수학적 변환에 대해서 글을 쓰다가 재미있는 것을 발견했다. Hermite 다항식이 Fourier 변환의 고유함수라는 것. http://en.wikipedia.org/wiki/Fourier_transform#Eigenfunctions

H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2}\,\!
n번째 Hermite 다항식. Wikipedia: Hermite polynomials

Hermite 다항식은 조화진동자 문제에서 등장하는 파동함수라는 것을 생각해보면 재미있다.[각주:1] 하긴, Hamiltonian은 운동량을 기준으로 쓰든지 위치를 기준으로 쓰든지 생김새 자체는 동일하고, 양자물리에서 Fourier 변환이 basis를 바꾸어주는 변환이라는 것을 생각해보면 이해가 갈 것 같기도 하다. 닮은 방정식의 해는 분명히 닮았을테니 말이다.

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=H%3D%5Cfrac%7Bp%5E2%7D%7B2m%7D%2B%5Cfrac%7Bm%5Comega%5E2%7D2x%5E2
p의 제곱과 x의 제곱으로만 이루어진 Hamiltonian.
http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cleft%5Clangle%20x%20%7C%20%5Cpsi_n%20%5Cright%5Crangle%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7B2%5En%5C%2Cn!%7D%7D%20%20%5Cleft(%5Cfrac%7Bm%5Comega%7D%7B%5Cpi%20%5Chbar%7D%5Cright)%5E%7B1%2F4%7D%20%20e%5E%7B%0A-%20%5Cfrac%7Bm%5Comega%20x%5E2%7D%7B2%20%5Chbar%7D%7D%20H_n%5Cleft(%5Csqrt%7B%5Cfrac%7Bm%5Comega%7D%7B%5Chbar%7D%7D%20x%20%5Cright)%2C%20%5Cqquad%20n%20%3D%200%2C1%2C2%2C%5Cldots.
위 Hamiltonian의 x공간 해. H_n은 n번째 Hermite 다항식
  1. 정확히는 여기에 Gaussian 분포를 덧씌워야 하지만. [본문으로]

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
적분놀이  (0) 2009.12.05
Tensor(1)  (2) 2009.10.16
Posted by 덱스터
양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
Posted by 덱스터
Shankar 책을 산지 좀 되었습니다.

심심해서(하라는 시험공부는 안하고) 이전에 Liboff 책에서 재미있게 보았던 대칭성과 보존에 관한 부분을 보았습니다. 보다 보니 이런 부분이 나오더군요.

[...]

We define translational invariance by the requirement



[...]
Principles of Quantum Mechanics 2nd Ed., R. Shankar, Springer, 1994, p. 285

저기서 T(epsilon) 연산자는 입실론만큼 전체를 +x 방향으로 옮기는 연산자입니다. 그건 그렇다 치고, 왜 불변성을 Hamiltonian 연산자를 이용해 정의하는 것인지 좀 생각해 보아야겠더군요.

현재는 그저 '기본법칙이 Schrödinger 방정식이기 때문'이라고 결론내렸습니다. 저 항등식을 만족시킨다면 상태함수에 T 연산자를 마음껏 들이대어도 기본법칙에 어긋나지 않거든요.



왜 왼쪽에 다른 임의의 상태를 들이대냐면, 측정은 저렇게 이루어지기 때문입니다. 양자물리에서 모든 측정량은 저렇게 bra를 붙여서 얻어야 하니 말이지요. (그런데 써놓고 보니 아직도 논리에 구멍이 있는 것 같네요. 좀 더 엄밀하게 해보는 것은 나중에...)[각주:1]

어찌되었든, T 연산자로 모든 상태를 이동시켜 놓았을 때 임의의 연산자 A는 어떻게 변해야 하는가 생각해 보았습니다. 생각해보니 쉽더군요.



이니까



하지만 T 연산자의 역함수(역연산자?)는 T 연산자의 hermitian conjugate 입니다. 왜 그런지는 A 대신에 I(Identity - 1이라고 생각하시면 됩니다)를 넣어보면 됩니다. I 연산자가 좌표와는 상관있을 리가 없겠죠. 그러면 결국



이 됩니다. 어째 어디선가 본 행렬형식의 2계텐서 변환방식이 떠오르는군요.

그나저나 시간대칭은 역시 허수의 성질을 이용하는군요. i나 -i나 구분할 수 없다는 그 성질 말입니다. 이건 예전에 적어둔 것이니 링크만 간단히...

2009/04/30 - 복소수 대칭과 시간대칭

ps. 뭐 아실 분들은 아시겠지만 사실 저 T 연산자는 P 연산자, 즉 운동량과 관련이 있습니다. 그래서 운동량 보존이 균일성(위치에 대해 변하지 않음-translational symmetry/invariance)과 동치인 것이구요. 정확히는



입니다. Taylor 전개를 해 보면 알 수 있는데 그것까지 하기는 귀찮네요. Griffith 책의 연습문제로도 나오니 제가 할 필요는 없겠지요.
  1. 이렇게 엄밀한 거 좋아하다가 서너줄이면 끝날 숙제 문제를 한두페이지가량 써제끼는 일이 한두번이 아니네요 -_-;; [본문으로]

'Physics > Speculations' 카테고리의 다른 글

요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
Posted by 덱스터

2009. 4. 18. 13:11 Physics

Dirac Delta orthonormality

모멘텀 변환 파동함수는 다음과 같이 나타난다(hbar 표현식을 못 찾아서 저렇게 썼음 -_-;;).



이 식은 k에 대해서도 쓸 수 있다. 이때 khbar는 p가 된다.



적분구간을 무한대로 해 놓고 두 모멘텀 파동함수(변수는 k)를 적분하면 Dirac Delta fuction이 얻어진다.



여기서 2pi는 다음과 같은 이유에서 얻어진다. 먼저 적분구간을 [0, 2pi]로 해 보자. 그러면 다음과 같은 관계식이 얻어진다.



여기서의 델타는 Kronecker Delta이다. 이제 이 구분된 적분구간을 무한히 확장한다. 그러면 처음에 얻은 식이 얻어진다.(Dirac Delta가 Kronecker Delta의 무한합으로 보는 관점) 이런 연유에서 규격화된 k에 대한 파동함수는 다음과 같이 쓴다.



보통의 경우, 일반적인 식은 다음과 같이 쓸 수 있다.





여기서



로 정의한다.

덧. 궁금해하던 건데 마침 친구가 알려주더군요. 책 없이 휘갈기는거라 몇몇 상수는 빠졌을 수도 있습니다.(예를 들어 부호가 바뀌었다던지...)

그나저나 그녀석은 요즘 군론 공부한다던데 -_-;;;; (돌은 학부생이죠 예...-_-;;;;)


덧2. 알고보니 변수가 바뀌었군요 OTL 전부 수정했습니다. 마지막 부분은 외우기 쉽게 하려고 도입한 꼼수입니다 ^^ 책에는 없을거예요(Griffith에 없으니 다른 책에도 아마 없으리라 생각)

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.11
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함