최근 쓰는 논문에서 대충 다음과 같은 적분을 할 일이 있었다.

\[ \int_a^b \sqrt{f(x)} dx \]

구간은 $f(a) = f(b) = 0$의 해. 문제는 이 계산이 정확하게 되지 않아서 섭동계산으로 풀어야 한다는 것.

\[ \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx \]

편의상 $\epsilon$의 선형 차수까지 이 적분을 계산한다고 가정해보자. 이 경우 적분은 다음과 같이 전개할 수 있다.

\[ \int_{a(0)}^{b(0)} \sqrt{f(x;0)} dx + \epsilon \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \left[ \int_{a(0)+\epsilon a'(0)}^{a(0)} + \int_{b(0)}^{b(0)+\epsilon b'(0)} \right] \sqrt{f(x;0)} dx \]

첫 두 항은 별 문제가 없다. 문제가 되는 것은 마지막의 적분구간이 $\epsilon$에 대해 움직이는 부분. $\sqrt{f(x;0)}$의 부정적분을 계산할 수 있다고 생각없이 움직인 적분구간을 집어넣으면 틀린 답을 얻게 된다. 예컨대 구간 $(a(0)+\epsilon a'(0), a]$에서 $f(x;0)$의 값이 음수가 된다면 나올 리가 없는 허수부가 만들어진다.

 

그렇다면 정확한(?) 풀이방법은 무엇일까? 우선은 처음 쓴 적분을 $G(\epsilon)$으로 정의하자. 우리가 원하는 것은 $G'(0) = \left. \frac{\partial G}{\partial \epsilon} \right|_{\epsilon=0}$이다.

\[ G(\epsilon) := \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = G(0) + \epsilon G'(0) + \cdots \]

$G'(0)$는 정의만 사용하면 다소 싱겁게 구할 수 있다.

\[ G'(0) = \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \frac{\partial b}{\partial \epsilon} \sqrt{f(b;0)} - \frac{\partial a}{\partial \epsilon} \sqrt{f(a;0)} \]

뒤 두 항은 $f(a) = f(b) = 0$란 조건으로부터 0이므로, 실제 계산은 맨 앞 항만 해주면 된다. 물론 이렇게 단순한 문제였으면 포스트를 쓰지도 않았을테지만.

 

문제는 $\epsilon^2$ 차수의 계산이다. $G''(0)$는 어떻게 구할 수 있을까? 쉽게 계산되는 부분은 일단 전부 던져두고, 문제가 되는 부분만 찾아보자.

\[ G''(0) = \cdots + \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} + \cdots - \frac{\partial a}{\partial \epsilon} \frac{\partial \sqrt{f(a;0)}}{\partial \epsilon} + \cdots \]

위에서 $\cdots$로 표시한 부분은 딱히 발산하지 않는 부분이기 때문에 문제없이 계산할 수 있지만, 위에 적은 항들은 그렇지 않다.

\[ \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} = \frac{\partial b}{\partial \epsilon} \left( \frac{1}{2 \sqrt{f(b;0)}} \frac{\partial f(b;0)}{\partial \epsilon} \right) \stackrel{?}{=} \frac{N}{0} \]

별 생각없이 계산하다가는 $\frac10$꼴의 항들이 두개나 튀어나오게 된다. 만약 보다 고차항을 보고 싶다면 $\frac10 \times \frac10$과 같은 더 계산이 불가능한 항들이 만들어질 것이다. 그렇다면 해결방법은 무엇일까?

 

문제의 원인은 적분구간이 이동한다는 사실에 있다. 그러므로 적분변수를 바꿔서 적분구간이 이동하지 않도록 조정해주면 문제가 해결된다. 다음과 같은 성질을 갖는 $\epsilon$에 의존하는 변수변환을 생각하자.

\[ x \to \tilde{x}(x; \epsilon) \,,\, \tilde{x}(a(\epsilon);\epsilon) = a(0) \,,\, \tilde{x}(b(\epsilon);\epsilon) = b(0) \,,\, \lim_{\epsilon \to 0} \tilde{x}(x;\epsilon) = x \]

이 변수변환이 적당한 one-to-one mapping이라면 문제는 매우 싱겁게 해결된다. $G(\epsilon)$에 대한 $\frac{\partial}{\partial \epsilon}$ 미분이 전부 integrand에만 걸리기 때문.

