'고전역학'에 해당되는 글 3건

  1. 2019.01.29 Elementary introduction to Dirac brackets (2)
  2. 2010.07.14 Hamiltonian formulation(1) (4)
  3. 2009.12.14 운동량 연산자에 대해서(1) (7)

대학원 고전역학에서 다룰만한 내용으로 교수님과 이야기하다가 Dirac bracket 이야기가 나와서 간단(?)하게 트위터에서 주절거렸던 내용을 정리. 해당 타래는 이것.



모든 미분방정식은 충분한 숫자의 변수를 도입하는 것으로 1계미분방정식으로 만들 수 있다. 예컨대 $y''+y=0$이란 미분방정식이 있다면 $x=y'$이란 독립변수 $x$를 도입하여 $x'+y=0$으로 만들 수 있다. 해밀턴역학도 어떤 의미에서는 그런 접근의 연장선상에 놓여있다. 르장드르 변환과도 엮여있기 때문에 좀 복잡한 방식으로 이 과정을 이용하기는 하지만.


트윗 타래에서 설명했듯, 해밀턴역학에서 해밀토니안 함수는 위상공간 위에서의 흐름(flow)을 만들어내는 물체로 생각할 수 있다. 해밀토니안 함수와 그에 대응되는 흐름 혹은 벡터장을 연결해주는 역할을 하는 것이 포아송 괄호(Poisson bracket)이다. 연결 방법은 $H \to \{H,\bullet \}$. 물론 위상공간 위에서의 흐름을 만들어내는 해밀토니안이 실제 계의 동역학과 관계가 있어야 할 이유는 없다. 보다 추상적인 임의의 함수도 포아송 괄호를 통해 위상공간 위에서 흐름을 만들어낼 수 있으며, 일반적으로는 계의 보존량 $Q$를 이용해 이런 흐름을 만들어낼 때 $Q$를 대칭 생성자(symmetry generator)라고 부른다. 이쪽은 운동량 사상(moment map)과 연결되는 방향이지만 이 글의 주제에서는 벗어나니 다음 기회에[각주:1].


임의의 함수는 포아송 괄호를 통해 위상공간 위에서의 벡터장과 대응될 수 있다.


위의 관점은 계의 모든 변수가 독립변수인 경우에는 문제 없이 적용이 가능하지만 계의 모든 변수가 독립변수가 아닌 경우, 즉 제약조건(constraint)이 존재하는 계의 경우에는 위의 관점을 적용하는데 무리가 있다. 이 경우 좌표를 새로 잘 정의해서 새 좌표에서는 모든 변수가 독립변수가 되도록 하는 것으로 위의 관점을 살려내는 방법이 있다. 물론 새 좌표를 찾는다는 것은 원칙상 가능하다는 뜻이고, 이 좌표를 찾는 일이 항상 쉬우리란 보장은 없다. 다른 방법은 디락의 디락 괄호(Dirac bracket)를 도입하는 것.


잠시 원래 이야기에서 벗어나 역사적인 맥락을 살펴보면, 디락이 디락 괄호의 도입을 생각하게 된 이유는 양자전기역학이었다고 한다. 디락은 포아송 괄호를 교환자(commutator)로 교체하는 것으로 고전계를 양자화할 수 있다는 것을 발견했는데, 같은 방법을 전자기학에 적용하려니 뭔가 잘 안 맞는다는 것을 알게 된 것이다. 디락은 가우스 법칙에 의해 전자기장이 가질 수 있는 값에 제약이 생기는 것이 원인이라는 것을 알게 되었고, 제약조건이 있는 계의 포아송 괄호에 해당하는 물체를 어떻게 찾아낼 것인가를 고민한 결과 디락 괄호를 찾아내게 된다.


다시 원래 이야기로 돌아와서, 제약조건이 있다는 뜻은 전체 위상공간 중 그 부분집합에 해당하는 $f_i(\vec{p},\vec{q})=0$을 만족하는 $(\vec{p},\vec{q})$만 실제 계의 상태를 나타낸다는 관점으로도 이해할 수 있다. 일반적으로 해밀토니안에 의해 만들어지는 흐름은 이 제약조건을 만족하는 위상공간 속 부분다양체(submanifold) 위에서 출발하더라도 그 밖을 벗어나게 되리라고 예상할 수 있다.


해밀토니안에 의해 만들어지는 흐름(연두)은 제약조건을 만족하는 부분다양체(연파랑) 위에서 출발하더라도 그 부분다양체 위에서 움직이는 방향(녹색)과 그 부분다양체에서 벗어나는 방향(적색)을 모두 포함한다.


