'전체 글'에 해당되는 글 835건

  1. 2021.01.13 힘과 가상입자의 교환 2
  2. 2020.11.30 A soft cut-off regulator
  3. 2020.11.16 다이온(dyon) 관련 잡담 약간 1

표준적인 물리 커리큘럼을 따라 배우면 상호작용에 대한 관점이 대체로 다음 진화(?)과정을 거치게 된다.


힘 → 장과 포텐셜 → 가상입자의 교환


힘을 장과 포텐셜로 다시 이해하게 되는 과정은 대부분의 경우 문제 없이 넘어가는 반면, 장과 포텐셜에 의한 상호작용을 가상입자의 교환으로 다시 이해(?)하게 되는 과정은 많은 경우 '그렇다고 하니 그런가보지 뭐...'라고 넘기게 된다. 이렇게 근본적인 부분에 대해서는 의문을 갖고 제대로 된 설명을 요구하는 것이 마땅함에도 불구하고 말이다[각주:1].


상호작용을 가상입자의 교환으로 이해하는 이유는 무엇일까. 우선은 굴러다닐 수 있는 의자에 앉은 두 사람끼리 캐치볼을 하면 주고 받는 공의 운동량에 의해 서로 멀어지는 과정으로 설명하는 사기(...)는 잠시 잊어버리기로 하자. 이 관점을 제대로 이해하기 위해서는 다음과 같은 배경지식이 필요하다.


1. 양자역학의 섭동이론(perturbation theory)

2. 질량이 없는 입자의 에너지를 이해할 정도의 특수상대론

3. 상호작용을 매개하는 장의 양자화와 Fock space


학부 수준에서는 3번이 좀 무서울 수 있는데 어차피 필요한 배경지식은 다 제공할 예정이니 학부 수준의 양자역학만 제대로 알고 있으면 된다. 대표적인 먼거리힘(long-range force)인 중력이나 전자기학은 스핀 때문에 쓸데없이 복잡하니 질량이 없는 유가와(Yukawa) 상호작용을 생각하기로 하자. 목표는 다음을 보이는 것이다.


유가와 입자에 해당하는 장의 원천(source)이 되는, 거리 $r$만큼 떨어진 두 질점 사이에 유가와 입자의 '교환'에 해당하는 효과에 의해 $\Delta E = -g^2/4 \pi r$만큼의 에너지가 추가로 발생한다.


다르게 말하자면 $1/r$꼴의 포텐셜이 '단일 양자의 교환'으로 볼 수 있는 과정을 통해 만들어지는 것을 확인하자는 것이다. 질점은 정지해 있다고 가정할 예정이니 상대론까지 갈 필요 없이 비상대론적인 계산으로 충분하다 (다만 편의상 $c=1$로 둘 예정).



편의상 두 질점을 $A$와 $B$라고 하고, $A$는 원점 $\vec{0}$에, $B$는 원점이 아닌 $\vec{r} \neq \vec{0}$에 두기로 하자. 그리고 유가와 입자에 해당하는 장(유가와 장[각주:2])을 $\phi(t, \vec{x})$라고 하자 (시간 $t$에 대한 의존성은 중요하지 않으니 앞으로 표시하지 않겠다). 이런 계의 동역학(dynamics)을 기술하기 위해 제일 먼저 할 수 있는 일은 라그랑지안(Lagrangian)을 적는 것이다.

$$ L = L_{A+B} + \int d^3 \vec{x} \frac{[\dot{\phi}(\vec{x})]^2 - [\vec{\nabla} \phi(\vec{x})]^2}{2} - g \int d^3 \vec{x} ~ \phi(\vec{x}) J(\vec{x}) $$

