'슈뢰딩거'에 해당되는 글 3건

  1. 2012.11.08 양자역학의 유래(2)
  2. 2010.01.19 양자역학의 유래 (4)
  3. 2009.12.14 운동량 연산자에 대해서(1) (7)

이전에 쓴 글 중 양자역학의 유래라는 글이 있었다. 현대 양자역학의 근간이 되는 파동방정식 풀이법과 행렬을 이용한 선형대수 연산 및 고유값을 사용하게 된 기원 등을 다룬 글인데,[각주:1] 오랜만에 덧붙일만한 내용이 생각나서 새로운 글을 쓰기로 했다.


저번 글에서 양자역학이 형성되어 온 두가지 갈래길을 알아보았다. 이번에는 그 두 갈래길이 남아 아직도 영향을 미치고 있는 묘사(picture)에 대해 살펴보자.


수업을 듣던 중 교수님께서 에너지나 운동량 등의 측정값이 양자화되는 이유를 질문하셨다. 누군가가 경계조건(boundary condition)으로 고유값이 결정되기 때문이라고 했고 교수님은 공부를 열심히 했다고 칭찬하시고는 넘어가셨는데 필자가 보기에는 반만 맞는 답이었다. 하지만 타과생인지라 물리학과에 반기를 들기보다는 조용히 넘어갔다. 어째서 반만 맞는 답일까?


양자역학은 두 경로를 통해 발전했다. 하나는 슈뢰딩거(Erwin R. Schrödinger)의 '파동성을 핵심으로 하는 파동역학'이고, 나머지 하나는 하이젠베르크(Werner Heisenberg)의 '양자성을 핵심으로 하는 행렬역학'이다. 파동역학을 양자역학의 원류로 본다면 물리량이 양자화되는 이유는 경계조건이 존재하기 때문인 것이 맞다. 하지만 행렬역학을 양자역학의 원류로 본다면 물리량의 양자화는 공리(postulate)가 된다. 실제 양자역학은 두 원류가 합쳐진 형태로 발전했기 때문에 이런 의미에서 그 답은 반만 맞는 것이다. 그렇다면 이 두가지 관점은 어떻게 남아있을까?


슈뢰딩거의 파동역학은 전자파(electron wave-electromagnetic wave가 아니다!)와 같이 물체에게 파동성이 존재하므로 이미 존재하는 파동광학 등의 결과를 물질로 확장하는 것으로부터 출발하였다. 때문에 시간에 따라 변하는 것은 물질의 상태(state)가 되고, 이것이 반영되어 측정하는 물리량(operator를 말한다)은 시간에 불변하는 것으로 간주되었다. 빛이 화면에 닿아 상을 만들 때 화면의 상태가 변하기 때문에 화면에 그려지는 상이 변화한다고 보기보다는 빛의 상태가 변하기 때문에 상이 변화한다고 생각하는 것이 더 자연스럽지 않은가? 우리가 존재하는 공간이 변화한다고 보는 것보다는 그 공간에 놓인 물질이 변화한다고 보는 것이 아무래도 자연스럽기 때문에 대부분의 학부 양자역학 교재에서는 슈뢰딩거 묘사(Schrödinger picture)를 쓰는 경우가 많다. 슈뢰딩거 묘사를 쓸 경우 운동방정식은 다음과 같다. 잘 보면 고전적인 파동방정식과 닮았다.


\dot{\left|\psi\right>}=\frac{\bold{H}}{i\hbar}\left|\psi\right>


이번엔 하이젠베르크의 행렬역학을 따라가 보자. 하이젠베르크의 행렬역학은 전 글에서 설명했다시피, 물리량을 측정할 경우 그 값이 양자성을 가진다는 것에서부터 출발하였다. 수소원자스펙트럼은 불연속적으로 분포되어있지 않은가. 그렇기 때문에 하이젠베르크에게 변화하는 것은 물질의 상태가 아닌 물질의 측정값, 즉 물리량이 변화하게 된다. 같은 물질을 다른 시간에 측정하면 다른 물리량을 내놓는 것이므로 물질은 그대로 있고 물리량이 변화해야 한다는 의미이다. 안을 알 수 없는 기계장치가 들어있는 상자가 있고 그 상자의 벽에 화면이 설치되어 있어 시시각각 변화하는 숫자를 보여준다고 상상해보자. 이 경우 상자 자체가 변화한다기 보다는 상자의 화면에 찍히는 숫자가 변화한다고 보는 것이 자연스럽다. 하이젠베르크 묘사(Heisenberg picture)를 쓸 경우 운동방정식은 다음과 같다. 해밀토니안 역학에서 이런 방정식을 본 적이 있을 것이다.


