'운동량'에 해당되는 글 4건

  1. 2009.12.15 Fourier 변환의 고유함수
  2. 2009.12.14 운동량 연산자에 대해서(1) (7)
  3. 2009.10.17 왜 하필이면 Hamiltonian 연산자인가?
  4. 2009.04.18 Dirac Delta orthonormality (2)
수학적 변환에 대해서 글을 쓰다가 재미있는 것을 발견했다. Hermite 다항식이 Fourier 변환의 고유함수라는 것. http://en.wikipedia.org/wiki/Fourier_transform#Eigenfunctions

H_n(x)=(-1)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2}\,\!
n번째 Hermite 다항식. Wikipedia: Hermite polynomials

Hermite 다항식은 조화진동자 문제에서 등장하는 파동함수라는 것을 생각해보면 재미있다.[각주:1] 하긴, Hamiltonian은 운동량을 기준으로 쓰든지 위치를 기준으로 쓰든지 생김새 자체는 동일하고, 양자물리에서 Fourier 변환이 basis를 바꾸어주는 변환이라는 것을 생각해보면 이해가 갈 것 같기도 하다. 닮은 방정식의 해는 분명히 닮았을테니 말이다.

http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=H%3D%5Cfrac%7Bp%5E2%7D%7B2m%7D%2B%5Cfrac%7Bm%5Comega%5E2%7D2x%5E2
p의 제곱과 x의 제곱으로만 이루어진 Hamiltonian.
http://www.sitmo.com/gg/latex/latex2png.2.php?z=100&eq=%5Cleft%5Clangle%20x%20%7C%20%5Cpsi_n%20%5Cright%5Crangle%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7B2%5En%5C%2Cn!%7D%7D%20%20%5Cleft(%5Cfrac%7Bm%5Comega%7D%7B%5Cpi%20%5Chbar%7D%5Cright)%5E%7B1%2F4%7D%20%20e%5E%7B%0A-%20%5Cfrac%7Bm%5Comega%20x%5E2%7D%7B2%20%5Chbar%7D%7D%20H_n%5Cleft(%5Csqrt%7B%5Cfrac%7Bm%5Comega%7D%7B%5Chbar%7D%7D%20x%20%5Cright)%2C%20%5Cqquad%20n%20%3D%200%2C1%2C2%2C%5Cldots.
위 Hamiltonian의 x공간 해. H_n은 n번째 Hermite 다항식
  1. 정확히는 여기에 Gaussian 분포를 덧씌워야 하지만. [본문으로]

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
Fourier 변환의 고유함수  (0) 2009.12.15
적분놀이  (0) 2009.12.05
Tensor(1)  (2) 2009.10.16

댓글을 달아 주세요

양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17

댓글을 달아 주세요

  1. Favicon of http://www.yutiro.com BlogIcon 순원  댓글주소  수정/삭제  댓글쓰기

    안녕하세요.
    사실 Griffith 책에서는 빠른 이해를 위해서 위와 같이 유도를 해 놓았지만,
    실제로 p 연산자는 x 연산자와의 commutator relationship 으로만 정의되는
    것 아닌가요?

    말하자면 논리 구조가 다음과 같은것이죠.
    1. 양자역학은 헤밀토니안 역학에서, 연산자 도입, 파동함수 도입... etc
    이러쿵 저러쿵되어 정의된다.

    2. 이 중에서 x 연산자를 다음과 같이 정의하고(이를 이용해서 파동함수를 표현)
    이에 헤밀토니안 역학에서 conjugate momentum인 p 연산자를 정의한다.
    이 때 헤밀토이안 역학의 conjugate momentum은 양자역학에서 commutation
    relationship이 됩니다.

    3. 2번에 입각해서 수식을 쓰면 그것이 위에 유도한 공식이 됩니다.


    이 논리에 따르면 헤밀토니안 연산자에 운동량 개념이 내제되어 있는 것은 아니고,
    헤밀토니안 연산자는 x basis로 표현되어지며, 여기서 p 연산자가 x basis로
    끄집어 내어진것이겠죠. 참으로 재밌게도 (어쩜 당연하게도) H가 p^2/2m을 함유하고
    있는것으로 나왔고 이는, p가 x의 conjugate momentum이기 때문에 나타는 현상이죠.
    이를 Ehrenfest's theorem이라고 하나요?

    2010.04.26 10:42
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.26 14:10 신고  댓글주소  수정/삭제

      나중에는 translation을 생성하는 operator로 정의하긴 하는데, 처음 Schrodinger가 S.E을 유도했을 때에는 운동량 연산자가 그처럼 생겼을 것이라는 가정에서 출발했더라구요. 그리고 운동량 연산자가 그렇게 생겼으리라는 가정은 아마도 파동의 성질에서 나온 것 같아요. Hamiltonian 역학에서 어떤 극한을 취하면(잊어버렸는데 -.-;;) 파동방정식처럼 변하게 되는데, DeBrogile 운동량-파장 가설에서도 운동량 연산자가 이렇게 나타나게 되고, Hamlitonian 역학에서는 당연히 그렇게 정의되고, 뭐 그런거죠.
      결국 하고 싶었던 말은 Griffith 책에서처럼 운동량 연산자가 되는 것을 보이는 것은 동어반복이라는 것이었구요. 이런 유도가 갖는 의미라면 일단 모순은 없다 정도 되겠네요.

