Feynman Lectures 3권의 21-6 소챕터는 The Meissner effect라는 제목을 가지고 있다. 마이즈너 효과라고 초전도체가 모든 자기장을 외부로 밀어내는(?) 현상을 말하는 것인데, 자기부상열차에 응용하려는 움직임도 있다. 하지만 이 챕터를 내가 끌어오는 것은 중간에 잘못된 설명이 있어서이다.

[...] Now the only way that \nabla^2\theta can be zero everywhere inside the lump of metal is for \theta to be a constant. [...]
-Feynman Lectures III, 21-9

어느 스칼라 함수의 라플라시안(Laplacian)이 항등적으로 0일 조건은 그 스칼라 함수가 상수일 때가 아니다. 먼저 가장 간단한 반례.

f(x,y)=e^y\cos x\\\nabla^2f=\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)f=0

물론 라플라시안이 0인 스칼라 함수는 이것 말고도 엄청나게 많다. 만약 위에서 사용된 금속 덩어리가 원통형이라면 다음과 같은 분포도 라플라시안이 0이 됨을 보일 수 있다. 보이는 계산은 다소 복잡하지만 말이다.

\theta(\rho,\phi,z)= J_1(\rho)\cos\phi\cosh z

J_1은 1종 베셀함수(Bessel function)에서 1차(order 1)인 경우이다. 수많은 공대생의 적 베셀함수가 등장하기는 했지만 용서하시길.(...) 그리고 위의 식은 원점 부근에서 발산하지 않기 때문에 충분히 사용 가능하다. 그렇다면 어째서 파인만이 저런 말을 한 것일까? 사실, 완전히 틀린 말은 아니다. 경계조건을 상수로 주면 라플라시안이 0이 되는 방법은 스칼라 함수가 상수인 경우밖에 없기 때문이다. 이 수학적인 특징은 정전기학(electrostatics)에서 정전차폐를 설명하는 근거가 된다.


정전차폐를 제대로 이용해먹는 사례

그렇다면 여기서 증명되어야 할 것은, 경계조건을 상수로 두어도 좋다는 주장이다. \theta는 상태함수의 위상이라 그 절대적인 값은 의미가 없어 임의의 지점에 임의의 값을 대응시켜 주는 것은 자유롭지만 문제는 그 자유도는 한 점에 국한된다는 것이다. 다시 한번 말하면, 금속 표면의 한 점에서 위상을 0으로 주었다고 금속 표면 전체의 위상이 0이라는 근거는 없다. 나는 파인만씨가 다음 식(21.19)만 만족하면 되기에 게이지 자유도(gauge freedom)를 이용해 \theta를 벡터포텐셜 A로 흡수시켰다고 추측할 뿐이다.

mv=\hbar\nabla\theta-q\bold A~~~~~~~~\text{(21.19)}

'Mathematics' 카테고리의 다른 글

델타 분포 만들기  (6) 2012.08.23
Lagrange Multipliers - 라그랑주 승수법  (7) 2011.01.16
Involute 곡선  (10) 2010.05.01
수학의 아름다움  (2) 2010.04.24
Power set, again  (0) 2010.04.17
Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함