이제 문제는 포아송 괄호를 통해 얻은 해밀토니안 함수에 대응되는 흐름에서 제약조건을 만족하지 못하게 하는 방향의 흐름을 제거하는 것이다. 위의 그림에서 적색 화살표에 해당하는 성분을 제거하는 것이 목표인 셈. 이 목표는 제약조건을 만족하는 경우 0이란 값을 갖는 제약조건에 해당하는 함수 $f_i$들을 적당히 더하는 것으로 이루어진다. $f_i$에 의해 만들어지는 흐름 $\{f_i,\bullet\}$은 일반적으로 0이 아니기 때문. 수식으로 나타내면 다음과 같다.

\[ H \to \{ H, \bullet \}_{\text{Dirac}} = \{ H + c_i f_i , \bullet \} \]


이제 문제는 1. 충분한 숫자의 $f_i$를 찾아서 어떤 방향으로 벗어나더라도 벗어나는 방향을 제거할 수 있을 것 2. 계수들 $c_i$를 결정할 것 두가지로 나뉘게 된다. 첫번째 문제에 대한 답은 제약조건을 primary/secondary constraint와 1st class/2nd class constraint로 분류하는 과정과 관련이 있는데[각주:2] 여기서는 일단 충분한 숫자의 $f_i$들을 구했다고 가정하기로 하자.


디락 괄호는 포아송 괄호에 보정을 가해서 제약조건을 만족시키도록 한 것으로 볼 수 있다.


계수들 $c_i$는 어떤 해밀토니안 함수를 통해 생성된 흐름이더라도 제약조건 $f_i$의 값을 0으로 유지시켜야 한다는 것으로부터 구할 수 있다. 따라서 다음 방정식의 해를 구해야 한다는 뜻이다.

\[ \forall i \,, \{ H, f_i \}_{\text{Dirac}} = 0 \]


이 문제는 다음 가설풀이(ansatz)를 적용해서 풀 수 있다. 이런 가설풀이를 도입하는 이유는 포아송 괄호의 성질들 중 필요한 성질들을 보존하기 위함인데, 그 이야기까지 하기에는 글이 너무 길어지므로 대충 넘어가기로 하자.

\[ c_i(H) = - \{ H, f_j \}M^{ji} \]


위의 가설풀이를 적용하면 이제 풀어야 할 방정식은 아래와 같이 바뀐다.

\[ \{ H, f_i \}_{\text{Dirac}} = \{ H, f_i \} - \{ H, f_k \} M^{kj} \{ f_j, f_i \} = 0\]


고맙게도 위 방정식은 단순한 역행렬 계산으로 풀 수 있다.

\[ M^{ij} \text{ is the solution to } M^{ij} \{ f_j, f_k \} = \delta^i_k \]


이 정도가 디락 괄호의 핵심적인 아이디어에 속한다.

  1. 오스카 와일드의 표현을 따르자면 '다음 기회가 있다면'.(...) [본문으로]
  2. 나도 잘 구분 못한다. 어차피 아이디어를 이해할 때 명칭은 아주 중요한 것은 아니니 대충 넘어가자. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Elementary introduction to Dirac brackets  (2) 2019.01.29
Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15

댓글을 달아 주세요

  1. Favicon of https://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    수식이 처리가 안되어 보이네요.

    2019.03.08 10:11 신고

2009/05/06 - Lagrangian formulation(1)

Electromagnetism in Schrodinger Eqn.이라는 글을 쓰다가 생각해보니 쓸데없는 식이 들어와 글을나누었다. 그러면 일단, 시작해보자.

Lagrangian을 사용하는 역학을 조금만 비틀어주면 Hamiltonian을 사용하는 정석적(?)인 Hamilton역학을 얻는다. 먼저 Lagrangian의 정의는 운동에너지와 위치에너지의 차이이다. 이 내용을 수식으로 쓴다면

L(q_i,\dot{q_i},t)=T-V=\frac12mv^2-V

이다. 그리고 Lagrangian을 이용한 운동방정식(Euler-Lagrange equation이라고 부른다)은 각 일반화된 좌표(generalized coordinates) q_i마다 다음과 같다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 일반화된 속도 벡터.(좌표의 시간변화율을 말한다.) 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {q_i}}

이 값을 conjugate momentum이라고 부른다. 이제 Legendre 변환을 취한다.

