'2021/10'에 해당되는 글 1건

  1. 2021.10.25 IR divergence of Coulomb potential

This series is divergent; therefore, we may be able to do something with it. -- Oliver Heaviside

 

$\frac{1}{r}$꼴을 갖는 Coulomb potential은 IR 발산이 있는 것으로 유명하다. 좀 더 구체적으로 말하자면, 학부 역학 수준에서 계산할 수 있는 궤도방정식을 풀어 얻는 Rutherford scattering의 미분단면적(differential cross-section)을 계산할 경우 다음과 같은 $\sin^{-4} (\theta/2)$의 꼴을 갖는다는 것이 알려져 있다.

$$ \frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4 (\theta/2)} $$

이 식을 적분하여 얻는 총산란단면적(total cross-section)은 발산한다.

$$ \sigma_{\text{tot}} = \int \frac{d \sigma}{d \Omega} d \Omega \propto \int \frac{d(\cos \theta)}{\sin^4 (\theta/2)} \to \infty$$

양자역학에서 Coulomb potential이 주어졌을 때의 산란문제를 풀 때도 이 성질과 관련된 현상이 나타난다. Griffiths 양자역학에서는 Coulomb potential을 Yukawa potential의 질량이 없는 극한으로 생각하기 때문에 등장하지 않지만 Landau 3권이나 교수님 세대의 메인 레퍼런스(...)란 느낌이 있는 Shiff책을 뒤적이다 보면 asymptotic region에서 파동함수가 평면파인 $e^{ikz}$로 수렴하는 것이 아니라 로그가 붙은 추가적인 위상항(phase factor)이 등장하는 것을 볼 수 있다.

$$ \psi \sim e^{ikz + (i/k) \log [k(r-z)]} $$

교재에서는 이런 Coulomb potential의 IR 발산에 대해 'Coulomb potential이 장거리 상호작용(long-range interaction)이기 때문에 발생한다'는 설명을 써놓지만, 구체적으로 무한원점에서 0으로 수렴하는 다른 potential들과 어떻게 다른지에 대해 설명하는 경우는 드물다[각주:1]. 왜 이런 현상이 일어나는지 고전역학적으로 이해하는 것이 이 포스트의 목표.

 

---

 

Coulomb potential이 주어졌을 때 그 potential을 따라 움직이는 시험 입자(test particle)의 궤도방정식을 푸는 문제는 몇 안 되는 정확하게 풀 수 있는 고전역학 문제이다. 심지어 궤도방정식 위키백과 페이지가 있을 정도. 시간에 대한 거리의 미분방정식을 각도에 대한 거리의 미분방정식으로 바꾼 뒤 $u = 1/r$이란 변수변환으로 조화진동자 방정식으로 바꾸는 과정이나 이렇게 얻은 궤도방정식으로부터 충돌 파라메터(impact parameter)에 대한 산란각(scattering angle)의 방정식을 얻는 과정은 많은 교재에서 충분히 다루고 있으니 여기서는 생략하기로 하자[각주:2].

 

여기서는 eikonal 근사의 변종으로 Coulomb potential에서의 산란을 풀어보자. Eikonal은 기하광학에서 빛의 경로를 계산하기 위해 쓰는데, WKB 근사라고 생각해도 좋다. 여담으로 eikonal은 해밀턴이 기하광학을 풀기 위한 수학적 기법을 다듬으면서 같은 기법이 고전역학에도 적용될 수 있음을 알아차리면서 현재의 해밀턴역학과 심플렉틱기하를 만들어내는 계기가 되었고, 슈뢰딩거의 파동방정식은 기하광학의 eikonal 방정식에서 영감을 얻었다고 한다.

 

고전역학이든 양자역학이든 산란 문제에서 eikonal 근사란 '직선 근사'라고 생각하면 된다[각주:3]. 구체적으로 이야기한다면, 입자의 경로를 1) 아무런 산란이 없는 직선 경로에 2) 산란을 일으키는 포텐셜의 효과를 집어넣어 얼마나 직선 경로에서 벗어나는지 섭동계산으로 구하는 방법이 되겠다.

