수업시간에 마주한 Frobenius' theorem이 특수상대론의 유명한 문제인 '회전하는 원반의 둘레는 얼마인가?'와 연결된다는 것을 깨닫고 작성을 시작한 노트. 별 내용도 없는데 생각보다 작성하는데 시간이 오래 걸렸다. 특수상대론을 다루는 부분은 작업 시작한 날 3시간만에 전부 정리했는데 나머지 부분에서 제대로 된 설명을 만드느라 헤매서....


처음 쓰기 시작했을 때는 '오 이거 재미있다!'란 생각으로 타자를 쳤는데 다 치고 나니까 '뭐야 이거 당연한 소리였잖아...'란 느낌만 든다. 안 그런 일이 드물기는 하지만...


Frobenius Theorem in General Relativity.pdf


'Physics > Concepts' 카테고리의 다른 글

Canonical transformations and equivalence of Hamiltonians  (0) 2020.02.23
Elementary introduction to Dirac brackets  (2) 2019.01.29
Particles in Curved Space  (1) 2016.08.08
Fermi-Walker transport  (2) 2014.12.24
Computation and Heat  (2) 2014.06.23
Posted by 덱스터

오늘 아카이브에 들어가봤다가 의외의 글을 발견했다.


http://arxiv.org/abs/1508.05607


de Sitter 공간에서 타키온을 올려놓은 문제인데, 사실 '어 이게 글로 나올 만한 문제였던가?'가 솔직한 감상. 고전적인 타키온 입자는 유한한 시간 동안만 생존한다는게 주요 내용인데(양자적인 경우는 조금 다르게 취급), '유한한 시간 동안 생존한다'는 해석을 빼면 전혀 새로울 것이 없었는지라. 다만 이런 느낌은 내가 타키온을 해석하는 방법 때문인지도 모르겠다.


우선 예전 글들 링크.

2015/01/09 - 일반상대론에서의 쌍둥이 역설

2014/01/11 - Poincare Half Plane 푸앙카레 반평면 (1)

2014/05/25 - Poincare Half Plane 푸앙카레 반평면 (2)


지금 보니 블로그에서 직접적으로 언급한 적이 없다는 것이 살짝 의외인데, de Sitter(이하 dS) 공간과 Anti-de Sitter(이하 AdS) 공간은 사실상 똑같은 공간이다. 푸앙카레 반평면 (1)글에서 마지막에 살짝 언급하고 넘어갔듯, 푸앙카레 반평면 (2)글에서 t와 z의 해석을 뒤바꿔주면 AdS 공간이 dS 공간으로 변한다. 이 말은 AdS 공간에 사는 질량이 있는 물질, 타디온(tardyon)들이 dS 공간의 질량 제곱이 음수인 물질, 타키온들과 똑같이 움직인다는 것을 의미한다. 그 반대로 dS 공간의 타디온들이 AdS 공간의 타키온들처럼 행동한다는 해석 또한 가능하고.


다만 우리가 일반적으로 생각하는 시공간에서는 시간 차원이 하나밖에 존재하지 않아서 완전히 동일하지는 않다. AdS/CFT에서와 같이 일반적으로 AdS 공간을 생각할 경우 한 차원 높은 민코프스키 공간에서 초쌍곡면을 그대로 가져다가 AdS 공간으로 잡지 않고 그 universal cover를 이용하곤 한다. 이 짓을 안 하면 closed timelike trajectory가 나와서 인과율에 문제가 생기기 때문이다. 이건 시간 방향이 1차원이라서 $S^1$의 위상을 갖기 때문에 가능한 일인데, 만약 시간 방향이 2차원이거나 보다 높은 차원을 가질 경우에는 $S^n$의 위상을 갖게 되고, $S^n$은 자기 자신이 universal cover이기 때문에 universal cover를 취해서 closed timelike trajectory를 없애는 것이 불가능해진다. n+1차원의 dS 공간에서 움직이는 타키온을 무작정 측지텐서의 부호를 뒤집어서 AdS 공간에서 움직이는 타디온으로 바꾸어 해석하려면 조심해야 할 필요가 있다는 소리.