\[ G(\epsilon) = \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = \int_{a(0)}^{b(0)} \sqrt{f(x(\tilde{x};\epsilon);\epsilon)} \left( \frac{\partial x}{\partial \tilde{x}} \right) d\tilde{x} \]

물론 이 invertible mapping을 찾기란 쉽지만은 않다. 처음에는 quadratic 관계식으로 해보려고 했는데 결국은 실패했고, 결과적으로는 다음과 같은 projective 관계식을 푸는 것으로 해결했다. (정확히는 $b = \infty$에 놓여있어서 단순한 선형 이동으로 해결했지만)

\[ \frac{x - a(\epsilon)}{x - b(\epsilon)} = \frac{\tilde{x} - a(0)}{\tilde{x} - b(0)} \]

학부 4년 과정 내내(?) 섭동계산을 배우지만 그것만으로는 충분하지 않을 만큼 섭동계산의 세계는 넓고도 험하다.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

섭동계산을 하다 보면 다음과 같이 작은 섭동항이 붙은 행렬의 행렬식을 계산할 일을 자주 마주하게 된다.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) \]

이 계산은 어떻게 하면 될까? 먼저 $G_{ab}$의 역행렬 $G^{ab}$를 정의해서 다음과 같이 쓰도록 하자.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) = [ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) ] \times [ \text{Det} G_{ab} ] \]

여기서 $A_{a}^{~b} := A_{ac} G^{cb}$로 정의한다. $A_{a}^{~b}$의 고유값들을 $\lambda_i$라 부르기로 한다면, 위 식은 다음과 같이 적을 수 있다.

\[ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) = \prod_i (1 + \epsilon \lambda_i) = 1 + \epsilon \sum_i \lambda_i + \epsilon^2 \sum_{i<j} \lambda_i \lambda_j + \cdots \]

이제부터는 매우 쉽다. 행렬 $A_{a}^{~b}$에 대해 다음 두 조건을 알고 있으므로, 이 두 조건으로부터 얻는 식을 잘 조합하기만 하면 된다.

\[ \text{Tr} A = \sum_i \lambda_i \,,\, \text{Tr} A^n = \sum_i \lambda_i^n \]

예컨대 $2 \sum_{i<j} \lambda_i \lambda_j = (\sum_i \lambda_i)^2 - \sum_i \lambda_i^2$이므로,

\[ \text{Det} (I + \epsilon A) = 1 + \epsilon \text{Tr} A + \epsilon^2 \frac{(\text{Tr} A)^2 - \text{Tr} A^2}{2} + \epsilon^3 \frac{(\text{Tr}A)^3 - 3 \text{Tr} A^2 \text{Tr} A +2 \text{Tr} A^3 }{6} + \cdots \]

와 같은 전개를 얻는다. 찾아보면 위와 같은 조합에 대해 뭔가 이름이 있을 법도 한데 귀찮은 관계로 생략.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

For a physicist, on the other hand, every system is open, and (more to the point) approximate. One never really expects that the mathematical problem one formulates and then solves will provide an exact or complete description of a physical system.

한편 물리학자에게 모든 계는 열려있고 (더욱 중요하게는) 근사적이다. 그 누구도 어떤 물리계에 대해 형식화하고 풀어낸 수학적 문제가 그 계에 대해 완벽하거나 완전한 묘사를 줄 것으로 절대 기대하지 않는다.

- Ingmar Saberi(https://arxiv.org/abs/1801.07270)

한번은 기계 설계였나 강의를 들을 당시 조별 프로젝트 발표를 할 일이 있었습니다. 뭔가 간단한 로봇을 설계하는 일이었는데, 제가 속한 조보다 앞서 발표하던 조에서 로봇에 예상하고 있는 부하가 걸리면 변형이 얼마나 일어나는지 계산한 결과를 발표하고 있었습니다. 뭐 숫자와 식을 알고 있으니 단순한 산수일테고, 산수 끝에 얻은 변형에 대한 예측값은 10^-20 m였던가 그렇습니다. 참고로 원자핵의 크기를 대략 10^-15 m 정도로 보죠.

