'Dirac'에 해당되는 글 2건

  1. 2014.08.08 듣는 사람 - P. A. M. Dirac
  2. 2013.12.15 Dirac Equation(1) 4

P. A. M. 디락의 생일 기념으로 The Second Creation(Robert P. Crease, Charles C. Mann, Rutgers University Press, New Jersey, 1996)의 5장 The Man Who Listened의 발췌번역입니다. 디락의 일화를 소개하는데 무게를 두었습니다.


[..]


젊은 과학자들이 첫 논문으로 과학계를 흥분시키고 모든 박사논문이 새로운 분야를 열어젖히던 때, 가장 많은 영향을 미친 것은 디락이었습니다. 양자이론에 대한 반감을 가졌던 아인슈타인이 마지막 고전물리학자라면, P. A. M. 디락(그는 항상 이렇게 서명했지요)은 첫 완전한 현대물리학자였습니다. 1984년 디락의 죽음 직전에 물리학자 실판 슈베버(Silvan Schweber)는 이렇게 평가했습니다. "디락은 양자역학의 주요 저자 중 하나일 뿐 아니라 양자전기역학의 개척자이며 양자장론의 주된 설계가이기도 합니다. 삼사십년대의 양자장론의 중요한 발전은 모두 디락의 작업에서 출발하고 있습니다"


환경은 그가 지독히 내성적이고 과묵하게 자라나도록 짜인 것처럼 보입니다. 디락은 1902년 8월 2일 영국 브리스톨(Bristol)에서 스위스 출신의 아버지 밑에 태어났습니다. 그의 아버지는 반사회적이라고 할 수 있을 정도로 활동이 없었습니다; 디락의 가족은 손님이 없었고, 놀러 나가지도 않았습니다. 자리가 부족했기 때문에 다른 가족들은 부엌에서 식사할 동안 디락은 아버지와 함께 식사했습니다. 아버지는 그가 불어를 배우기 좋을 것이라 생각해 자신과 불어로만 대화하도록 규칙을 만들었는데, 불어로는 자신을 표현할 방법을 못 찾아 조용했다고 디락은 회상했습니다. 대부분의 시간을 야외에서 홀로 산책하며 보냈던 디락은 질서와 대칭을 좋아했습니다. "내 대부분의 작업은 그냥 공식을 가지고 논 뒤 어떤 결과가 나오는지 본 것입니다. 다른 물리학자들도 같다고 생각하지는 않습니다; 물리적으로 전혀 의미가 없을지도 모르는 공식을 가지고 놀며 어떤 아름다운 수학적 관계가 있는지를 살피는 것은 제 특성인듯 합니다. 가끔은 물리적 의미가 있기도 합니다"


디락의 아버지는 사회성의 중요성을 무시했지만 좋은 교육의 필요성은 인식했고, 디락의 수학적 재능을 장려했습니다. 역사의 우연으로 이 재능은 더욱 클 수 있었습니다: 나이에 비해 이르게 전쟁으로 징집되어 텅 빈 고등반에 진학했거든요.[각주:1] 디락은 브리스톨 공과대학과 일부를 공유했던 머천트 벤처러 학교(Merchant Venturer's School)을 좋아했습니다. 부분적으로는 그가 거의 평생 이해할 수 없었던 철학과 미학을 중요히 여기지 않았기 때문이지요. 디락은 대학에 진학하면서 수학으로는 직업을 가질 수 없으리라 생각해 공학을 전공하기로 했습니다. 그는 좋은 학생이었으나 분야의 이론적인 부분에만 관심을 가졌습니다. 실무 훈련은 최악이었죠.


1921년 가을 공학 학위를 끝낸 디락은 직업을 구할 수 없었습니다. 재능있는 수학자가 공학과정을 밟는다는 것에 낙담했던 브리스톨 대학의 수학과 교수들은 수업료를 면제해주겠다고 제안했습니다. 달리 할 일이 없었던 디락은 그러기로 했지요. 명예 수학과정을 밟던 다른 유일한 학생은 물리에 사용될 수 있는 응용수학을 공부하기로 단단히 결심한 여학생이었습니다. 딱히 확신이 없었던 디락은 그녀의 목표를 따라갔고, 세기의 대 물리학자중 하나는 이렇게 활동을 시작했습니다.[각주:2]