여기까지는 주의사항이었으니 타키온에 물리적인 의미를 줄 수 있는 방법을 생각해보자. 일반상대론에서의 쌍둥이 역설에서 설명했듯, 양의 질량 제곱을 가진 물체가 관성운동을 하면서 재는 고유시간은 그 물체가 만든 직선(일반상대론에서 관성운동하는 물체가 그리는 경로는 직선이다)의 길이를 의미한다. 같은 해석을 타키온에 적용하면, 타키온이 관성운동을 하면서 재는 고유시간(tachyonic proper time이라고 부를 수 있을 것이다)은 타키온이 그린 경로의 길이, 혹은 타키온이 지난 경로를 온전히 포함하는 time slice 위에서의 spatial distance에 해당한다.[각주:1]


이 결론을 임의의 n+1 dS 공간에서 움직이는 타키온들에 적용해보면 재미있는 사실을 몇 가지 알 수 있다. 우선 AdS와 dS의 대칭을 이용하면 임의의 점에서 각기 방향으로[각주:2] 쏘아보낸 타키온들은 모두 한 점에서 만난다는 사실을 알 수 있다.[각주:3] FLRW flat 형태의 dS 공간 metric에만 익숙한 분들이라면 약간 놀라울 수 있는 사실. 모든 타키온들이 만나는 점은 타키온을 처음 쏘아보낸 점의 대척점(antipodal point)에 해당한다.


이번에는 좌표를 새로 잡아보도록 하자. 각 방향으로 쏘아보내는 타키온들 중 임의로 하나씩 골라 그 타키온들의 시공간상의 경로가 만들어내는 초평면을 time slice로 하는 좌표계를 만들어보는 것이다.[각주:4]이렇게 좌표계를 건설하는 것은 dS 공간은 등방적이기 때문에 처음에 쏘아보내는 타키온들의 운동량 분포만 충분히 매끄럽게 만들면 얼마든지 가능하다. 정의상 이 좌표계에서 시간에 해당하는 좌표 t가 상수인 초평면 위를 움직이는 타키온들은 한 점에서 만난다.


이렇게 건설한 좌표계에서 t=0인 초평면을 잡고 운동량의 시간 성분이 0인 타키온을 A라고 이름붙인 뒤 쏘아보내기로 하자. 이 타키온은 언젠가는 모든 타키온들이 만나는 점, 대척점에 도달할 것이다. 대척점에 도달한 뒤에도 이 타키온이 그릴 경로를 이어그려 보자. 가장 쉬운 방법은 타키온 A를 쏘아보낼 때 같이 쏘아보낸 타키온 중 대척점에서 A와 정 반대의 운동량을 갖는 타키온 B를 골라낸 뒤, 타키온 A의 경로를 연장해가면 타키온 B의 경로를 거슬러올라가게 된다고 생각하는 것이다. 어차피 t=0인 초평면 위에 모든 운동이 제한되어 있고, 모든 타키온의 경로는 직선이니, 직선의 접선에 대한 정보만 있으면 그 직선을 완전히 기술할 수 있을테니 말이다. 이 두 해석을 조합하면 관성운동하는 타키온은 처음 운동을 시작한 점으로 다시 돌아오게 된다는 결론을 내릴 수 있다. 어떻게 생각해 보면 당연한 결과이다. AdS 공간에서 universal cover를 취하지 않을 경우엔 closed timelike geodesic이 만들어지니, dS 공간에서는 closed spacelike geodesic이 만들어지는 것을 예상할 수 있었어야 한다.


결론적으로, 해당 arXiv 글의 결과는 'dS 공간은 모든 spacelike geodesic은 loop를 만든다'는 기하학적인 명제를 다르게 해석한 것이라고 할 수 있다. 타키온이 만드는 경로가 bound되어 있으니 무한한 시간동안 살아남지 못하는 것은 당연한 결과인 셈이다.

