 집중하고 있던 사이, 하이젠베르크(W. Heisenberg) 등은 물질이 가지는 양자적인 특성(측정값이 불연속적으로 나타나는 특성)에서 영감을 얻어 행렬역학(Matrix mechanics)을 창시했다. 탄생 자체가 측정만 염두에 두고 만들어져서 그런지 양자역학에서 측정에 대한 모든 가정들은 행렬역학에서 유래하였다. 고전역학과 양자역학이 대비되는 대표적인 특징인 '측정의 결과는 고유값(eigenvalue) 중 하나이다'가 행렬역학의 핏줄을 이어받은 것이다.
 
두 접근법을 잘 드러낼 수 있는 고전역학적인 예는 1차원상에서 두 질점이 후크의 법칙(Hooke's law)에 따라 상호작용을 하는 경우다. 다음 그림을 보자.
 

x가 이상하게 쓰인건 무시하자

 
평형거리를 s라고 둔다면, 위 상황에서 운동방정식은 다음과 같다.
 

$$m_1\ddot{x_1}=k(x_2-x_1-s)\\m_2\ddot{x_2}=-k(x_2-x_1-s)$$

또는,

$$m_1\ddot{y_1}=k(y_2-y_1)\\m_2\ddot{y_2}=-k(y_2-y_1)\\y_1\equiv{x_1},~ y_2\equiv{x_2-s}$$

 
슈뢰딩거의 해법은 위 두 방정식을 더하고 빼서 각각 하나의 변수에만 의존하는 방정식으로 만드는 것이다. '직접적인 해법'이라고 할 수 있을 것이다.
 

$$\ddot{(m_1y_1+m_2y_2)}=0 \\\ddot{(y_1-y_2)}=-\frac{k(m_1+m_2)}{m_1m_2}(y_1-y_2)$$

 
윗식은 운동량 보존에 해당하고, 아랫식은 환산질량으로 쓴 운동방정식이다. 한편, 행렬을 이용한 해법도 존재한다. 이 방법이 하이젠베르크가 도입한 행렬역학의 아이디어이다. 첫 식을 이렇게 변형하면
 

$$\ddot{y_1}=\frac{k}{m_1}(y_2-y_1)\\\ddot{y_2}=-\frac{k}{m_2}(y_2-y_1)$$

 
행렬을 이렇게 쓸 수 있다.
 

$$\ddot{X}=AX \\X=\left( \begin{array}{c}y_1\\y_2\end{array} \right) \\A=\left( \begin{array}{cc} -\frac{k}{m_1} & \frac{k}{m_1} \\ \frac{k}{m_2} & -\frac{k}{m_2} \end{array} \right)$$

 
이 경우 해가되는 벡터 X는 A의 고유벡터(eigenvector)의 선형조합으로 쓸 수 있다. 기본적인 아이디어는 해를 정상상태를 나타내는 벡터들을 조합해 나타내자는 것이다. 우린 먼저 조화진동자의 (정상상태의) 해가 다음과 같은 꼴로 쓰일 수 있다는 것을 알고있다.[각주:4]
 

$$y=A\cos(\omega{t})+B\sin(\omega{t})$$

 
이 해를 추상화(?)하면 이렇게 쓸 수도 있다.
 

$$y=Re[Ae^{i\omega{t}}]$$

 
여기서 A는 복소수이다. 그리고 미분은 복소수를 켤레복소수로 만드는 과정과는 무관하므로(그러니까 어떤 복소함수를 미분한 다음 켤레복소수를 취하는 것이나 켤레복소수를 취한 복소함수를 미분하나 결과는 같으므로) 시간에 대한 2계미분은 다음과 같이 쓸 수 있다.
 

$$\ddot{y}=\frac{d^2}{dt^2}Re[Ae^{i\omega{t}}]=Re\left[\frac{d^2}{dt^2}\{Ae^{i\omega{t}}\}\right]=Re[-\omega^2Ae^{i\omega{t}}]$$

 
전기공학에서 쓰는 phasor 기법이라고 생각하면 된다. 어쨌든 이 과정에서 힌트를 얻자. 먼저 해 벡터 X를 시간과 관련된 부분만 따로 빼낼 수 있다고 생각하는 것이다.
 

