섭동계산을 하다 보면 다음과 같이 작은 섭동항이 붙은 행렬의 행렬식을 계산할 일을 자주 마주하게 된다.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) \]

이 계산은 어떻게 하면 될까? 먼저 $G_{ab}$의 역행렬 $G^{ab}$를 정의해서 다음과 같이 쓰도록 하자.

\[ \text{Det}(G_{ab} + \epsilon A_{ab}) = [ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) ] \times [ \text{Det} G_{ab} ] \]

여기서 $A_{a}^{~b} := A_{ac} G^{cb}$로 정의한다. $A_{a}^{~b}$의 고유값들을 $\lambda_i$라 부르기로 한다면, 위 식은 다음과 같이 적을 수 있다.

\[ \text{Det} (I_{a}^{~b} + \epsilon A_{a}^{~b}) = \prod_i (1 + \epsilon \lambda_i) = 1 + \epsilon \sum_i \lambda_i + \epsilon^2 \sum_{i<j} \lambda_i \lambda_j + \cdots \]

이제부터는 매우 쉽다. 행렬 $A_{a}^{~b}$에 대해 다음 두 조건을 알고 있으므로, 이 두 조건으로부터 얻는 식을 잘 조합하기만 하면 된다.

\[ \text{Tr} A = \sum_i \lambda_i \,,\, \text{Tr} A^n = \sum_i \lambda_i^n \]

예컨대 $2 \sum_{i<j} \lambda_i \lambda_j = (\sum_i \lambda_i)^2 - \sum_i \lambda_i^2$이므로,

\[ \text{Det} (I + \epsilon A) = 1 + \epsilon \text{Tr} A + \epsilon^2 \frac{(\text{Tr} A)^2 - \text{Tr} A^2}{2} + \epsilon^3 \frac{(\text{Tr}A)^3 - 3 \text{Tr} A^2 \text{Tr} A +2 \text{Tr} A^3 }{6} + \cdots \]

와 같은 전개를 얻는다. 찾아보면 위와 같은 조합에 대해 뭔가 이름이 있을 법도 한데 귀찮은 관계로 생략.

'Mathematics' 카테고리의 다른 글

적분구간에 대한 섭동계산 취급법  (0) 2020.08.12
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01

댓글을 달아 주세요

1 2 3 4 5 6 7 ··· 822 

글 보관함

카운터

Total : 685,828 / Today : 17 / Yesterday : 59
get rsstistory!