\dot{\bold{A}}=\frac1{i\hbar}\left[\bold{A},\bold{H}\right]+\frac\partial{\partial{t}}\bold{A}


마지막으로 흔히 상호작용 묘사(interaction picture) 혹은 폴 아드리엔 모리스 디락(Paul Adrien Maurice Dirac)의 이름을 딴 디락 묘사(Dirac picture)를 생각해보자. 이 묘사방법은 양자장론(Quantum Field Theory)이 등장하면서 입자가 만들어지고 사라지기니 특정한 상태를 규정짓기가 힘들어지자 도입한 것으로 볼 수 있다. 물리적인 계(system)의 진화를 규정짓는 것이 해밀토니안(Hamiltonian)인데 이 묘사에서는 해밀토니안을 두가지로 나눈다. 일반적으로 우리가 측정하는 '입자'를 만들어주는 자유장 해밀토니안(free field Hamiltonian)과[각주:2] 이 입자들 사이의 상호작용을 기술하는 상호작용 해밀토니안(interaction Hamiltonian)으로 나누고, 각각 H_0와 H_int로 이름붙인다. 우리가 측정하는 모든 물리량은 자유장 해밀토니안에 따라 변화하고, 우리가 측정할 대상이 되는 상태들은 상호작용 해밀토니안에 따라 변화한다. 하이젠베르크 묘사를 설명하면서 쓴 예제를 사용해 본다면 상자의 화면에 등장하는 숫자가 변화하는데, 상자 자체도 조금씩은 모양을 바꾼다는 것으로 생각할 수 있다. 상자의 모양에 따라 화면에 등장하는 숫자 또한 영향을 받는다면 1. 상자의 모양마다 숫자가 어떻게 나타나는지 2. 상자의 모양이 시간에 따라 어떻게 변화하는지로 나누어 설명하는 것이 편리하다. 때문에 상호작용 묘사에서는 운동방정식이 조금 복잡하다.


\bold{H}=\bold{H_0}+\bold{H_{int}}\\ \dot{\bold{A}}=\frac1{i\hbar}\left[\bold{A},\bold{H_0}\right]+\frac\partial{\partial{t}}\bold{A}\\ \dot{\left|\psi\right>}=\frac{\bold{H_I}}{i\hbar}\left|\psi\right>\\\\ \text{where }\bold{H_I}\text{ is the solution of}\\ \dot{\bold{H_I}}=\frac1{i\hbar}\left[\bold{H_I},\bold{H_0}\right]+\frac\partial{\partial{t}}\bold{H_I}\\ \bold{H_I}(t=t_0)=\bold{H_{int}}


물리 덕후 소리를 들을 정도로 이곳 저곳 다 파고 들어가며 닥치는대로 공부하다 보니 물리학 개념이 어떻게 발전해왔는가에 대해서도 이것 저것 알게 된 것이 많다. 아무래도 이런 이해가 있다 보니까 정리가 좀 잘 되는듯. 다음 학기 학부 졸업논문이나 잘 써야 할텐데...

  1. 엄청나게 많은 깨져있는 수식을 복구하느라 조금 힘들었다. 이런 글 엄청 많을텐데...ㅠㅠ [본문으로]
  2. 이 '입자들'로 상태공간을 확장(span)하기 때문이다. 아무래도 알기 쉬운 것들로 공간을 나타내는 것이 더 보기 좋으니까. [본문으로]