$$X=\chi{e^{i\omega{t}}}~,\frac{d}{dt}\chi=0$$

 
여기서 $\chi$는 시간에 무관한 열벡터이다. 어찌되었든 이런 형태를 취하고 나면 위의 미분방정식은 고유값 문제(eigenvalue problem)가 된다.
 

$$\ddot{X}=-\omega^2X=AX\\(A+\omega^2I)X=0$$

 
그렇다면 고유값은? 고유값은 바로 각진동수의 제곱이다(부호는 반대). 고유값을 계산해보면 0과 $$\frac{k(m_1+m_2)}{m_1m_2}$$을[각주:5] 얻고, 각자 평행이동과 서로에 대한 진동을 나타낸다는 것을 알 수 있다. 물론 해는 전의 방법과 전적으로 일치한다.
 
한가지 의문인 것은, 왜 측정하면 그 측정값의 고유벡터중 하나로 수렴할 확률이 그 고유벡터 계수의 절대제곱(absolute square)에 비례하냐는 것이다. 지금 당장은 신호를 퓨리에(Fourier)변환을 통해 주파수에 따라 분류하면 그 주파수대가 갖는 에너지가 절대제곱에 비례하기 때문에 거기에서 유래했으리라 추측하고 있지만 확실하지는 않다. 아무래도 조금 더 공부를 해야 할 것 같다.
 
첨언하자면 파동함수의 절대제곱이 확률밀도함수로 해석되게 된 이유 또한 행렬역학의 핏줄을 따라 내려온 것이라는 점이다. 왜 그런지는 독자의 몫으로 남겨 둔다.[각주:6] 쓰기 귀찮아서...

2012.11.08
추가할 내용은 새 글로 올리기로 했다. 다음 글도 읽어보시길.

2012/11/08 - 양자역학의 유래(2)

 

  1. 이 표기법을 이용하게 되면서 상태를 더욱 다양한 방식으로 나타낼 수 있게 되었고, 상태를 더욱 직관적으로 인식할 수 있게 되었다. [본문으로]
  2. 파동을 e와 허수 i를 이용한 지수함수로 나타낼 경우 진동수(파수)는 미분으로 얻어진다. 슈뢰딩거 방정식을 쓸 경우 허수의 도입이 절대적인 이유이기도 하다. [본문으로]
  3. 원래 슈뢰딩거는 이 방정식이 시간에 대해서는 1계미분방정식이라는 것을 못마땅해했다고 한다. 그것도 그럴 것이, 위 형태의 방정식은 로렌츠 변환에 일정하지 않기 때문이다.(더불어 고전적인 파동을 나타내는 방정식은 시간에 대해 2계미분항을 가지고 있다.) 상대론적 양자역학으로 넘어가면 클라인-고든 방정식(Klein–Gordon equation)이 이 대칭을 갖기는 하지만, 이 경우는 2계미분방정식이라는 것이 문제이다. 자세한 내용은 다른 곳을 참조하시길. [본문으로]
  4. 잠깐 이 문제를 벗어나고 있다. 일반적인 하나의 물체가 용수철로 벽에 연결된 상태를 생각하시길. [본문으로]
  5. 부호는 반전시켰다. [본문으로]
  6. 힌트: 함수는 무한한 행을 가진 열벡터로 쓸 수 있다. 아마 교재를 가지고 공부한다면 거기에 잘 나와있을 것이다. 그런데 실수라는 연속체를 그렇게 쓰기는 힘들텐데 -_-;; [본문으로]
Posted by 덱스터
글을 쓰다가 깨달은 건데, 양자역학에서 허수의 도입이 필연적인 이유는 광양자의 에너지가 고전적인 파동의 에너지와는 다르게 진동수에 선형적으로 비례하기 때문일지도 모른다는 생각이 들었다. 광양자는 그 근본이 상대론적인 입자라서 고전적인 양자이론으로는 기술하는 것이 힘들긴 하지만...