  1. 이 time slice가 시간에 해당하는 좌표가 상수인 초평면일 경우 해당 좌표계에서 타키온의 시간 성분 운동량은 0이다. [본문으로]
  2. 각기 방향으로 쏘아보낸다는 것은 임의의 운동량으로 쏘아보낸다는 의미이다. [본문으로]
  3. n이 1이 아닐 때 성립하는 것은 타키온들의 움직임을 1+1차원 평면 위에 한정시켜 이 평면 위의 모든 타키온들이 같은 타키온 고유 시간에 만난다는 것을 보인 후 이 곡면을 돌려서 나머지 차원 방향에 대해서도 성립한다는 것을 보이면 된다. [본문으로]
  4. 이건 타디온들을 이용해 synchronous frame을 만드는 과정과 거의 동일하다. [본문으로]
Posted by 덱스터

페이스북 타임라인에 쌍둥이 역설과 관련이 깊은 질문들이 올라와서 이런저런 생각을 해봤다. 이 글은 대충대충 쓸거라 일반상대론에 대한 지식이 어느 정도 있어야 읽을 수 있다는 것을 미리 알려드리며.




쌍둥이 역설이야 다들 아실테니 설명을 제끼기로 하자. 그렇다면 쌍둥이 역설의 기하적인 의미는 무엇일까? (약간의 비약을 넣어) 기하적으로 접근하면 '평면에서는 두 직선을[각주:1] 두 번 교차시킬 수 없다'는 것을 의미한다.


두 직선을 두번 교차하게 만드는 방법은 공간을 휘는 것이다. 예컨데 구에서 서로 다른 직선 둘을 그리면 두 점에서 교차하게 된다. 일반상대론에서는 중력이 공간을 휘어주는 역할을 하고, 직선은 중력을 따라 자유낙하하는 물체의 궤적이다. 일반상대론에서 직선의 길이는 자유낙하하는 물체의 고유시간이다.


이제 휘어진 공간에서 두 직선의 길이를 비교해 보자. 가장 간단하게 생각해볼 수 있는 방법은 지구를 이용해 공간을 휜 뒤 A는 지구의 원궤도에, B는 머리 위로 똑바로 던져서 다시 받는 궤도에[각주:2] 놓되 조건을 잘 맞추어서 같은 시간 같은 점에서 출발한 A와 B가 조금 뒤 같은 점에서 다시 만나도록 하는 것이다. 같은 시공간상의 점에서 출발한 두 직선-A와 B가 만드는 시공간상의 궤적-이 다시 한 점에서 만났을 때, 두 직선의 길이는 과연 같을 것인가? (계산을 해보지는 않았지만) 일반적으로 다르리라고 예상할 수 있다. 쌍둥이 역설일까? 물론 아니다. A가 그린 직선과 B가 그린 직선은 분명히 다르기 때문에[각주:3] A가 그린 직선의 길이와 B가 그린 직선의 길이가 다른 것이 문제가 될 이유는 없다.


문제를 더 꼬아보자. A가 그린 직선과 B가 그린 직선을 구분할 수 없다면? 그런 종류의 공간으로 더 시터르 공간(de Sitter space: dS)와 반-더 시터르 공간(anti-de Sitter space: AdS)이 있다.[각주:4] 이 공간들 위에서 두 물체 A와 B가 직선을 그리며 운동할 때 A가 그리는 직선과 B가 그리는 직선은 근본적으로 구분이 불가능하다. 따라서 쌍둥이 역설이 생기지 않으려면 (1) A가 그리는 직선과 B가 그리는 직선은 절대로 만나지 않던가(dS공간이 여기에 해당한다) (2) A가 그리는 직선과 B가 그리는 직선이 만났을 때 두 직선의 거리는 똑같아야 한다(AdS공간이 여기에 해당한다).