H(q_i,p_i,t)= \sum_i p_i\dot{q_i}-L(q_i,\dot{q_i},t)

독립변수가 변하는 것에 주목할 것.(일반적으로 우변의 항은 일반좌표의 시간변화율 d(q_i)/dt가 남아있기 때문에 Hamiltonian으로 쓰려면 모두 p_i로 바꾸어야 한다.) 좌표를 일반적인 직교좌표계로 두고 계산해보자.

p_i=\frac{\partial L}{\partial\dot{x_i}}=m\dot{x_i}\\H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+V\\H=\sum_i\frac{{p_i}^2}{2m}+V

얼레. 에너지다.(독립변수인 p_i로 쓴 점에 유의) 이래서 보통 Hamiltonian을 에너지라고 해석하기도 한다(양자역학을 배울 때 Hamiltonian을 에너지라고 가르치기도 하는데 그 이유가 여기있다). 그렇다면 운동방정식은 어떻게 될까? 우선 Lagrangian을 쓸 때 운동방정식은 이것이었다.

\LARGE\!\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0

Hamiltonian은 일반좌표의 성분이 전부 Lagrangian에서 나오기 때문에(Hamiltonian은 Lagrangian의 일반좌표 q_i와 일반좌표의 시간변화율 d(q_i)/dt 두 독립변수 중 시간변화율을 conjugate momentum으로 바꾼 것이다. 따라서 앞쪽의 p_i는 일반좌표 q_i와 독립적인 변수가 되고, 따라서 편미분하면 0이 된다.)[각주:1] 위의 식을 이렇게 바꿀 수 있다.

\frac{\partial L}{\partial q_i}=-\frac{\partial H}{\partial q_i}=\frac d{dt}\frac{\partial L}{\partial \dot{q_i}}=\dot {p_i}\\\frac{\partial H}{\partial q_i}=-\dot{p_i}

하나의 운동방정식을 구했다. 이제 두 번째 운동방정식을 구할 차례다.(Lagrangian의 운동방정식이 N차원 변수 x의 값과 그 시간변화율에 대한 2계도함수라면 Hamiltonian의 운동방정식은 N차원 변수 x와 N차원 변수 p에 대한 1계도함수이다. 따라서 하나씩 더 필요.) 우선 Lagrangian과 Hamiltonian의 완전미분을 생각해보자.

dH= \sum_i (\dot{q_i}~dp_i + p_i~d\dot{q_i})-dL \\dL=\sum_i\left(\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}+\frac{\partial L}{\partial{q_i}}~dq_i\right)+\frac{\partial L}{\partial t}dt

식을 정리하면 다음처럼 된다.(p_i의 정의를 이용)

dH= \sum_i \left(\dot{q_i}~dp_i + p_i~d\dot{q_i}-\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}-\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt \\dH= \sum_i \left(\dot{q_i}~dp_i -\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt

그런데 Hamiltonian은 conjugate momentum과 일반화된 좌표, 시간에 대한 종속변수이므로

dH= \sum_i\left(\frac{\partial H}{\partial{p_i}}~dp_i+\frac{\partial H}{\partial{q_i}}~dq_i\right)+\frac{\partial H}{\partial t}dt

가 되어여만 한다.(완전미분의 정의를 생각해보자.) 언제 어디서나 어떤 경우에도 바로 위의 식과 그 위의 식이 일치해야 하므로, 우리가 내릴 수 있는 결론은

\frac{\partial H}{\partial{p_i}}=\dot{q_i}~,~\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}

이다. 그리고 Hamiltonian을 시간에 대해 완전 미분한 결과는

\frac{dH}{dt}=\sum_i\left(\frac{\partial H}{\partial{p_i}}~\dot{p_i}+\frac{\partial H}{\partial{q_i}}~\dot{q_i}\right)+\frac{\partial H}{\partial t} \\=\sum_i\left(-\frac{\partial H}{\partial{p_i}}\frac{\partial H}{\partial{q_i}}+\frac{\partial H}{\partial{q_i}}\frac{\partial H}{\partial{p_i}}\right)+\frac{\partial H}{\partial t} \\=\frac{\partial H}{\partial t}

이라 Hamiltonian이 시간에 대한 explicit dependence가 없을 경우 일정한 값을 갖는다.

Lagrangian을 쓸 때와 Hamiltonian을 쓸 때의 차이점은 Lagrangian이 N개의 차원을 갖는 일반화된 좌표공간에서의 움직임을 2계도함수로 풀 때(Euler-Lagrange 방정식이 2계도함수이다) Hamiltonian은 2N차원의 일반화된 좌표-운동량공간(위상공간-phase space-으로 부른다)에서의 움직임을 1계도함수로 푼다는 것이다. 작아 보이는 차이지만 좌표와 좌표의 시간변화율은 완전히 독립이 아니기 때문에 perturbation[각주:2] 다룰 경우 Hamiltonian이 유리하다고 한다.(좌표와 운동량은 독립된 변수로 취급한다.)