댓글을 달아 주세요

양자역학에서 상태는 추상적인 켓(ket)벡터 \left|\psi\right\rangle로 나타난다. 이 벡터가 시간에 따라 진화하는 법칙이 슈뢰딩거(E. Schrödinger) 방정식으로, 1926년 처음으로 변위(x)에 대한 식을 유도해낸 이의 이름을 붙인 것이다. 당시 슈뢰딩거가 식을 유도해내었을 때에는 위 벡터를 변위공간에 투영한 것(\psi(x)\equiv\left\langle{x}\middle|\psi\right\rangle)의 시간에 따른 진화를 다루는 방정식이었고, 그 방정식의 생김새를 보고 파동함수라고 이름붙였다. 나중에 상태를 추상적인 벡터로 나타내기 시작한 것은 디랙(P.A.M. Dirac)의 업적이다.[각주:1]

이름에서 알 수 있듯이, 슈뢰딩거는 입자가 보이는 파동적 성질에 착안해서 방정식을 만들었다. 드브로이(L. de Broglie)가 빛의 양자성에서 영감을 얻어 제시한 물질파 가정은 물질에 파동적인 성질이 존재한다는 것을 암시한다. 물질의 파동적인 성질은 이후 전자를 이용한 회절실험과 간섭실험으로 증명되었고, 슈뢰딩거 방정식에 등장하는 2계미분의 근간이 되었다.[각주:2] 1차원 입자 하나에 대해 쓰는 슈뢰딩거 방정식이 다음과 같이 생기게 된 것은 그 때문이다.[각주:3]

i\hbar\frac\partial{\partial{t}}\Psi(x)=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\Psi(x)+V(x)\Psi(x)
1차원, 입자 하나의 슈뢰딩거 방정식

이렇게 슈뢰딩거가 물질이 가지는 파동적인 특성에 집중하고 있던 사이, 하이젠베르크(W. Heisenberg) 등은 물질이 가지는 양자적인 특성(측정값이 불연속적으로 나타나는 특성)에서 영감을 얻어 행렬역학(Matrix mechanics)을 창시했다. 탄생 자체가 측정만 염두에 두고 만들어져서 그런지 양자역학에서 측정에 대한 모든 가정들은 행렬역학에서 유래하였다. 고전역학과 양자역학이 대비되는 대표적인 특징인 '측정의 결과는 고유값(eigenvalue) 중 하나이다'가 행렬역학의 핏줄을 이어받은 것이다.

두 접근법을 잘 드러낼 수 있는 고전역학적인 예는 1차원상에서 두 질점이 후크의 법칙(Hooke's law)에 따라 상호작용을 하는 경우다. 다음 그림을 보자.

x가 이상하게 쓰인건 무시하자

평형거리를 s라고 둔다면, 위 상황에서 운동방정식은 다음과 같다.

m_1\ddot{x_1}=k(x_2-x_1-s)\\m_2\ddot{x_2}=-k(x_2-x_1-s)

또는,

m_1\ddot{y_1}=k(y_2-y_1)\\m_2\ddot{y_2}=-k(y_2-y_1)\\y_1\equiv{x_1},~ y_2\equiv{x_2-s}

슈뢰딩거의 해법은 위 두 방정식을 더하고 빼서 각각 하나의 변수에만 의존하는 방정식으로 만드는 것이다. '직접적인 해법'이라고 할 수 있을 것이다.

\ddot{(m_1y_1+m_2y_2)}=0 \\\ddot{(y_1-y_2)}=-\frac{k(m_1+m_2)}{m_1m_2}(y_1-y_2)

윗식은 운동량 보존에 해당하고, 아랫식은 환산질량으로 쓴 운동방정식이다. 한편, 행렬을 이용한 해법도 존재한다. 이 방법이 하이젠베르크가 도입한 행렬역학의 아이디어이다. 첫 식을 이렇게 변형하면

\ddot{y_1}=\frac{k}{m_1}(y_2-y_1)\\\ddot{y_2}=-\frac{k}{m_2}(y_2-y_1)

행렬을 이렇게 쓸 수 있다.