  2. 남욱  댓글주소  수정/삭제  댓글쓰기

    순원 선배님이 말씀해 주셨지만, p operator랑 x operator 자체가 어쩌면 commute relation으로 정의된다고 할 수 있겠죠. 하지만 보다 일반적으로 나가면, 사실은 creation operator, a+ 와 annelation operator a를 정의하고 이것의 commute relation을 정의하는게 먼저라고 할 수 있습니다. fermion에 대해서는 [a,a+]=1이고 boson에 대해서는 {a,a+}=1이라고 하죠. 보존에 대한 경우를 Grosmann Algebra에 해당하는 경우고 Fermion에 대한 경우는 딱히 이름이 있는지는 모르겠는데 어쨌든 Clifford Algebra 의 special case라고 할 수 있겠네요. a와 a+는 x와 p의 합으로 표현되니까 파동함수의 대수적 성질을 이 연산자를 이용해 정의했다고 할 수 있죠,
    그러니까... H= p^/2m이라는 결과는 x의 표현이라기보다는... 그자체로 맞는 식이고 p가 어떻게 x space에서 표현되는지가 알고싶은 issue라고 할 수 있을거 같네요.
    이같은 논의는 사쿠라이에 보면 간략히 나오는데, 간단히 말하자면...학부에서 waveFtn이라고 부르는 psi는 사실은 <x|psi>잖아요? 모멘텀 오퍼레이터는 algebraic object라 사실은 explicit form이 필요 없는데, int dx |x><x| =1 이 identity를 사용해서 p |psi> = int |x><x|p|psi>이고 <x|p == -i round <x| 를 사용했다고 볼 수 있죠. 사실 마지막 줄에서 사용한, |x>와 p의 위치를 바꿀때 사용한 식은 momentum 의 x에 대한 representation은 translation operator의 generator라는 정의에서 나오는 것이라고 볼수 있습니다. waveFtn을 a만큼 옮기는 operator는 아시다시피 exp(-iap/hbar) 에서 나왔고, 이것을 x 표현에서 infinitisiml한 a에 대해 생각하면 x space에 대한 p 표현이 유도됩니다. 위와 같이 에렌페스트 정리를 이용해서 고전역학과의 대응관계를 생각하는것도 틀린 추론이라고 불 순 없지만 대수적으로는 이게 옳은 approach라고 생각됩니다..

    2010.04.27 21:32
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:15 신고  댓글주소  수정/삭제

      그러니까 지금 하고싶은 말이 creation과 annhilation을 먼저 정의하고 얘네의 조합으로 momentum을 얻는다는 말인거지? 원래는 자연수만 있었는데 여기에서 실수를 얻고 더 근본적(?)인 것이라고 생각하자는 것과 비슷한건가...

  3. 남욱  댓글주소  수정/삭제  댓글쓰기

    뭐 사실은 독립적인 것이기는 한데.. p operator는 translation operator의 generator로 정의되니까... (정확히는 hbar factor가 있겠지만) 이게 바로 어떤 공간 이동에 대해서 불변인 양을 나타내는 것이기도 하고.. 그런데 사실은 뭐 p=-i del 자체가 벡터이기도 하고...말하다보니 복잡하게 돼버렸네 어쨌든 중요한 건 사실 p의 x 에 대한 representation이 딱히 중요하지는 않다는거지. 입자가 여려개 있거나 상대론적으로 가면 운동량 연산자 자체를 explecit하게 정의하는 게 힘들기도 하고. 실제로 중요한건 system의 lagrangian이니까.

    2010.04.28 00:26
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:42 신고  댓글주소  수정/삭제

      사실은 독립적인 거라면 음냐 무언가 꼬인 것 같은데 -_-

      뭐 하긴 Hamiltonian은 그냥 그 계를 잘 묘사해주기만 하면 되는 거니까 operator가 실제로는 무엇이냐 논의하는게 무의미할지도.

      원래 이 글은 '어떤 경로로 그렇게 생긴 operator를 도입하게 되었는가'를 추적하려던 것이라 댓글들은 무언가 벗어난 것 같지만

  4.  댓글주소  수정/삭제  댓글쓰기

    Google 에서 Momentum operator 를 치면 wikipidia 에서 잛고 간략하게 운동량 연산자가
    -(ih/2p)i*d/dx 로 정리되어있는지 schrodinger equation 과 debroglie relation 을 간단히 연립하여 유도한 설명이 있습니다.

    ps : 저도 궁금해서 찾아보던중에 알게 되어 말씀드립니다.

    2014.07.03 16:58

Shankar 책을 산지 좀 되었습니다.

심심해서(하라는 시험공부는 안하고) 이전에 Liboff 책에서 재미있게 보았던 대칭성과 보존에 관한 부분을 보았습니다. 보다 보니 이런 부분이 나오더군요.