다음번에는 Classical Dynamics of Particles and Systems 5판 7.11에 Hamilton's principle을 꼬아서 운동방정식을 유도하는 특이한 방법이 있어서 그걸 다뤄볼 생각이다. 아직 Lagrangian formulation(2)도 쓰지 않은 판에 이걸 쓸 지는 의문이기는 하지만. 이 방법이 Feynman의 경로적분(path integral)과 밀접한 관련이 있어보이는데 그것까지 할 지는 모르겠다.


ps. 고전역학에서 양자역학으로 넘어가는 데에는 위에 나온 미분방정식들보다는 푸아송 괄호(Poisson bracket)가 더 큰 역할을 했다. Shankar책에서 고전적인 계가 어떻게 양자역학적으로 바뀌는지에 대한 부분이 나오는데(아마 quantization이라고 하면서 푸아송 괄호를 commutator로 바꾸고 값에 ih-bar를 붙였던 것 같다) 참조하면 좋을 것이다.
  1. 그런데 그냥 변수가 다르니 편미분하면 0이라고 생각하는게 쉬울지도... [본문으로]
  2. Perturbation theory란 정확한 값을 구할 수 없기 때문에 근사값을 점차 좁혀가는 방법을 말한다. 원주율을 유리수의 합으로 계산하는 것과 비슷하다. [본문으로]

댓글을 달아 주세요

  1. Favicon of https://cjackal.tistory.com BlogIcon jackal_anu  댓글주소  수정/삭제  댓글쓰기

    언제나 느끼는 거지만, 같은 수식인데도 수학의 수식과 물리의 수식은 느낌이 완전 다르네요 _-;;

    특히 양자역학은 _-;

    2010.07.14 20:42 신고
  2. lunefey  댓글주소  수정/삭제  댓글쓰기

    텐서에서 좌절 중 OTL

    2010.07.17 12:13

양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17

댓글을 달아 주세요

  1. Favicon of http://www.yutiro.com BlogIcon 순원  댓글주소  수정/삭제  댓글쓰기

    안녕하세요.
    사실 Griffith 책에서는 빠른 이해를 위해서 위와 같이 유도를 해 놓았지만,
    실제로 p 연산자는 x 연산자와의 commutator relationship 으로만 정의되는
    것 아닌가요?

    말하자면 논리 구조가 다음과 같은것이죠.
    1. 양자역학은 헤밀토니안 역학에서, 연산자 도입, 파동함수 도입... etc
    이러쿵 저러쿵되어 정의된다.

    2. 이 중에서 x 연산자를 다음과 같이 정의하고(이를 이용해서 파동함수를 표현)
    이에 헤밀토니안 역학에서 conjugate momentum인 p 연산자를 정의한다.
    이 때 헤밀토이안 역학의 conjugate momentum은 양자역학에서 commutation
    relationship이 됩니다.

    3. 2번에 입각해서 수식을 쓰면 그것이 위에 유도한 공식이 됩니다.


    이 논리에 따르면 헤밀토니안 연산자에 운동량 개념이 내제되어 있는 것은 아니고,
    헤밀토니안 연산자는 x basis로 표현되어지며, 여기서 p 연산자가 x basis로
    끄집어 내어진것이겠죠. 참으로 재밌게도 (어쩜 당연하게도) H가 p^2/2m을 함유하고
    있는것으로 나왔고 이는, p가 x의 conjugate momentum이기 때문에 나타는 현상이죠.
    이를 Ehrenfest's theorem이라고 하나요?

    2010.04.26 10:42
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.26 14:10 신고  댓글주소  수정/삭제

      나중에는 translation을 생성하는 operator로 정의하긴 하는데, 처음 Schrodinger가 S.E을 유도했을 때에는 운동량 연산자가 그처럼 생겼을 것이라는 가정에서 출발했더라구요. 그리고 운동량 연산자가 그렇게 생겼으리라는 가정은 아마도 파동의 성질에서 나온 것 같아요. Hamiltonian 역학에서 어떤 극한을 취하면(잊어버렸는데 -.-;;) 파동방정식처럼 변하게 되는데, DeBrogile 운동량-파장 가설에서도 운동량 연산자가 이렇게 나타나게 되고, Hamlitonian 역학에서는 당연히 그렇게 정의되고, 뭐 그런거죠.
      결국 하고 싶었던 말은 Griffith 책에서처럼 운동량 연산자가 되는 것을 보이는 것은 동어반복이라는 것이었구요. 이런 유도가 갖는 의미라면 일단 모순은 없다 정도 되겠네요.

