최근 쓰는 논문에서 대충 다음과 같은 적분을 할 일이 있었다.

\[ \int_a^b \sqrt{f(x)} dx \]

구간은 $f(a) = f(b) = 0$의 해. 문제는 이 계산이 정확하게 되지 않아서 섭동계산으로 풀어야 한다는 것.

\[ \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx \]

편의상 $\epsilon$의 선형 차수까지 이 적분을 계산한다고 가정해보자. 이 경우 적분은 다음과 같이 전개할 수 있다.

\[ \int_{a(0)}^{b(0)} \sqrt{f(x;0)} dx + \epsilon \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \left[ \int_{a(0)+\epsilon a'(0)}^{a(0)} + \int_{b(0)}^{b(0)+\epsilon b'(0)} \right] \sqrt{f(x;0)} dx \]

첫 두 항은 별 문제가 없다. 문제가 되는 것은 마지막의 적분구간이 $\epsilon$에 대해 움직이는 부분. $\sqrt{f(x;0)}$의 부정적분을 계산할 수 있다고 생각없이 움직인 적분구간을 집어넣으면 틀린 답을 얻게 된다. 예컨대 구간 $(a(0)+\epsilon a'(0), a]$에서 $f(x;0)$의 값이 음수가 된다면 나올 리가 없는 허수부가 만들어진다.

 

그렇다면 정확한(?) 풀이방법은 무엇일까? 우선은 처음 쓴 적분을 $G(\epsilon)$으로 정의하자. 우리가 원하는 것은 $G'(0) = \left. \frac{\partial G}{\partial \epsilon} \right|_{\epsilon=0}$이다.

\[ G(\epsilon) := \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = G(0) + \epsilon G'(0) + \cdots \]

$G'(0)$는 정의만 사용하면 다소 싱겁게 구할 수 있다.

\[ G'(0) = \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \frac{\partial b}{\partial \epsilon} \sqrt{f(b;0)} - \frac{\partial a}{\partial \epsilon} \sqrt{f(a;0)} \]

뒤 두 항은 $f(a) = f(b) = 0$란 조건으로부터 0이므로, 실제 계산은 맨 앞 항만 해주면 된다. 물론 이렇게 단순한 문제였으면 포스트를 쓰지도 않았을테지만.

 

문제는 $\epsilon^2$ 차수의 계산이다. $G''(0)$는 어떻게 구할 수 있을까? 쉽게 계산되는 부분은 일단 전부 던져두고, 문제가 되는 부분만 찾아보자.

\[ G''(0) = \cdots + \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} + \cdots - \frac{\partial a}{\partial \epsilon} \frac{\partial \sqrt{f(a;0)}}{\partial \epsilon} + \cdots \]

위에서 $\cdots$로 표시한 부분은 딱히 발산하지 않는 부분이기 때문에 문제없이 계산할 수 있지만, 위에 적은 항들은 그렇지 않다.

\[ \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} = \frac{\partial b}{\partial \epsilon} \left( \frac{1}{2 \sqrt{f(b;0)}} \frac{\partial f(b;0)}{\partial \epsilon} \right) \stackrel{?}{=} \frac{N}{0} \]

별 생각없이 계산하다가는 $\frac10$꼴의 항들이 두개나 튀어나오게 된다. 만약 보다 고차항을 보고 싶다면 $\frac10 \times \frac10$과 같은 더 계산이 불가능한 항들이 만들어질 것이다. 그렇다면 해결방법은 무엇일까?

 

문제의 원인은 적분구간이 이동한다는 사실에 있다. 그러므로 적분변수를 바꿔서 적분구간이 이동하지 않도록 조정해주면 문제가 해결된다. 다음과 같은 성질을 갖는 $\epsilon$에 의존하는 변수변환을 생각하자.

\[ x \to \tilde{x}(x; \epsilon) \,,\, \tilde{x}(a(\epsilon);\epsilon) = a(0) \,,\, \tilde{x}(b(\epsilon);\epsilon) = b(0) \,,\, \lim_{\epsilon \to 0} \tilde{x}(x;\epsilon) = x \]

이 변수변환이 적당한 one-to-one mapping이라면 문제는 매우 싱겁게 해결된다. $G(\epsilon)$에 대한 $\frac{\partial}{\partial \epsilon}$ 미분이 전부 integrand에만 걸리기 때문.

\[ G(\epsilon) = \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = \int_{a(0)}^{b(0)} \sqrt{f(x(\tilde{x};\epsilon);\epsilon)} \left( \frac{\partial x}{\partial \tilde{x}} \right) d\tilde{x} \]

물론 이 invertible mapping을 찾기란 쉽지만은 않다. 처음에는 quadratic 관계식으로 해보려고 했는데 결국은 실패했고, 결과적으로는 다음과 같은 projective 관계식을 푸는 것으로 해결했다. (정확히는 $b = \infty$에 놓여있어서 단순한 선형 이동으로 해결했지만)

\[ \frac{x - a(\epsilon)}{x - b(\epsilon)} = \frac{\tilde{x} - a(0)}{\tilde{x} - b(0)} \]

학부 4년 과정 내내(?) 섭동계산을 배우지만 그것만으로는 충분하지 않을 만큼 섭동계산의 세계는 넓고도 험하다.

'Mathematics' 카테고리의 다른 글

선형미분방정식과 선형대수학 (I) : Green's function  (0) 2021.07.10
A soft cut-off regulator  (0) 2020.11.30
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함