$L_{A+B}$는 질점 $A$와 $B$의 라그랑지안이고 어차피 움직이지 않는다고 가정할 예정이니 구체적인 생김새는 알 필요가 없다. 실제 계산에서는 그냥 에너지 $E$를 줄 예정. 중간의 적분은 유가와 장의 자유 라그랑지안(free Lagrangian)이다. 섭동이론에서는 나머지 부분을 무시한 채 이 부분을 양자화하는 것으로 유가와 입자를 얻는다. 구체적으로는 $\phi (\vec{x})$를 다음과 같이 전개하게 된다(이 유도과정을 알고 싶다면 Tong의 양자장론 노트를 읽으면 좋다.).

$$ \phi (\vec{x}) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t + i \vec{k} \cdot \vec{x} } + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t - i \vec{k} \cdot \vec{x} } \right] $$

현재 고려하고 있는 유가와 입자는 질량이 없는 입자이기 때문에 $E(\vec{k}) = |\vec{k}|$란 조건을 만족한다. 일반적으로는 $E(\vec{k}) = \sqrt{\vec{k}^2 + m^2}$. 여기서 $a_{\vec{k}}$와 $a^\dagger_{\vec{k}}$는 흔히 mode operator라고 부르는데, 단순조화진동자(simple harmonic oscillator)의 대수를 만족한다.

$$ [a_{\vec{k}_1} , a^{\dagger}_{\vec{k}_2}] = (2 \pi)^3 \delta^3 (\vec{k}_1 - \vec{k}_2) $$

단순조화진동자의 스펙트럼은 자연수로 나타낼 수 있는데, 장론에서는 이 자연수가 '그 운동량을 갖는 입자가 몇 개 있는가'를 나타내는 숫자가 된다[각주:3]. 예컨대 생성 연산자 $a^\dagger_{\vec{k}}$를 상태 $| \psi \rangle$에 작용하게 되면 얻는 상태 $ a^\dagger_{\vec{k}} | \psi \rangle$은 $| \psi \rangle$에 비해 운동량 $\vec{k}$를 갖는 유가와 입자가 하나 더 있는 상태가 된다.


마지막 적분인 $-g \int \phi J$는 질점 $A$와 $B$가 유가와 장의 원천임을 나타낸다. 상호작용의 세기 $g$는 섭동전개를 하기 위해 도입한 형식적인 파라메터. 어차피 질점 $A$와 $B$는 움직일 일이 없으니 $J(\vec{x}) = \delta^3(\vec{x}) + \delta^3 (\vec{x}-\vec{r})$로 취급하면 되는데, 나중에 논의를 편하게 하기 위해 $J_A (\vec{x}) = \delta^3 (\vec{x})$와 $J_B (\vec{x}) = \delta^3 (\vec{x} - \vec{r})$로 나누기로 하자. 각각 $J_{A/B}$는 질점 $A/B$가 유가와 장의 원천이 됨을 나타낸다. 이제 유가와 장에 대한 전개식을 집어넣어 interaction Hamiltonian을 계산할 경우 다음 식을 얻는다.

$$ H_{int} = g \int \phi J = g \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t } \left( 1 + e^{ i \vec{k} \cdot \vec{r} } \right) + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t } \left( 1 + e^{ - i \vec{k} \cdot \vec{r} } \right) \right]$$ 

위의 식을 찬찬히 뜯어보면 $H_{int}$는 주어진 상태 $| \psi \rangle$에 작용할 경우 유가와 입자를 하나 더하거나 ($a^\dagger | \psi \rangle$) 하나 빼는 ($a | \psi \rangle$) 연산자라는 사실을 알 수 있다. 따라서 $| \psi \rangle$가 명확한 유가와 입자의 갯수를 갖는 상태일 경우 $\langle \psi | H_{int} | \psi \rangle = 0$임을 알 수 있다.