\ddot{X}=AX \\X=\left( \begin{array}{c}y_1\\y_2\end{array} \right) \\A=\left( \begin{array}{cc} -\frac{k}{m_1} & \frac{k}{m_1} \\ \frac{k}{m_2} & -\frac{k}{m_2} \end{array} \right)

이 경우 해가되는 벡터 X는 A의 고유벡터(eigenvector)의 선형조합으로 쓸 수 있다. 기본적인 아이디어는 해를 정상상태를 나타내는 벡터들을 조합해 나타내자는 것이다. 우린 먼저 조화진동자의 (정상상태의) 해가 다음과 같은 꼴로 쓰일 수 있다는 것을 알고있다.[각주:4]

y=A\cos(\omega{t})+B\sin(\omega{t})

이 해를 추상화(?)하면 이렇게 쓸 수도 있다.

y=Re[Ae^{i\omega{t}}]

여기서 A는 복소수이다. 그리고 미분은 복소수를 켤레복소수로 만드는 과정과는 무관하므로(그러니까 어떤 복소함수를 미분한 다음 켤레복소수를 취하는 것이나 켤레복소수를 취한 복소함수를 미분하나 결과는 같으므로) 시간에 대한 2계미분은 다음과 같이 쓸 수 있다.

\ddot{y}=\frac{d^2}{dt^2}Re[Ae^{i\omega{t}}]=Re\left[\frac{d^2}{dt^2}\{Ae^{i\omega{t}}\}\right]=Re[-\omega^2Ae^{i\omega{t}}]

전기공학에서 쓰는 phasor 기법이라고 생각하면 된다. 어쨌든 이 과정에서 힌트를 얻자. 먼저 해 벡터 X를 시간과 관련된 부분만 따로 빼낼 수 있다고 생각하는 것이다.

X=\chi{e^{i\omega{t}}}~,\frac{d}{dt}\chi=0

여기서 \chi는 시간에 무관한 열벡터이다. 어찌되었든 이런 형태를 취하고 나면 위의 미분방정식은 고유값 문제(eigenvalue problem)가 된다.

\ddot{X}=-\omega^2X=AX\\(A+\omega^2I)X=0

그렇다면 고유값은? 고유값은 바로 각진동수의 제곱이다(부호는 반대). 고유값을 계산해보면 0과 \frac{k(m_1+m_2)}{m_1m_2}[각주:5] 얻고, 각자 평행이동과 서로에 대한 진동을 나타낸다는 것을 알 수 있다. 물론 해는 전의 방법과 전적으로 일치한다.

한가지 의문인 것은, 왜 측정하면 그 측정값의 고유벡터중 하나로 수렴할 확률이 그 고유벡터 계수의 절대제곱(absolute square)에 비례하냐는 것이다. 지금 당장은 신호를 퓨리에(Fourier)변환을 통해 주파수에 따라 분류하면 그 주파수대가 갖는 에너지가 절대제곱에 비례하기 때문에 거기에서 유래했으리라 추측하고 있지만 확실하지는 않다. 아무래도 조금 더 공부를 해야 할 것 같다.

첨언하자면 파동함수의 절대제곱이 확률밀도함수로 해석되게 된 이유 또한 행렬역학의 핏줄을 따라 내려온 것이라는 점이다. 왜 그런지는 독자의 몫으로 남겨 둔다.[각주:6] 쓰기 귀찮아서...



2012.11.08
추가할 내용은 새 글로 올리기로 했다. 다음 글도 읽어보시길.
2012/11/08 - 양자역학의 유래(2)


  1. 이 표기법을 이용하게 되면서 상태를 더욱 다양한 방식으로 나타낼 수 있게 되었고, 상태를 더욱 직관적으로 인식할 수 있게 되었다. [본문으로]
  2. 파동을 e와 허수 i를 이용한 지수함수로 나타낼 경우 진동수(파수)는 미분으로 얻어진다. 슈뢰딩거 방정식을 쓸 경우 허수의 도입이 절대적인 이유이기도 하다. [본문으로]
  3. 원래 슈뢰딩거는 이 방정식이 시간에 대해서는 1계미분방정식이라는 것을 못마땅해했다고 한다. 그것도 그럴 것이, 위 형태의 방정식은 로렌츠 변환에 일정하지 않기 때문이다.(더불어 고전적인 파동을 나타내는 방정식은 시간에 대해 2계미분항을 가지고 있다.) 상대론적 양자역학으로 넘어가면 클라인-고든 방정식(Klein–Gordon equation)이 이 대칭을 갖기는 하지만, 이 경우는 2계미분방정식이라는 것이 문제이다. 자세한 내용은 다른 곳을 참조하시길. [본문으로]
  4. 잠깐 이 문제를 벗어나고 있다. 일반적인 하나의 물체가 용수철로 벽에 연결된 상태를 생각하시길. [본문으로]
  5. 부호는 반전시켰다. [본문으로]
  6. 힌트: 함수는 무한한 행을 가진 열벡터로 쓸 수 있다. 아마 교재를 가지고 공부한다면 거기에 잘 나와있을 것이다. 그런데 실수라는 연속체를 그렇게 쓰기는 힘들텐데 -_-;; [본문으로]