 

그 슬라이드를 보고는 발표를 듣던 교수님이 '숫자놀음은 집어치워라'라면서 대노하셨고 (그 정도로 작은 값이면 그냥 변형이 없는 것이란 말을 덧붙이면서요) 옆에서 비슷한 숫자를 슬라이드에 집어넣고 있었던 같은 조원은 깜짝 놀래서 재빠르게 숫자를 0으로 바꿨습니다. 세 팀이 조별 프로젝트 발표를 하면 그 중 가르침이 되는 팀이 꼭 있는 법이죠.

 

그래서 준비해 본, '어디까지 방정식을 믿을 것인가?'란 주제 하에 묶을 여러 문제들입니다. 물리는 결국 목표로 삼은 현상에 대한 모형을 세우고 그 모형을 이해하는 것으로 목표로 삼은 현상을 이해하는 것인 셈이니, 세워놓은 모형이 어디까지 현상을 제대로 기술하고 있는가에 대해 감을 갖고 있어야겠죠. 깊게 생각 안하고 공부만 하다 보면 '언제 모형을 믿으면 안된다'는 감이 없는 경우가 자주 있단 말이죠. 짤막하게 작성해 두고 아마 생각나는대로 업데이트하지 않을까 싶네요.

 

참, 이 포스트는 Paul J. Nahin의 Mrs. Perkins's Electric Quilt: And Other Intriguing Stories of Mathematical Physics란 책의 내용에서 영감을 받았습니다. 비록 도서관에서 빌려놓고 시간이 없어 서론만 읽은 뒤 방치해뒀다가 연체되어서 연체비만 물고 뒷쪽은 하나도 못 읽었지만 말이죠.

 

---

 

의외로 물리학을 하나도 안 배운 사람이 물리학을 어느정도 배운 사람보다 이상하다는 것을 빠르게 알아차리는 물리학에 대한 문장이 있습니다.

"전하가 자기장 안에서 받는 힘은 전하의 이동 방향과 수직이므로 자기장은 일을 하지 못한다."

이 문장은 왜 틀린 문장일까요?

 

문장의 전제는 맞습니다. 전하가 자기장 안에서 받는 힘은 로렌츠힘으로 기술되고, 이 힘은 전하가 이동하는 방향과 항상 수직이기 때문에 로렌츠힘에 의해 전하가 에너지를 얻는 경우는 없죠. 하지만 자기장은 일을 하지 못한다는 사실이 아닙니다. 사이클로트론과 같은 입자가속기에서는 자기장의 세기를 변화시키는 것으로 입자를 가속시키기는 하지만 이건 자기장이 변하면서 패러데이 법칙에 의해 전기장이 생성되는 원리이기 때문에 반례가 되는 것은 아닙니다. 그러니까, 가만히 있는, 혹은 정적인 자기장이 일을 하는 경우입니다. 그리고 누구나 어릴 적 자석을 가지고 놀아봤다면 모를래야 모를 수가 없는 반례이기도 하죠.

 

가만히 있는 자석과 조금 떨어진 곳에 가만히 있는, 자화되지 않은 철조각을 가만히 두면 철조각은 자석을 향해 날아들죠. 중력을 거스르고 날아오르는 경우도 많고요. 정적인 자기장이라도 일을 할 수 있다는 살아있는 반례죠. 물론 철조각이 자화되면서 남는 에너지를 운동에너지로 바꾸는 과정이므로 로렌츠힘에 의한 일은 아니지만, 자기장(혹은 자력)이 일을 하지 못하는 것은 아니지 않습니까.

 

그리고 여기에는 약간의 뒷이야기가 있습니다. 고전역학과 통계역학만 가정할 경우, 자력은 일을 할 수 없는 것이 맞습니다. 이를 보어-판레이우언 정리라고 부르죠. 그러니까 처음에 제시된 문장은 고전역학과 통계역학만 가정한 범위 안에서는 틀린 문장은 아닌 셈이죠. 단지 우리 우주가 그 범위 안에 온전히 속하지 않는 것일 뿐. 포스트의 처음에 인용한 문장이 더없이 적절하지 않습니까?

 

---

 

다음 업데이트에서는 블랙홀에 대해 이야기해보려고 합니다. 아마 트위터에서 자주 떠들어댄 문제이니 이미 아실 분들도 있을 지 모르겠군요.

댓글을 달아 주세요

1 2 3 4 5 ··· 275 

글 보관함

카운터

Total : 690,718 / Today : 26 / Yesterday : 64
get rsstistory!