여기까지 왔으면 모든 준비가 끝났다. 양자역학 섭동계산을 통해 유가와 입자가 없이 질점 $A$와 $B$만 존재하는 상태 $| \psi^{(0)} \rangle$의 $g^2$ order 에너지 보정을 찾으면 된다. 섭동전개의 유도과정을 설명하는건 귀찮(...)으니 여기에서 위키백과의 유도과정을 보자. $H_{int} = gV$로 적고 결과만 옮겨적을 경우 다음과 같이 쓸 수 있다.

$$ E (g) = E^{(0)} + g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{1}{E^{(0)} - (E^{(0)} + E(\vec{k}))} \left| \frac{1 + e^{i \vec{k} \cdot \vec{r}}}{\sqrt{2 E(\vec{k})}} \right|^2 + O(g^3) $$

여기서 $\langle \psi^{(0)} | V | \psi^{(0)} \rangle = 0$는 위에서 설명한 $H_{int}$의 성질로부터 나온다. 유가와 입자의 에너지가 $E(\vec{k}) = |\vec{k}|$라는 것을 이용하면 다음과 같이 정리할 수 있다.

$$ E (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2 + e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) $$

이제 위의 식에 해석을 줘 보자. 적분 분자의 2는 잘 살펴보면 $H_{int}^A = g \int \phi J_A$로 질점 $A$에 의해 유가와 입자가 생성되었다가 다시 $H_{int}^A$에 의해 질점 $A$가 유가와 입자를 흡수하여 처음 상태로 돌아가는 과정과 질점 $B$에 대해 같은 현상이 일어나는 과정으로부터 나왔음을 알 수 있다. 자기 자신과 상호작용하는 과정이기 때문에 이를 자체에너지(self-energy) 보정이라고 한다.

$$ E_{s} (g) = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{| \langle k | H_{int}^A | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} + \frac{| \langle k | H_{int}^B | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

실제 계산을 수행하려고 하면 $\int d^3 k / k^2$꼴의 적분이기 때문에 이 값은 발산함을 알 수 있다. 양자장론의 모든 곳에서 튀어나오는 무한대중 하나가 바로 이런 자체에너지 보정이다. 우리가 실제로 관심을 갖는 것은 질점 $A$와 $B$ 사이에 유가와 장이 상호작용을 매개함으로서 생기는 에너지이므로, 자체에너지 보정은 좌변으로 넘겨서 잊어버릴 수 있다. 따라서 실제 에너지 변화는

$$ E (g) - E_s (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) =  - \frac{g^2}{4 \pi r} + O(g^3) $$

으로, 다음과 같이 다시 적을 수 있다.

$$ - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{ \langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle + \langle \psi^{(0)} | H_{int}^A | k \rangle \langle k | H_{int}^B | \psi^{(0)} \rangle}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

우변의 분자에 등장하는 $\sum_{k} |k \rangle \langle k|$이 identity operator를 분해한 것으로 볼 수 있음을 고려하면 분자에 등장하는 표현들, 예컨대

$$\langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle$$

를 $| \psi^{(0)} \rangle$ 상태에서 $A$ 질점이 (가상의) 유가와 입자를 하나 만들어낸 다음 $B$ 질점이 그 입자를 흡수하는 과정으로 볼 수 있다. 이런 해석을 바탕으로 장에 의한 상호작용을 그 장에 해당하는 가상입자의 교환으로 이해하게 된다.

  1. '나는 질문 할 생각을 못했는데!'라고 좌절할 필요는 없다. 당장 이 글을 쓰고있는 사람도 그렇듯 이런 근본적인 부분을 몇개 놓치더라도 물리로 어떻게든 밥은 벌어먹고 살 수 있으니까(...). [본문으로]
  2. 스칼라장(scalar field)이란 표현이 더 자주 쓰이지만 장의 이름은 그다지 중요한 것이 아니니 대충 넘어가기로 하자. [본문으로]
  3. 여담으로 미분방정식인 슈뢰딩거 방정식을 풀어서 파동함수를 구해놓고 왜 굳이 생성-소멸 연산자(creation-annihilation operator)를 이용해서 조화진동자를 대수적으로 다시 푸는지 의문을 가졌던 적이 있었는데, 양자장론을 배우면서 그 의문이 해소되게 되었다. [본문으로]
Posted by 덱스터

This series is divergent, therefore we may be able to do something with it. 