댓글을 달아 주세요

  1. hmmm  댓글주소  수정/삭제  댓글쓰기

    weistern's하고 실타래를 통해 오게 되었군요...
    웬만한 블로그는 다 서로서로 연결된다는 게 신기합니다.
    현실과는 또다른 세계이지만, 역시나 좁은 세상!

    2010.01.21 19:22
  2. Favicon of https://hbar.tistory.com BlogIcon h-bar  댓글주소  수정/삭제  댓글쓰기

    hmmm님도weistern's에서 봤는데,,, 세상 참 좁네요..

    2010.02.11 04:07 신고

양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17

댓글을 달아 주세요

  1. Favicon of http://www.yutiro.com BlogIcon 순원  댓글주소  수정/삭제  댓글쓰기

    안녕하세요.
    사실 Griffith 책에서는 빠른 이해를 위해서 위와 같이 유도를 해 놓았지만,
    실제로 p 연산자는 x 연산자와의 commutator relationship 으로만 정의되는
    것 아닌가요?

    말하자면 논리 구조가 다음과 같은것이죠.
    1. 양자역학은 헤밀토니안 역학에서, 연산자 도입, 파동함수 도입... etc
    이러쿵 저러쿵되어 정의된다.

    2. 이 중에서 x 연산자를 다음과 같이 정의하고(이를 이용해서 파동함수를 표현)
    이에 헤밀토니안 역학에서 conjugate momentum인 p 연산자를 정의한다.
    이 때 헤밀토이안 역학의 conjugate momentum은 양자역학에서 commutation
    relationship이 됩니다.

    3. 2번에 입각해서 수식을 쓰면 그것이 위에 유도한 공식이 됩니다.


    이 논리에 따르면 헤밀토니안 연산자에 운동량 개념이 내제되어 있는 것은 아니고,
    헤밀토니안 연산자는 x basis로 표현되어지며, 여기서 p 연산자가 x basis로
    끄집어 내어진것이겠죠. 참으로 재밌게도 (어쩜 당연하게도) H가 p^2/2m을 함유하고
    있는것으로 나왔고 이는, p가 x의 conjugate momentum이기 때문에 나타는 현상이죠.
    이를 Ehrenfest's theorem이라고 하나요?

    2010.04.26 10:42
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.26 14:10 신고  댓글주소  수정/삭제

      나중에는 translation을 생성하는 operator로 정의하긴 하는데, 처음 Schrodinger가 S.E을 유도했을 때에는 운동량 연산자가 그처럼 생겼을 것이라는 가정에서 출발했더라구요. 그리고 운동량 연산자가 그렇게 생겼으리라는 가정은 아마도 파동의 성질에서 나온 것 같아요. Hamiltonian 역학에서 어떤 극한을 취하면(잊어버렸는데 -.-;;) 파동방정식처럼 변하게 되는데, DeBrogile 운동량-파장 가설에서도 운동량 연산자가 이렇게 나타나게 되고, Hamlitonian 역학에서는 당연히 그렇게 정의되고, 뭐 그런거죠.
      결국 하고 싶었던 말은 Griffith 책에서처럼 운동량 연산자가 되는 것을 보이는 것은 동어반복이라는 것이었구요. 이런 유도가 갖는 의미라면 일단 모순은 없다 정도 되겠네요.