디락은 물리를 무계획적으로 시작했던 때부터 말년까지 수학이 물리 발전의 열쇠라고 보았습니다. 그의 마지막 연설들 중 하나에서 그 신조가 드러납니다. "사람은 수학이 이끄는 방향을 따라야 합니다. [...] 사람은 그 끝에서 시작한 것과 전혀 다른 곳에 도착하더라도 수학적인 착상을 좇아야 합니다. [...] 수학은 물리적인 생각만 따라갔을 때 택하지 않았을 길도 갈 수 있게 해 줍니다"


디락은 브리스톨에서 상대론을 배웠고 매료되었습니다. 이학사를 취득한 후 1925년 케임브리지의 성 요한 대학(Saint John's College)에 진학하였고, 1927년 25세가 되었을 때의 양자역학에 대한 기여로 그가 세계에서 가장 중요한 물리학자중 하나라는 것이 확실해졌습니다.[각주:3]


명성은 그를 크게 변화시키진 못했습니다; 계속 과묵했던 디락을 만난 사람들은 자주 무례하다고 생각했습니다. 디락은 케임브리지 물리학 그룹의 명예회원이었으나 적은 학생을 키웠고, 학풍을 세우지도 않았으며, 실험가들과 드물게 대화했습니다. 1930년대 말을 실험실에서 보낸 새뮤엘 데본스(Samuel Devons)는 우리에게 말했습니다. "캐번디시 물리학회 모임이란 준격식적인 모임이 격주로 있었어요. 한 강연자가 들어오면 디락은 첫 줄에 앉아 듣곤 했죠. 그는 매우 드물게 입을 열었어요. 가끔 러더포드가 '그래서 이론하는 사람들은 어떻게 생각하나?'라고 찔러보곤 했죠. 러더포드는 이론이 일종의 사색에 불과하고 진짜는 실험에 있다고 믿었죠.[각주:4] 그리고 디락은 앉아 아무 말도 안 했습니다."


디락은 매우 정확하고 조심스럽게 말했기 때문에 매우 난해했습니다.[각주:5] 양자역학을 강의할 때 그는 강연대 뒤에 서서 그가 쓴 책을 읽어주었는데, 책에 더 이상 명료할 수 없게 적었다고 믿었기 때문입니다.1928년 라이덴(Leiden)에서 몇 개의 강연을 했을 때 폴 에렌페스트는 디락의 태도에 질려버렸습니다. 그 자리에는 H. B. G. 캐시미어도 있었는데, 회상하길 "(각 강연은) 완벽했습니다. 디락은 버릇대로 누군가 이해하지 못한다면 별 다른 설명을 하는 대신 매우 침착하게 정확히 동일한 내용을 반복했습니다. 보통은 충분했지만, 에렌페스트가 선호하는 방법은 아니었죠." 에렌페스트는 항상 사람이 어떻게 작업하는지를 보고 싶어했습니다. 캐시미어는 이어서 말했습니다. "한번은 에렌페스트가 디락에게 질문했고, 디락은 곧바로 답이 떠오르지 않았습니다. 그래서 디락은 칠판에 풀어보기 시작했죠. 그는 온 칠판을 자그마한 글씨로 채웠고, 에렌페스트는 그의 바로 뒤에 서서 무엇을 하고 있는지 보며 외쳤습니다. '애들아, 애들아-이걸 봐라! 이제 그가 뭘 하는지 알겠네!'[각주:6]"


[...]




이 이후는 디락의 작업에 대한 이야기입니다. 하이젠베르크가 발견한 불확정성 원리를 고전역학의 푸아송 괄호와 연결지어 해석하는 것과(더 보편적인 결과입니다) 양자전기역학의 발견, 디락방정식의 발견을 다루고 있고 디락방정식의 중요한 예측인 반전자의 존재에 대해 다루고 있습니다. 디락은 처음엔 디락방정식의 음에너지 해를 보고 양성자(당시만 해도 양전하를 가진 입자는 양성자 뿐이었습니다. 심지어 중성자도 발견되지 않았을 시기죠.)라고 생각했다고 하죠. 그리고 당시만 해도 미국은 예일대의 조시아 깁스[각주:7]를 제외하면 유럽에 비해 급이 떨어졌다고 하네요.