- Oliver Heaviside (quoted by Kline)

양자장론 계산을 하다 보면 발산하는 급수를 다루기 마련이다. 예컨대 다음과 같은 경우.

$$ \sum_{n=0}^{\infty} n = 0 + 1 + 2 + \cdots = ?$$

많은 끈이론 책에서는 Zeta function regularisation을 이용해서 이 값을 $-\frac{1}{12}$로 고정한다. 예외(?)라면 그냥 이 합을 $a$란 변수로 두고 target space Lorentz algebra를 이용해서 $a = - \frac{1}{12}$로 고정하는 GSW 정도랄까. 물론 Terence Tao의 블로그 글에서 볼 수 있듯 발산하는 급수를 말이 되게 하는 방법에는 cut-off function $c(n;\Lambda)$을 도입해서 cut-off independent한 부분을 읽어내는 방법 또한 존재하며, 그 방법으로 구하는 급수의 값은 위의 경우 $-\frac{1}{12}$가 되기는 한다.

$$\sum_{n=0}^{\infty} n c(n;\Lambda) = - \frac{1}{12} + O(\Lambda^2) $$

cut-off function은 $\Lambda$보다 작은 $n$은 1로 더하고, $\Lambda$보다 큰 $n$은 적당히 누르는 함수로 적당히 택하면 된다.

$$ c(n;\Lambda) = \left\{ \begin{aligned} &1 && n \ll \Lambda \\ &0 && n \gg \Lambda \end{aligned} \right.$$

이 방법으로 string worldsheet의 zero point energy를 계산하는 책이 Polchinski였던 것으로 기억하고 있다.


그렇다면 여기서 문제. "어떤 cut-off function이 유용할까?". 흔히 선택하는 regulator에는 Gaussian이나 exponential이 있는데, 내가 개인적으로 선호하는 cut-off function은 다음과 같이 생겼다.

$$c_{\Lambda,m}(n) = 1 - e^{-(\Lambda/n)^{2m}}$$

이 regulator는 발산하는 급수의 argument가 적당히 작은 크기로 발산해야만 cut-off의 역할을 수행할 수 있다는 단점이 있기는 하지만, 그 단점을 무시하는 어마어마한(?) 장점이 추가로 있다. $n$을 연속변수 $x$로 바꾸었을 때 $x=0$이나 $x=\infty$에서의 미분값이 항상 0이라는 것.

$$\forall k \ge 1 \,, c_{\Lambda,m}^{(k)}(0) = c_{\Lambda,m}^{(k)}(\infty) = 0 $$

위 성질을 보면 알겠지만 실변수해석학에서 해석적이지 않은 함수의 실례로 이용되는 함수를 응용한 것이다. 위의 cut-off function을 도입하면 Euler-Maclaurin 공식을 이용해 계산하는 발산급수를 다음과 같이 정리할 수 있다.

$$\sum_{n=0}^{\infty} f(n) c_{\Lambda,p} (n) = \int_0^\infty f(x) c_{\Lambda,p} (x) dx + \frac{f(0)}{2} - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!}$$

구체적인 사례로 $\sum n^m$을 계산하면 다음과 같은 결과를 얻는다.

$$\sum_{n=0}^{\infty} n^m c_{\Lambda,p}(n) = R_m + \frac{\Lambda^{m+1}}{m+1} \Gamma \left( 1 - \frac{m+1}{2p} \right) \\ R_m = - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!} = \left\{ \begin{aligned} &- \frac{B_{m+1}}{m+1} && m \text{ odd} \\ &0 && m \text{ even} \end{aligned} \right.$$