  2. 남욱  댓글주소  수정/삭제  댓글쓰기

    순원 선배님이 말씀해 주셨지만, p operator랑 x operator 자체가 어쩌면 commute relation으로 정의된다고 할 수 있겠죠. 하지만 보다 일반적으로 나가면, 사실은 creation operator, a+ 와 annelation operator a를 정의하고 이것의 commute relation을 정의하는게 먼저라고 할 수 있습니다. fermion에 대해서는 [a,a+]=1이고 boson에 대해서는 {a,a+}=1이라고 하죠. 보존에 대한 경우를 Grosmann Algebra에 해당하는 경우고 Fermion에 대한 경우는 딱히 이름이 있는지는 모르겠는데 어쨌든 Clifford Algebra 의 special case라고 할 수 있겠네요. a와 a+는 x와 p의 합으로 표현되니까 파동함수의 대수적 성질을 이 연산자를 이용해 정의했다고 할 수 있죠,
    그러니까... H= p^/2m이라는 결과는 x의 표현이라기보다는... 그자체로 맞는 식이고 p가 어떻게 x space에서 표현되는지가 알고싶은 issue라고 할 수 있을거 같네요.
    이같은 논의는 사쿠라이에 보면 간략히 나오는데, 간단히 말하자면...학부에서 waveFtn이라고 부르는 psi는 사실은 <x|psi>잖아요? 모멘텀 오퍼레이터는 algebraic object라 사실은 explicit form이 필요 없는데, int dx |x><x| =1 이 identity를 사용해서 p |psi> = int |x><x|p|psi>이고 <x|p == -i round <x| 를 사용했다고 볼 수 있죠. 사실 마지막 줄에서 사용한, |x>와 p의 위치를 바꿀때 사용한 식은 momentum 의 x에 대한 representation은 translation operator의 generator라는 정의에서 나오는 것이라고 볼수 있습니다. waveFtn을 a만큼 옮기는 operator는 아시다시피 exp(-iap/hbar) 에서 나왔고, 이것을 x 표현에서 infinitisiml한 a에 대해 생각하면 x space에 대한 p 표현이 유도됩니다. 위와 같이 에렌페스트 정리를 이용해서 고전역학과의 대응관계를 생각하는것도 틀린 추론이라고 불 순 없지만 대수적으로는 이게 옳은 approach라고 생각됩니다..

    2010.04.27 21:32
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:15 신고  댓글주소  수정/삭제

      그러니까 지금 하고싶은 말이 creation과 annhilation을 먼저 정의하고 얘네의 조합으로 momentum을 얻는다는 말인거지? 원래는 자연수만 있었는데 여기에서 실수를 얻고 더 근본적(?)인 것이라고 생각하자는 것과 비슷한건가...

  3. 남욱  댓글주소  수정/삭제  댓글쓰기

    뭐 사실은 독립적인 것이기는 한데.. p operator는 translation operator의 generator로 정의되니까... (정확히는 hbar factor가 있겠지만) 이게 바로 어떤 공간 이동에 대해서 불변인 양을 나타내는 것이기도 하고.. 그런데 사실은 뭐 p=-i del 자체가 벡터이기도 하고...말하다보니 복잡하게 돼버렸네 어쨌든 중요한 건 사실 p의 x 에 대한 representation이 딱히 중요하지는 않다는거지. 입자가 여려개 있거나 상대론적으로 가면 운동량 연산자 자체를 explecit하게 정의하는 게 힘들기도 하고. 실제로 중요한건 system의 lagrangian이니까.

    2010.04.28 00:26
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:42 신고  댓글주소  수정/삭제

      사실은 독립적인 거라면 음냐 무언가 꼬인 것 같은데 -_-

      뭐 하긴 Hamiltonian은 그냥 그 계를 잘 묘사해주기만 하면 되는 거니까 operator가 실제로는 무엇이냐 논의하는게 무의미할지도.

      원래 이 글은 '어떤 경로로 그렇게 생긴 operator를 도입하게 되었는가'를 추적하려던 것이라 댓글들은 무언가 벗어난 것 같지만

  4.  댓글주소  수정/삭제  댓글쓰기

    Google 에서 Momentum operator 를 치면 wikipidia 에서 잛고 간략하게 운동량 연산자가
    -(ih/2p)i*d/dx 로 정리되어있는지 schrodinger equation 과 debroglie relation 을 간단히 연립하여 유도한 설명이 있습니다.

    ps : 저도 궁금해서 찾아보던중에 알게 되어 말씀드립니다.

    2014.07.03 16:58

1 

글 보관함

카운터

Total : 650,866 / Today : 41 / Yesterday : 44
get rsstistory!