재미있는 점은 (2)의 경우 A와 B의 상대속도에 무관하게 같은 고유시간 뒤에 다시 만나게 된다는 부분. 이건 다음과 같이 증명할 수 있다. 우리는 A 위에 앉아있다고 하고, B와 C를 준비한다. 이제 B와 C를 (A에 대해) 같은 속력으로 날리되 방향은 다르게 한다. 그리고 공간은 대칭적이므로 B와 C는 동시에 A에 도착하게 된다. 그런데 B와 C 모두 관성운동을 했으므로, 우리는 B나 C 위에 앉아서 이 과정을 구경해도 된다. C에서 이 과정을 볼 경우 A와 B는 일반적으로 다른 속력을 가지고 관성운동을 하므로, 임의의 상대속력을 갖고 출발한 두 관성운동은 항상 같은 고유시간 뒤에 다시 만나게 된다.[각주:5]




결론: 일반상대론에서의 쌍둥이 역설으로부터 'AdS 공간에서의 한 점에서 출발하는 모든 timelike geodesic은 다른 한 점으로 수렴하며, 그 고유길이(고유시간)은 모두 같다'는 결론을 내릴 수 있다.




P.S. 고전역학에서는 harmonic oscillator가 정확히 똑같은 현상을 보인다. 우주상수를 넣고 아인슈타인 방정식의 구면대칭적인 해를 찾을 때 나오는 답의 $g_{00}$항이 1(또는 convention에 따라 -1)에서 벗어나는 정도를 Newtonian potential로 해석할 수 있는데, 이 potential 항이 harmonic oscillator의 potential을 갖는다는 것과 연결지어 생각할 수 있다.

  1. 상대론에서 '중력(0일 수도 있다)만을 받으며 운동'하는 점입자의 궤적은 직선(geodesic - 정확히는 time-like geodesic)이다. 단지 3차원에서 사는 사람의 눈에는 직선으로 보이지 않는 것일 뿐. [본문으로]
  2. purely radial motion이라고 생각하면 된다 [본문으로]
  3. 예를 들어 A와 B는 각각 자유낙하를 하면서 공간의 리만 곡률텐서의 값을 읽어볼 수 있다. A가 읽는 곡률은 일정하겠지만 B가 읽는 곡률은 위치에 따라 달라진다. [본문으로]
  4. 관성운동(본문의 직선을 그리는 운동)을 하는 모든 입자가 자신이 정지한 좌표계에서 똑같은 공간을 보려면 시공간의 곡률을 만들어주는 stress-energy tensor가 metric tensor의 상수배여야 한다. maximal symmetry를 가정하면 Lorentz boost에 해당하는 임의의 좌표변환을 하더라도 모양이 변하지 않는게 metric밖에 없기 때문. [본문으로]
  5. 정확한 증명(a.k.a. 수학적 증명)을 하려면 (v의 속력에서 시작했을 때/c=1) 상대속도 0에서 상대속도 2v/(1+v)까지의 모든 운동이 같은 고유시간에 도착한다는 것을 보인 뒤(각도 문제다), 이걸 반복하면 임의의 u<1도 포함된다는 것을 보이면 된다. [본문으로]
Posted by 덱스터

Lense-Thirring effect가 과제로 나와서 이책 저책을 찾아보다가 Fermi-Walker transport란걸 알게 되었다. 검색을 조금 돌려보니까 이런 논문도 나오는데, 이 논문까지 읽을 필요는 없을듯. Fermi-Walker transport의 식은 다음과 같이 주어진다.

\[\frac{D_F A^{\mu}}{Ds}=(w^{\mu} u_{\nu}-u^{\mu}w_{\nu})A^{\nu}\] \[\mathbf{u}=\frac{d}{ds}, \mathbf{w}=\nabla_{\mathbf{u}}\mathbf{u}\] \[s \text{ is (natural) parametrisation of the curve; }\mathbf{u}\cdot\mathbf{u}=1\]


notation이 이것저것 섞여있긴 한데 알아들을 분들은 다 알아들으리라 믿고(...)


그래서 이게 뭐냐? 위키백과 항목에는 '평행이동(parallel transport)의 일반화'라고 서술되어 있지만 그 말은 별로 옳지 않아 보인다. 그림으로 보는게 가장 이해하기 편할 듯.



평행이동을 곡면좌표계(curvilinear coordinates)에서 유도하는 과정을 보면 위의 그림이 된다.