  1. 역주) 시기상으로는 일차대전인데, 이 당시만 해도 전쟁에 참여하는 것에 대한 낭만(?)같은 것이 있던 시절이라 학생들이 적었을 수도 있겠다는 생각이 드네요. [본문으로]
  2. 역주) 하고 싶은걸 하는게 아니라 할 수 있는걸 하는게 중요하다는 교수님의 일갈이 생각나는군요. 하... [본문으로]
  3. 역주) 디락은 1926년 봄 박사학위를 취득했습니다. 1년만에 박사라니... [본문으로]
  4. 역주) 책의 다른 부분을 보면 러더포드는 '간단하면서 본질적인 속성을 드러내는 실험'을 중요시했다고 나옵니다. 러더포드 산란 실험은 대표적인 '간단하고 본질적인 속성을 드러내는 실험'이죠. [본문으로]
  5. Dirac spoke so precisely and carefully that he approached the Delphic; (번역이 힘드네요) [본문으로]
  6. Kinder, Kinder! Schaut jetzt zu! Jetzt kann man sehen, wie er es macht! [본문으로]
  7. 사원수 대신 벡터미적분학을 도입했고 통계역학을 완성했다고 보시면 됩니다. [본문으로]
Posted by 덱스터

2013. 12. 15. 19:02 Physics/Concepts

Dirac Equation(1)

디락방정식을 기억만으로 재구성해보는 작업을 하고 있는데, 그 와중에 조금 정리할 필요가 있다 생각되어 쓰는 글.


디락방정식의 도입 동기는 매우 간단하다. 그 이전까지 제시된 방정식들에 문제가 있었기 때문. 슈뢰딩거 방정식은 시간과 공간을 같게 다루지 않으며(공간에 대해서는 이계미분, 시간에 대해서는 일계미분), 클라인-고든 방정식은 시간에 대해 일계가 아니라는 문제가 있다. 시간에 대해 일계가 아니면 갖는 문제는 초기조건을 충분히 주지 못하기 때문에 문제가 된다. 시간에 대한 미분은 위상의 변화와 관련이 있는데, 위상의 차이는 측정할 수 있어도 위상이 변하는 속도는 측정할 방법이 없기 때문.


\text{Schroedinger equation: derivatives on time and} \\\text{space are not treated on a equal footing.} \\i\hbar\frac{\partial}{\partial t}\Psi=\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x) \right ]\Psi \\\\\text{Klein-Gordon equation: the equation treats time} \\\text{as a second order derivative.} \\\left[\frac{\partial^2}{\partial t^2}-\frac{\partial^2}{\partial x^2}+m^2 \right ]\Psi=0\text{ (natural units)}


디락이 생각한 해는 상당히 간단하다. 클라인-고든 방정식에 제곱근을 취하는 것.


\text{Dirac's solution: take the root!} \\\^H=i\frac{\partial}{\partial t}\;,\;\^p=-i\frac{\partial}{\partial x} \\\\\left[-\frac{\partial^2}{\partial x^2}+m^2 \right ]\Psi=-\frac{\partial^2}{\partial t^2}\Psi\text{ (natural units)} \\(\^p^2+m^2)\Psi=\^H^2\Psi \\\\\Rightarrow(\alpha\cdot\^p+\beta m)\Psi=\^H\Psi


이러면 \alpha\beta에 대해 다음과 같은 10개의 관계식을 얻는다.


\begin{matrix} \alpha_i\alpha_j+\alpha_j\alpha_i=2\delta_{ij} & \cdots\text{ 6 equations}\\ \alpha_i\beta+\beta\alpha_i=0 & \cdots\text{ 3 equations}\\ \beta^2=1 & \cdots\text{ 1 equation} \end{matrix}


일단 \alpha\beta는 우리가 일반적으로 보는 숫자가 아닌 것은 확실하다. 제곱해서 1이 되며 다른 숫자와 곱했을 때 0이 되는 복소수는 없기 때문. 따라서 이 녀석들은 행렬로 보는 것이 타당하다. 제곱을 할 수 있으므로 행렬 중 정사각행렬이 되어야 하는데, 그렇다면 정사각행렬 중 몇 짜리 정사각행렬을 써야 할까? n\times n 행렬은 모두 n^2개의 자유도를 갖는다. 그런데 위에서 최소한 10개의 조건이 필요하다는 결론을 얻었으므로, 최소한 4\times4행렬이 필요하다는 것을 알 수 있다. 이렇게 되면 6개의 자유도가 남는데, 이 자유도는 어디에 쓸 수 있을까? 다시 원래의 디락방정식으로 돌아와 보자.(틀린 설명입니다.) 미분은 좌표계를 바꾸면 변하게 되어 있으나 정지질량은 변하지 않는다. 따라서 식을 좀 더 깔끔하게 쓰려면 다음과 같이 정리하는 편이 낫다.