Posted by 덱스터

최근에 썼던 논문은 중력 버전의 다이온에 대한 1-룹 계산이었다. 학사논문도 자기단극자와 관련된 주제였을만큼 자기단극자에 대한 관심이 많은 편이었으니 자기단극자의 중력 버전에 대해서도 관심이 있을 수 밖에 없었는데, 원래 논문의 목표는 현 논문의 결론과는 꽤 많이 달랐다. 계산이 죄다 어긋나서 목표가 달성 불가능할 것으로 보이자 목표를 뒤집어서 뒤집은 결론을 논문으로 만들어버린 것인데, 학사논문도 비슷한 과정을 통해서 논문이 되었으니 기묘한 평행선이라고 할 수 있을지도 모르겠다. '왜 아무도 명시적으로 이야기하지 않는 거지?'라고 여기는 것 중 하나가 논문의 부록A가 된 '전자와 자기단극자 둘을 동시에 기본입자로 취급하면서 UV cut-off가 둘의 질량보다 위에 존재하는 EFT는 있을 수 없다'는 논증인데, 트위터에서 간략하게 언급한 적이 있다.

물론 아무도 이런 이야기를 하지 않은 것은 아니고 부록에 인용으로 언급했던 weak gravity conjecture(WGC)의 자하 버전에서 비슷한 논증을 하는데[각주:1], 여기서는 입자로서 다루는 것에 대한 명시적은 이야기는 하지 않는다. 여튼 이런 특성을 고려한다고 도입한 추가 계산이 10일만에 쓴 짧은 논문의 바탕이 되었다는 점에서 꽤나 운이 좋았던 편. 저 짧은 논문을 쓸 때는 아드레날린 과다방출(..)로 불면증에 심하게 시달려서[각주:2] 약간 제정신이 아닌 상태에서 썼는데, 결과적으로 꽤나 도발적인 결론이 나와버렸다. 실제로 쓸만한 결과일지는 시간이 지나봐야 알겠지만.

 

---

 

여튼 자기단극자 이야기나 계속해보자. 전하와 자하는 그 물체가 광자와 상호작용함을 나타내는데, 둘을 구분하는 것은 무엇일까? 논문 서론에서 언급했듯 와인버그는 전하와 자하는 광자의 두 편광과 어떻게 상호작용하는가---나선도(helicity)의 부호와 상관없이 상호작용하는가 아니면 부호에 따라 반대 방향으로 상호작용하는가---로 구분됨을 보였다. 이 차이로 인해 전하와의 상호작용은 일반적인 벡터포텐셜 $A_{\mu}$로 적히고, 자하와의 상호작용은 dual potential이라고 자주 부르는 $B_{\mu}$로 적히게 된다. $A_{\mu}$가 $dA = F$란 미분형식 방정식으로 적히는 것과는 반대로 dual potential $B_{\mu}$는 $dB = \ast F$란 미분형식 방정식을 만족한다. 전자기학을 배우면서 전자기장은 벡터포텐셜 $A_{\mu}$로 그 동역학을 기술할 수 있다고 배우는 학부생 입장에서는 '잘 와닿지는 않지만 그런가보다~' 싶은 설명이지만, 이렇게 자하의 동역학을 기술하기 위해서는 일반적인 벡터포텐셜 $A_{\mu}$로는 불가능하다는 결론은 사실 학부 수준에서 배우는 양자역학만으로도 논증할 수 있다. 대부분의 양자역학 학부 과정에 아로노프-봄 효과를 포함하기 때문.

 

논증은 간단하다. 다음 조건들이 모순됨을 보이면 된다.

1) 전기-자기 이중성 (electric-magnetic duality) : 전하와 자하 사이에 이중성이 양자역학 수준에서도 존재한다.

2) 국소성 (locality) : 입자가 전자기장과의 상호작용으로 얻는 효과는 그 입자가 위치한 점에서의 장의 값으로 결정된다.

3) $A_{\mu}$의 완전성 : 전자기장의 모든 효과는 $A_{\mu}$장으로 완벽하게 기술할 수 있다.