 

이제 Coulomb potential에서의 고전적인 산란 문제에 eikonal 근사를 적용해보자. Landau 1권에서는 뉴턴역학을 기반으로 eikonal 근사를 사용하지만 여기서는 해밀턴역학을 기반으로 eikonal 근사를 써보기로 한다[각주:4]. 먼저 해밀토니안을 다음과 같이 적는다.

$$ H = \frac{p^2}{2} - \frac{k}{r} $$

해밀턴 운동방정식은 금방 적을 수 있다.

$$ \dot{\vec{r}} = \{ H , \vec{r} \} = \vec{p} \,,\, \dot{\vec{p}} = \{ H , \vec{p} \} = - \frac{k \vec{r}}{r^3} $$

이 역학계의 산란문제를 eikonal 근사로 푸는 것은 다음과 같은 ansatz를 이용해 섭동전개 파라메터 $k$에 대해 푸는 것으로 생각할 수 있다.

$$ \vec{p} = \vec{p}_0 + k \vec{p}_1 (t) + k^2 \vec{p}_2 (t) + \cdots \,,\, \vec{r} = \left( \vec{b} + \vec{p}_0 t \right) + k \vec{r}_1 (t) + k^2 \vec{r}_2 (t) + \cdots $$

여기서 $\vec{p}_0$는 asymptotic region에서의 운동량이고, $\vec{b}$는 충돌 파라메터의 역할을 한다. 이렇게 해석하려면 $\vec{b} \cdot \vec{p}_0 = 0$이란 조건을 추가로 얹어주는 것이 좋다. 섭동이 없는 원래 경로에서 시간 $t$의 원점을 재정의하는 것으로 이 조건을 맞출 수도 있고.

 

이제 위의 방정식을 풀어보자. 방정식을 풀려면 경계조건을 줘야 하는데, 가장 먼저 생각할 수 있는 경계조건은 다음 경계조건이다.

$$\vec{r}_{i>0} (-\infty) = \vec{p}_{i>0} (-\infty) = 0$$

언듯 보기에는 문제가 없는 경계조건으로 보인다. $t = -\infty$는 산란이 일어나기 한참 전의 과거이므로 섭동이 없는 원래 경로와 일치해야 한다는 직관과도 맞고. 하지만 이 경계조건은 절대로 맞춰줄 수 없다. Coulomb potential의 꼬리가 너무 길기 때문. 우선 이 문제를 무시하고 그냥 방정식을 풀어보자.

 

$\vec{p}_1$에 대한 운동방정식은 다음과 같이 주어진다.

$$ k \dot{\vec{p}}_1 (t) = - \frac{k (\vec{b} + \vec{p}_0 t)}{(b^2 + p_0^2 t^2)^{3/2}} $$

이 식에 처음 얹은 경계조건을 넣고 풀면 다음과 같은 답을 얻는다.

$$ \vec{p}_1 (t) = - \int_{-\infty}^t \frac{\vec{b} + \vec{p}_0 \tau}{(b^2 + p_0^2 \tau^2)^{3/2}} d\tau = -\frac{1}{ab^2} \left[ \left( 1 + \frac{at}{\sqrt{1 + a^2 t^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 t^2}} \right] $$

쌍곡함수로 변수변환을 하면 적분을 쉽게 할 수 있다. 문제를 풀 때 새로 정의한 변수들은 다음과 같다.

$$ \hat{b} := \frac{\vec{b}}{b} \,,\, \vec{a} := \frac{\vec{p}_0}{b} \,,\, \hat{a} := \frac{\vec{a}}{a} = \frac{\vec{p}_0}{p_0} $$

$k^1$ 차수에서 운동량 변화는 단순히 $\vec{p}_1 (+\infty)$를 읽어내면 된다.

$$\Delta \vec{p}_1 := \vec{p}_1 (+\infty) = - \frac{2 \hat{b}}{ab^2} = - \frac{2 \vec{b}}{p_0 b^2}$$