그리고 이게 Fermi-Walker transport. 이동시킬 곡선에 평행한 성분은 계속 평행하고 수직한 성분은 계속 수직하게 이동시키는 과정. 따라서 이동시키는 곡선이 '직선'(혹은 측지선-geodesic)인 경우 Fermi-Walker transport는 평행이동과 같아진다. Fermi-Walker transport의 식 유도는 벡터 $\mathbf{A}$를 가져다가 곡선의 접선(tangent)인 $\mathbf{u}$에 평행한 성분과 수직한 성분으로 나눈 뒤 수직한 성분의 변화율을 $\mathbf{u}\cdot\mathbf{A_\perp}=0$을 미분해서 얻으면 된다. 감이 안 잡히면 LPPT Problem book in Relativity and Gravitation의 문제 11.7에서 풀어주고 있으니 그 책을 확인해보는 것도 좋을듯. 이 책은 어둠의 경로가 아니더라도 http://www.nrbook.com/relativity/에서 볼 수 있다.

'Physics > Concepts' 카테고리의 다른 글

Frobenius Theorem in General Relativity  (0) 2016.09.29
Particles in Curved Space  (1) 2016.08.08
Computation and Heat  (2) 2014.06.23
Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
Posted by 덱스터

일반물리학2 기말고사에서 양자역학과 (특수)상대론을 다루는 것을 보고 멘붕했는데(전 왜 배운 기억이 없을까요 =_=;;)[각주:1] 채점을 맡은 문제에서 틀린 사람이 너무 많아서 해설지를 써보았습니다. 스캔 상태가 엉망인 것과 악필인 것은 감안하시고...



sol.pdf





4.(a) 폭이 $L$인 1차원 무한 포텐셜 우물의 내부( $0<x<L$)에서 자유로이 움직일 수 있는 양자입자가 있다. 양자입자의 바닥상태 에너지가 0이 될 수 없음을 불확정성 원리를 이용해서 간단히 설명하라.


이 문제는 하이젠베르크의 불확정성 원리에 대한 이해를 물어보는 문제였습니다. 표준적인 방법은 위치-운동량 불확정성 원리를 이용하는 것인데, 사람에 따라서는 시간-에너지 불확정성을 이용하더군요. 문제는 시간-에너지 불확정성은 위치-운동량 불확정성과는 전혀 다르게 해설한다는 것이지만요(그래서 전부 오답처리).




8. (a) 철수가 광속에 가까운 속력 $v$로 일정하게 달리는 우주선을 타고 먼 별을 향해 여행을 떠난다. 지상에 남아 있는 영희는 철수에게 일정한 간격 $T$로 빛신호를 보내 안부를 전한다. 우주선에 타고 있는 철수는 빛 신호를 얼마의 간격으로 받고 있을까?


평범한 상대성이론 문제입니다. 상대론 문제를 풀 때 가장 중요한 건 "내가 누구 관점에서 문제를 풀고 있더라?"를 끝까지 기억하는거죠. 이게 엉켜버리면 난리가 나고요. 여러가지 방법으로 답을 구하는 방법을 적어보았습니다.


사실 마지막 '기하학적 풀이'에는 4-벡터를 이용한 해도 적어볼까 했지만 처음부터 설명하는건 무리라고 판단해서 생략. 사실 4-벡터를 내적해서 값을 구하는 짓을 하게 되면 불변량들을 가지고 숫자놀음을 하게 되기 때문에 식이 절대로 엉키지 않습니다. Landau 2권에서 retarded potential을 구할 때 이 방법을 쓰는 것으로 기억하고 있는데, 가장 논리를 따라가기 힘들었던 파트중 하나였죠.

  1. 물론 제가 들은건 1학년 상대로 4-벡터를 가르치던 고급물리였습니다만(다같이 멘붕) 양자는 한 기억이 없어요... [본문으로]

'Physics' 카테고리의 다른 글

간단한 어록 정리  (0) 2015.12.20
네 귀중한 교훈들 - 스티븐 와인버그  (8) 2014.02.23
GRE Physics 문제  (0) 2013.09.29
양자장론 참고자료  (0) 2013.01.05
전자기학 교재(?)  (0) 2010.01.28
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함