4) $A_{\mu}$의 게이지 대칭성 : $A \to A + d \lambda$에 해당하는 게이지 대칭에 대해 물리가 변하지 않는다.

 

구체적으로는 dual Aharonov-Bohm effect를 상상하면 된다. 솔레노이드로 생성되는 원통형 영역에 제한된 자기장 대신 똑같이 원통형 영역에 제한된 전기장을 걸어두고[각주:3] 그 주변을 도는 자하를 상상하는 것. 이제 그 주변을 도는 자하가 Aharnonov-Bohm effect의 전하처럼 $A_{\mu}$장으로부터 위상의 변화를 얻을 수 있는지 계산해보면 된다. 답은 아니오. 왜냐하면 이런 모양의 전기장은 전기장이 0이 아닌 원통형 영역 안에서 값을 갖는 스칼라 포텐셜 $\phi$에 값을 잘 주는 것으로 완벽하게 구현할 수 있기 때문. 원통형 영역 밖에서는 $A_{\mu}$장의 값이 항등적으로 0이 되도록 해를 구할 수 있으므로, 자하는 $A_{\mu}$와 상호작용해야만 한다면 dual Aharonov-Bohm effect는 존재할 수 없다. 구체적인 해는 여러분의 지적 유희를 위한 연습문제(...)로 남겨두기로 하자[각주:4].

 

---

 

논문의 원래 목표는 (중력 버전의 자하에 해당하는) NUT charge를 가진 물체가 있을 때, 이 물체의 동역학을 어떻게 기술할 것이냐였다. 물체가 실제로 존재한다면 힘을 걸어서 가속시키거나 감속시킬 수 있어야 하지 않겠냐는게 기본 문제의식. 이 문제의식의 흔적이 부록C인 effective one-body formalism이다. 결과적으로는 계산이 도저히 아귀가 맞지 않아서 반년 이상 헤매다가 방향을 뒤집어서 '일반상대론의 NUT charge를 자하의 중력 버전으로 해석하는 것은 다양한 가능성을 고려해봐도 1-룹 계산에서 붕괴한다'로 결론을 내버리긴 했지만 말이다. 결국 이 결론을 내면서 전기-자기 이중성에 대한 관심 때문에 마찬가지로 관심을 갖게 되었던 Taub-NUT space에 대한 관심이 많이 죽어버리고 말았다.

 

그나저나 자하는 실존할 것인가? 많은 사람들이 '자하는 근시일에 발견된다'가 안전한 베팅이라고 믿고 있고 나도 이 대열에 합류한 상태이긴 한데, 디락이 말년에 자기단극자의 존재 가능성에 대한 입장을 선회했다는 것을 알게 되고는 마음이 약간은 흔들리는 중. 약간의 검색을 돌려보니 도서관에서 본 것은 이 proceeding인 모양이다.

  1. 혹시나 해서 Arkani-Hamed가 썼던 논문을 열어봤는데 역시나 있었다. 역시 기대를 져버리지 않는 Arkani-Hamed. [본문으로]
  2. 평균적으로 하루 서너시간 정도밖에 못 잔 듯 하다. 논문 작성 막바지에는 거의 항상 있는 일인듯. [본문으로]
  3. 실험적으로는 극성을 가진 유전체를 길게 잘 늘어놓는 것으로 구현할 수 있을 것이다. [본문으로]
  4. 여담으로 이 사실을 발견하고는 '전기-자기 이중성은 양자역학 수준에서는 깨져야만 하는구나!'하고 신나서 MS word로 논문 비슷한 무언가를 타닥타닥 작성했던 흑역사(?)가 있다. 버려야 하는 가정은 1)번이 아니라 3)번이란 것을 깨달은 것은 대학원 들어온 뒤 끈이론 공부하면서. 원고가 원고로만 남은 것이 다행이군... [본문으로]
Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.3
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

최근에 올라온 글

최근에 달린 댓글

글 보관함