  2. 남욱  댓글주소  수정/삭제  댓글쓰기

    순원 선배님이 말씀해 주셨지만, p operator랑 x operator 자체가 어쩌면 commute relation으로 정의된다고 할 수 있겠죠. 하지만 보다 일반적으로 나가면, 사실은 creation operator, a+ 와 annelation operator a를 정의하고 이것의 commute relation을 정의하는게 먼저라고 할 수 있습니다. fermion에 대해서는 [a,a+]=1이고 boson에 대해서는 {a,a+}=1이라고 하죠. 보존에 대한 경우를 Grosmann Algebra에 해당하는 경우고 Fermion에 대한 경우는 딱히 이름이 있는지는 모르겠는데 어쨌든 Clifford Algebra 의 special case라고 할 수 있겠네요. a와 a+는 x와 p의 합으로 표현되니까 파동함수의 대수적 성질을 이 연산자를 이용해 정의했다고 할 수 있죠,
    그러니까... H= p^/2m이라는 결과는 x의 표현이라기보다는... 그자체로 맞는 식이고 p가 어떻게 x space에서 표현되는지가 알고싶은 issue라고 할 수 있을거 같네요.
    이같은 논의는 사쿠라이에 보면 간략히 나오는데, 간단히 말하자면...학부에서 waveFtn이라고 부르는 psi는 사실은 <x|psi>잖아요? 모멘텀 오퍼레이터는 algebraic object라 사실은 explicit form이 필요 없는데, int dx |x><x| =1 이 identity를 사용해서 p |psi> = int |x><x|p|psi>이고 <x|p == -i round <x| 를 사용했다고 볼 수 있죠. 사실 마지막 줄에서 사용한, |x>와 p의 위치를 바꿀때 사용한 식은 momentum 의 x에 대한 representation은 translation operator의 generator라는 정의에서 나오는 것이라고 볼수 있습니다. waveFtn을 a만큼 옮기는 operator는 아시다시피 exp(-iap/hbar) 에서 나왔고, 이것을 x 표현에서 infinitisiml한 a에 대해 생각하면 x space에 대한 p 표현이 유도됩니다. 위와 같이 에렌페스트 정리를 이용해서 고전역학과의 대응관계를 생각하는것도 틀린 추론이라고 불 순 없지만 대수적으로는 이게 옳은 approach라고 생각됩니다..

    2010.04.27 21:32
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:15 신고  댓글주소  수정/삭제

      그러니까 지금 하고싶은 말이 creation과 annhilation을 먼저 정의하고 얘네의 조합으로 momentum을 얻는다는 말인거지? 원래는 자연수만 있었는데 여기에서 실수를 얻고 더 근본적(?)인 것이라고 생각하자는 것과 비슷한건가...

  3. 남욱  댓글주소  수정/삭제  댓글쓰기

    뭐 사실은 독립적인 것이기는 한데.. p operator는 translation operator의 generator로 정의되니까... (정확히는 hbar factor가 있겠지만) 이게 바로 어떤 공간 이동에 대해서 불변인 양을 나타내는 것이기도 하고.. 그런데 사실은 뭐 p=-i del 자체가 벡터이기도 하고...말하다보니 복잡하게 돼버렸네 어쨌든 중요한 건 사실 p의 x 에 대한 representation이 딱히 중요하지는 않다는거지. 입자가 여려개 있거나 상대론적으로 가면 운동량 연산자 자체를 explecit하게 정의하는 게 힘들기도 하고. 실제로 중요한건 system의 lagrangian이니까.

    2010.04.28 00:26
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:42 신고  댓글주소  수정/삭제

      사실은 독립적인 거라면 음냐 무언가 꼬인 것 같은데 -_-

      뭐 하긴 Hamiltonian은 그냥 그 계를 잘 묘사해주기만 하면 되는 거니까 operator가 실제로는 무엇이냐 논의하는게 무의미할지도.

      원래 이 글은 '어떤 경로로 그렇게 생긴 operator를 도입하게 되었는가'를 추적하려던 것이라 댓글들은 무언가 벗어난 것 같지만

  4.  댓글주소  수정/삭제  댓글쓰기

    Google 에서 Momentum operator 를 치면 wikipidia 에서 잛고 간략하게 운동량 연산자가
    -(ih/2p)i*d/dx 로 정리되어있는지 schrodinger equation 과 debroglie relation 을 간단히 연립하여 유도한 설명이 있습니다.

    ps : 저도 궁금해서 찾아보던중에 알게 되어 말씀드립니다.

    2014.07.03 16:58

1 

글 보관함

카운터

Total : 654,513 / Today : 4 / Yesterday : 39
get rsstistory!