마찬가지로 $k^2$ 차수에서 운동량 변화는 $\vec{p}_2 (+\infty)$를 읽어내면 되는데, $\vec{p}_2$는 $\vec{r}_1$에 대한 해가 있어야 풀 수 있다[각주:5].

$$k^2 \dot{\vec{p}}_2 = - k^2 \left[ \frac{\vec{r}_1}{r_0^3} - \frac{3 \vec{r}_0 (\vec{r}_0 \cdot \vec{r}_1)}{r_0^5} \right]$$

따라서 $\vec{r}_1(t)$를 풀어야 한다. 우선 식을 적어보자.

$$\vec{r}_1 (t) = \int_{-\infty}^{t} \vec{p}_1 (\tau) d\tau = - \frac{1}{ab^2} \int_{-\infty}^{t} \left[ \left( 1 + \frac{a\tau}{\sqrt{1 + a^2 \tau^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 \tau^2}} \right] d\tau$$

눈치가 빠른 분들은 알아차리셨겠지만, 이 정적분은 잘 정의되질 않는다. 두번째 항이 $\sim \tau^{-1}$의 꼴을 하고 있기 때문에 무한대에서 로그 발산이 있기 때문이다. 첫번째 항은 정적분으로 처리하고 두번째 항은 정적분을 포기하고 부정적분으로 처리할 경우 다음 식을 얻는다.

$$\vec{r}_1 (t) = - \frac{ e^{\sinh^{-1} (at)}}{a^2 b^2} \hat{b} + \left. \frac{\sinh^{-1}(at)}{a^2 b^2} \hat{a} \right|_{-\infty}^{t}$$

$x \in \mathbb{R}$일 때 $\sinh^{-1} x = \log (x + \sqrt{1+x^2})$이므로, 두번째 항의 발산은 예상대로 로그 발산임을 확인할 수 있다. 이 로그 발산은 다음과 같이 이해할 수 있다. Coulomb potential에서의 에너지 보존을 생각하면 무한대에서의 입자의 속력을 $v$라고 할 때 asymptotic region에서의 입자의 속력 $v$는 다음과 같다.

$$ \frac{v^2}{2} = \frac{v_0^2}{2} + \frac{k}{r} \Rightarrow v \sim v_0 + \frac{c}{r}$$

따라서 아무런 힘을 못 느끼고 $v_0$의 속력으로 이동하는 섭동이 없는 경로와 Coulomb potential의 영향을 받아 섭동이 있는 경로 사이의 변위(displacement)를 계산하면 다음과 같아진다.

$$ \Delta r \sim \int (v - v_0) dt \sim \int \frac{c}{r} dt \sim \int \frac{1}{dr/dt} \frac{c}{r} dr \sim \frac{c}{v_0} \log r $$

$r^{-1}$보다 빠르게 떨어지는 다른 potential의 경우 입자가 멀어져 가면서 potential로부터 받는 영향이 충분히 빠르게 줄어들어 섭동이 없는 경로와 potential의 영향을 받은 경로 사이의 변위가 일정하게 유지된다. 하지만 Coulomb potential의 경우 potential의 영향이 0으로 줄어드는 속도가 느려 아무리 멀어지더라도 변위의 차이가 계속 누적되는 것이다. 발산하는 총산란단면적이나 양자역학 산란 문제를 풀 때 평면파에 로그만큼의 위상항이 추가로 붙는 현상은 이 흔적이라고 이해할 수 있다.

 

---

 

여튼, $k^2$ 차수의 운동량 변화를 계산하는 문제로 돌아오자. 발산이 있으면 잡으면 되는 법이다.

 

가장 단순한 해법은 $t = - \infty$를 기준점으로 잡지 않고 $t = 0$를 기준점으로 잡는 것이다. 실제로 worldline quantum field theory(WQFT)를 도입해서 post-Minkowskian 계산을 하는 팀에서 이런 접근을 취하고 있는데, 이 접근법은 일관성이 있다는 장점이 있지만 asymptotic variable을 새로 계산해야 하는 번거로움이 있다.