[...]

We define translational invariance by the requirement



[...]
Principles of Quantum Mechanics 2nd Ed., R. Shankar, Springer, 1994, p. 285

저기서 T(epsilon) 연산자는 입실론만큼 전체를 +x 방향으로 옮기는 연산자입니다. 그건 그렇다 치고, 왜 불변성을 Hamiltonian 연산자를 이용해 정의하는 것인지 좀 생각해 보아야겠더군요.

현재는 그저 '기본법칙이 Schrödinger 방정식이기 때문'이라고 결론내렸습니다. 저 항등식을 만족시킨다면 상태함수에 T 연산자를 마음껏 들이대어도 기본법칙에 어긋나지 않거든요.



왜 왼쪽에 다른 임의의 상태를 들이대냐면, 측정은 저렇게 이루어지기 때문입니다. 양자물리에서 모든 측정량은 저렇게 bra를 붙여서 얻어야 하니 말이지요. (그런데 써놓고 보니 아직도 논리에 구멍이 있는 것 같네요. 좀 더 엄밀하게 해보는 것은 나중에...)[각주:1]

어찌되었든, T 연산자로 모든 상태를 이동시켜 놓았을 때 임의의 연산자 A는 어떻게 변해야 하는가 생각해 보았습니다. 생각해보니 쉽더군요.



이니까



하지만 T 연산자의 역함수(역연산자?)는 T 연산자의 hermitian conjugate 입니다. 왜 그런지는 A 대신에 I(Identity - 1이라고 생각하시면 됩니다)를 넣어보면 됩니다. I 연산자가 좌표와는 상관있을 리가 없겠죠. 그러면 결국



이 됩니다. 어째 어디선가 본 행렬형식의 2계텐서 변환방식이 떠오르는군요.

그나저나 시간대칭은 역시 허수의 성질을 이용하는군요. i나 -i나 구분할 수 없다는 그 성질 말입니다. 이건 예전에 적어둔 것이니 링크만 간단히...

2009/04/30 - 복소수 대칭과 시간대칭

ps. 뭐 아실 분들은 아시겠지만 사실 저 T 연산자는 P 연산자, 즉 운동량과 관련이 있습니다. 그래서 운동량 보존이 균일성(위치에 대해 변하지 않음-translational symmetry/invariance)과 동치인 것이구요. 정확히는



입니다. Taylor 전개를 해 보면 알 수 있는데 그것까지 하기는 귀찮네요. Griffith 책의 연습문제로도 나오니 제가 할 필요는 없겠지요.
  1. 이렇게 엄밀한 거 좋아하다가 서너줄이면 끝날 숙제 문제를 한두페이지가량 써제끼는 일이 한두번이 아니네요 -_-;; [본문으로]

'Physics > Speculations' 카테고리의 다른 글

요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04

댓글을 달아 주세요

Dirac Delta orthonormality

Physics 2009. 4. 18. 13:11
모멘텀 변환 파동함수는 다음과 같이 나타난다(hbar 표현식을 못 찾아서 저렇게 썼음 -_-;;).



이 식은 k에 대해서도 쓸 수 있다. 이때 khbar는 p가 된다.



적분구간을 무한대로 해 놓고 두 모멘텀 파동함수(변수는 k)를 적분하면 Dirac Delta fuction이 얻어진다.



여기서 2pi는 다음과 같은 이유에서 얻어진다. 먼저 적분구간을 [0, 2pi]로 해 보자. 그러면 다음과 같은 관계식이 얻어진다.



여기서의 델타는 Kronecker Delta이다. 이제 이 구분된 적분구간을 무한히 확장한다. 그러면 처음에 얻은 식이 얻어진다.(Dirac Delta가 Kronecker Delta의 무한합으로 보는 관점) 이런 연유에서 규격화된 k에 대한 파동함수는 다음과 같이 쓴다.



보통의 경우, 일반적인 식은 다음과 같이 쓸 수 있다.





여기서



로 정의한다.

덧. 궁금해하던 건데 마침 친구가 알려주더군요. 책 없이 휘갈기는거라 몇몇 상수는 빠졌을 수도 있습니다.(예를 들어 부호가 바뀌었다던지...)

그나저나 그녀석은 요즘 군론 공부한다던데 -_-;;;; (돌은 학부생이죠 예...-_-;;;;)


덧2. 알고보니 변수가 바뀌었군요 OTL 전부 수정했습니다. 마지막 부분은 외우기 쉽게 하려고 도입한 꼼수입니다 ^^ 책에는 없을거예요(Griffith에 없으니 다른 책에도 아마 없으리라 생각)

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Dirac Delta orthonormality  (2) 2009.04.18

댓글을 달아 주세요

  1. Favicon of http://saygj.com BlogIcon 빛이드는창  댓글주소  수정/삭제  댓글쓰기

    잘 보고 갑니다.
    행복한 한주 되세요^^

    2009.04.20 09:59

1 

글 보관함

카운터

Total : 659,461 / Today : 48 / Yesterday : 123
get rsstistory!