어쨌든 되도록이면 빨리 글을 끝내야지 -_-

'Physics > Speculations' 카테고리의 다른 글

Thin airfoil theory의 결과물에 대해서(flat plate)  (2) 2010.04.24
양자역학의 유래  (4) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
Posted by 덱스터
1. Aharanov-Bohm 효과(AB효과)
AB효과는 자기장이 무시할 만큼 작은 공간에서도 자기장의 Potential함수 때문에 입자의 위상이 변화하는 것을 말한다. 물리적으로는 자기장보다는 그 자기장의 원함수(Potential)가 실제 영향을 미친다는 것을 의미한다. 여기까지는 학부 수준의 양자역학에서 배우는 내용이다. 보통은 무한솔레노이드 주변에서 이 효과를 증명하는데, 무한솔레노이드의 한 방향을 따라 움직였을때 위상과 반대 방향으로 움직였을때 위상차이는 솔레노이드 안에 흐르는(?) 자속(Magnetic flux)에 비례한다.

2. Dirac String
재미있는 것은, 무한솔레노이드에서 AB효과가 존재하더라도 솔레노이드가 특정값의 자속을 갖는다면 그 위상차이가 정확히 한바퀴(2pi)가 되어서 알 수 없다는 것이다. 이런 경우를 두고 솔레노이드가 투명하다고 할 수 있다. 만약 이 솔레노이드의 자속을 일정하게 유지시키는 대신 반지름을 0으로 무한히 줄인다면 솔레노이드의 양 끝은 자기 단극자(Magnetic monopole)처럼 보일 것이다(그 사이를 잇는 솔레노이드는 투명하니까). 이것을 Dirac String 이라고 부른다. 이것을 이용해 Dirac은 자기단극자가 만약 존재한다면 전하의 양자화는 당연하다는 것을 보였다.(역사적인 순서는 반대였던것 같다.)

3. 문제
그렇다면 문제를 뒤로 돌려서, 처음부터 자기 단극자가 존재한다고 가정하면 어떻게 될까? 위에서 얻어진 결과물은 본래 자기 단극자가 존재하지 않는다는 가정에서 출발한 것이다. 이 경우에도 위와 같은 결과물을 얻을 수 있을까(물론 얻어야만 한다. AB효과는 실험적으로 검증되었다.)?

가장 큰 문제점은 양자역학이 전기장과 자기장으로 쓰여있지 않다는 것이다. 전자기에서 Hamiltonian은 전기장과 자기장의 원함수로 쓰여진다. 결국 처음부터 자기 단극자가 존재한다고 가정하려면 당장 Hamiltonian을 구하는 것이 급선무인 셈이다. 그런데 자기 단극자가 존재한다고 가정했을 때 과연 전기장과 자기장의 원함수를 구할 수 있을까?

1학년 때 수업을 들으면서 요즘은 특이점이 있는 경우를 주로 연구한다고 들었던 것 같다. 자기장의 원함수를 scalar 함수로 쓰는 경우도 있었는데, 이 경우 특이점이 문제가 되었던 것으로 기억한다. 자기장이 어떤 scalar potential을 원함수로 가지므로 어떤 loop를 따라 적분하든지 0이 되어야만 하는데, 잘 알다시피 Ampere의 법칙은 이 조건을 무참히 부셔버린다. 이 경우 특이점은 전류가 흐르는 도선이다. 이런 특이점을 어떻게 해쳐 나가야 할 것인지가 문제인 셈이다.

결론은 결국 위상수학도 보아야 하는건가(...)
Posted by 덱스터

2009. 12. 24. 04:29 Physics

측정의 평균

자려고 누워서 틀렸을 가능성이 매우 높은 5번 문제를 생각하다가(여기서 블로그 주인장의 정신나간 덕후끼를 느낄 수 있다) 왜 뻘짓을 하고 있었는지 깨달았다.

5번 문제는 Bell's inequality를 실제로 만족하는지 보이는 문제였다. 세 각은 두 벡터(a, b)가 직각을 이루고, 그 사이에 하나의 벡터(c)가 끼어들어 45도로 배치된 상태. Griffith책의 426페이지에 나오는 배치와 동일하다. 이 벡터의 방향으로 스핀을 측정한다.