 

다른 해법은 로그 발산을 미리 섭동계산의 경계조건에 반영하는 것이다. 구체적으로는 다음과 같이 로그 발산을 $\vec{r}_1^{(0)}$로 뽑아내고 $\vec{r}_1^{(1)}$에 대한 방정식을 푸는 것.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) \,,\, \vec{r}_1^{(0)} (t) = \frac{\sinh^{-1} (at)}{a^2 b^2} \hat{a} $$

로그 발산을 갖는 경계조건을 $\vec{r}_1^{(0)}$로 뽑아내었기 때문에 남는 경계조건은 $\vec{r}_1^{(1)} (-\infty) = 0$이 되며, $\vec{r}_1 (t)$는 다음과 같이 풀린다.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) = - \frac{ at + \sqrt{1 + a^2 t^2}}{a^2 b^2} \hat{b} + \frac{\log \left( at + \sqrt{1 + a^2 t^2} \right)}{a^2 b^2} \hat{a} $$

위 해를 $\vec{p}_2$에 대한 운동방정식에 집어넣으면 $k^2$ 차수의 운동량 변화를 구할 수 있다. 적분구간이 $(-\infty, +\infty)$로 대칭적이라는 것을 이용하면 식을 좀 다 단순화할 수 있다.

$$ \Delta \vec{p}_2 = \int_{-\infty}^{+\infty} \left[ \frac{1}{a^2 b^5 (1 + a^2 \tau^2)} - 3 \frac{\sqrt{1 + a^2 \tau^2} - a\tau \log (a\tau + \sqrt{1 + a^2\tau^2})}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{b} d\tau \\ - \int_{-\infty}^{+\infty} \left[ \frac{3a^2\tau^2}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{a} d\tau $$

얼핏 봐서는 적분이 꽤 복잡하게 보이는데, 의외로 적분하고 나면 값 자체는 단순하다.

$$ \Delta \vec{p}_2 = - \frac{2 \vec{a}}{a^4 b^5} = - \frac{2 \vec{p}_0}{p_0^4 b^2}$$

$k$를 전부 살린 산란 후 운동량은 다음과 같은데

$$\vec{p} (+ \infty) = \left( 1 - \frac{2 k^2}{p_0^4 b^2} \right) \vec{p}_0 - \frac{2k}{p_0 b^2} \vec{b} + \mathcal{O}(k^3)$$

제곱해보면 $k^2$ 차수에서 에너지 보존이 성립한다는 것도 확인할 수 있다.

$$ \left| {\vec{p} (+ \infty)} \right|^2 = p_0^2 + \mathcal{O}(k^3) $$

  1. Landau 3권에는 있다 (566쪽 주석). 이 포스트와는 다른 설명을 보고 싶다면 란다우를 보세요. [본문으로]
  2. 진짜로 상관없는 여담이지만, 고등학생을 대상으로 한 물리 경시대회가 있던 시절 궤도방정식을 푸는 문제가 나온 적이 있다. 문제에 전혀 손도 못 댄 것이 분해서 그날 돌아오자마자 Marion의 해당 파트를 잡고 수식 유도과정을 전부 외워버렸는데, 다음 해 경시대회에는 궤도방정식과 관련된 문제가 전혀 등장하지 않았다. [본문으로]
  3. 다만 Weinberg의 양자역학 교재에서는 WKB근사로 취급하고 있어서 약간 다르다. Landau 3권의 quasi-classical 근사로 말하고 있다고 봐도 좋을 듯. [본문으로]
  4. 따로 작성하던 노트가 해밀턴역학 기반이라 뉴턴역학으로 옮겨적기 귀찮아서(...) 그렇다. 뉴턴역학에 적용하는 것은 연습 문제로 남긴다. [본문으로]
  5. 고전역학 교재에서 eikonal 근사로 산란문제를 푸는 것을 배웠고 Coulomb potential에 적용하는 연습문제도 풀어봤는데 IR 발산을 본 기억이 없다면 1차 근사까지만 배웠기 때문일 가능성이 높다. [본문으로]
Posted by 덱스터

댓글을 달아 주세요

이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday111
Today5
Total710,494

달력

 « |  » 2021.10
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            

글 보관함