\text{Dirac equation} \\(-i\alpha\cdot\nabla+\beta m)\Psi=i\frac{\partial}{\partial t} \Psi \\\beta m \Psi=i\left[\frac{\partial}{\partial t}+\alpha\cdot\nabla \right ]\Psi \\=i\left[\frac{\partial}{\partial x_0}+\alpha_1\frac{\partial}{\partial x_1}+\alpha_2\frac{\partial}{\partial x_2}+\alpha_3\frac{\partial}{\partial x_3} \right ]\Psi


약간의 불만사항: 질량은 변하지 않는데 쌩뚱맞은 \beta가 붙어 있다. 양 변에 \beta를 곱해서 좀 더 보기 쉽게 만들어주고, 남는 6개의 자유도를 이용해(틀린 표현입니다) 이 숫자들에게 추가적인 제한조건을 걸어주도록 하자. 이 제한조건은 '로렌츠 변환을 만족할 것'. 로렌츠 변환은 결국 4차원에서의 회전에 해당하기 때문에 4C2=6개의 제한조건을 의미한다. 남은 6개의 자유도를 완벽하게 구속할 수 있다는 의미이다.


\text{Multiply each side by }\beta \\m \Psi=i\left[\beta\frac{\partial}{\partial x_0}+\beta\alpha_1\frac{\partial}{\partial x_1}+\beta\alpha_2\frac{\partial}{\partial x_2}+\beta\alpha_3\frac{\partial}{\partial x_3} \right ]\Psi \\\\\text{Redefine the numbers: Introduce the }\gamma^\mu\text{ matrices.} \\\gamma^0\equiv\beta,\;\gamma^i\equiv\beta\alpha_i \\\Rightarrow\gamma^\mu\gamma^\nu+\gamma^\nu\gamma^\mu=2g^{\mu\nu} \\\\\text{Introduce more restrictions (six) to impose} \\\text{covariance under Lorentz transforms.} \\L^\mu_{\;\nu}\equiv\frac{\partial x'^\mu}{\partial x^\nu},\;L^{\;\;\mu}_{\nu}\equiv (L^\nu_{\;\mu})^{-1}=\frac{\partial x^\mu}{\partial x'^\nu} \\\\x^\mu\to x'^\mu=L^\mu_{\;\nu} x^\nu,\;\partial_\mu\to\partial'_\mu=L^{\;\;\nu}_{\mu}\partial_\nu \\\gamma^\mu\to\gamma'^\mu=L^\mu_{\;\nu}\gamma^\nu \\\\\Rightarrow \gamma^\mu\partial_\mu\to\gamma'^\mu\partial'_\mu=L^\mu_{\;\nu}L^{\;\;\nu}_{\mu}\gamma^\nu\partial_\nu=\gamma^\mu\partial_\mu


이렇게 로렌츠 불변 형식의 디락방정식이 완성된다.


\text{Thus, the Dirac equation in its final form} \\\text{nicely incorporates Lorentz covariance.} \\\\m\Psi=i\gamma^\mu\partial_\mu\Psi\Rightarrow(i\gamma^\mu\partial_\mu-m)\Psi=0 \\\\(i\gamma^\mu\partial_\mu-m)\Psi=(i\gamma'^\mu\partial'_\mu-m)\Psi





나중에는 디락방정식의 감마행렬에 대해 클리포드 대수란 말이 나오게 되는데(기본적으로는 anticommute하는 숫자들에 대한 대수를 의미한다. n-form이 한 사례) 아직은 그렇게 복잡하게 생각할 필요는 없다고 생각해서 정리해봤다. 조금만 더 만지작만지작 거리면 spin이 자기모멘트를 나타낸다는 것과 g-factor가 2가 된다는 것도 보일 수 있는데(처음의 \alpha\beta를 쓰는 형식에서 운동량을 canonical momentum으로 바꾼 뒤 제곱해서 정리하면 자기장과 내적한 꼴의 에너지 항을 얻는다) 그것까지 하기는 귀찮다. 언젠가 (2)를 쓰게 되면 그때나...


사실 목적은 기억만으로 수소원자를 푸는 것이었는데(디락방정식을 이용해서 수소원자 모형을 풀면 답에 자연스럽게 fine structure까지 포함된다) 어디선가 헤매고 있다. 일단은 디락 양자역학 책을 열어봐야 하나.


공부합시다!




수정(24 Dec 2013)

감마행렬이 4X4 행렬이라는 논리전개과정이 매우 불분명해서 제외. 대수학을 좀 더 공부해야 할 필요가 있습니다 엉엉 ㅠㅠ

'Physics > Concepts' 카테고리의 다른 글

Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
볼츠만 분포  (0) 2013.09.20
열역학 제 2 법칙과 엔트로피 증가의 법칙  (3) 2010.11.22
엔트로피 - 고전적인 정의  (7) 2010.08.03
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함