주어진 Bell의 부등식은(동일한 책 425페이지)

\left|P(\bold{a},\bold{b})-P(\bold{a},\bold{c})\right|\le1+P(\bold{b},\bold{c})

주어진 Quantum state는(e는 전자, p는 양전자)

\left|\chi_1\right\rangle=\sqrt{\frac13}\left|\uparrow\right\rangle_e\left|\downarrow\right\rangle_p-\sqrt\frac23\left|\downarrow\right\rangle_e\left|\uparrow\right\rangle_p \\\left|\chi_2\right\rangle=\sqrt{\frac13}\left|\uparrow\right\rangle_e\left|\uparrow\right\rangle_p-\sqrt\frac23\left|\downarrow\right\rangle_e\left|\uparrow\right\rangle_p

먼저 1번 상태에 대해서 풀면, 계산은 다음처럼 하면 된다. 난 이렇게 풀고 있었다.

P(\bold{a},\bold{b})=\left|\left\langle\chi_a^+\chi_b^+\middle|\chi_1\right\rangle\right|^2+\left|\left\langle\chi_a^-\chi_b^-\middle|\chi_1\right\rangle\right|^2-\left|\left\langle\chi_a^+\chi_b^-\middle|\chi_1\right\rangle\right|^2-\left|\left\langle\chi_a^-\chi_b^+\middle|\chi_1\right\rangle\right|^2

간단하다. a방향과 b방향의 spin up 상태와 down 상태를 각각 구한다음에, 각각으로 붕괴할 확률을 구하고, 값이 +가 나오는 경우를 더하고 -가 나오는 경우를 뺀다. 얼마나 간단한가? 계산이 더럽긴 하지만. 결국 그래서 못 풀고 말았다. P 하나 계산하는데 30번은 가뿐히 뛰어넘는 계산이 필요하더군. 그런데 더 쉬운 방법이 있다.

P(\bold{a},\bold{b})=\left\langle\chi_1\middle|\bold{\sigma_a}\otimes\bold{\sigma_b}\middle|\chi_1\right\rangle

얼마나 간단한가! 이건 8번 정도만 계산하면 된다.


....

나 여태 뭐 공부한거니 ㅠㅠ



동등함을 보이기는 '매우' 쉽다.

\bold{\sigma_a}=\left|\chi_a^+\middle\rangle\middle\langle\chi_a^+\right|-\left|\chi_a^-\middle\rangle\middle\langle\chi_a^-\right|\\ \bold{\sigma_b}=\left|\chi_b^+\middle\rangle\middle\langle\chi_b^+\right|-\left|\chi_b^-\middle\rangle\middle\langle\chi_b^-\right|

direct product를 이용해서 둘을 곱해버리면 맨 위의 식과 동등한 식을 얻는다.

'Physics' 카테고리의 다른 글

양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Posted by 덱스터
양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
Posted by 덱스터

2009. 12. 9. 22:37 Physics

우월한 고전역학



중력이 거의 없는 우주에서 커다란 각운동량이 어떤 효과를 나타내는지 잘 보여주는 동영상.

살짝 치면 진동하면서 점차 조금씩 돌아가는 것을 볼 수 있는데, 저 현상은 순수히 고전역학적으로도 보일 수 있는 결과물이다.

Inertia Tensor(관성 텐서)가 시험범위여서 오늘 시험보기 전 잠깐 precession(세차운동)에 대해 찾아보다가 발견한 동영상.



누구의 양자책이었는지는 기억이 잘 안 나는데, 거기서 양자역학은 고전역학보다 카오스 현상이 덜 나타난다는 말이 있었다.

그래서 그런가? 왜 양자가 '조금'은 더 쉽게 느껴지지 -_-;;; 고전역학은 하면 할수록 깊은 수렁에 빨려들어가는 느낌이 든다....

'Physics' 카테고리의 다른 글

전자기학 교재(?)  (0) 2010.01.28
측정의 평균  (2) 2009.12.24
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Posted by 덱스터
이전버튼 1 2 3 4 5 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함