'2020/02'에 해당되는 글 1건

  1. 2020.02.23 Canonical transformations and equivalence of Hamiltonians

최근 주로 계산하고 있는 것은 산란진폭(scattering amplitude)을 이용해서 천체를 점입자로 근사했을 때 두 천체 사이의 상호작용을 얻는 일. 정확히는 천체를 점입자로 근사하고 두 점입자가 만드는 계(system)의 유효 해밀토니안(effective Hamiltonian) 계산이다. 중력포텐셜 계산이라고 이야기하기도 한다. 대충 이 논문에서 한 일에 스핀을 던져넣는 작업인데, 주로 저번에 했던 일에서 제대로 정리하지 못했던 부분을 청소(...)하고 있다.

 

중력의 성가신 점은 좌표변환이 중력의 게이지 대칭이라는 것이다. 덕분에 중력포텐셜은 게이지를 어떻게 잡느냐에 의존하는 물리량이 되어버리고 만다. 산란진폭을 이용해서 구하는 중력포텐셜은 $\vec{p} \cdot \vec{r}$이 등장하지 않는 isotropic gauge의 포텐셜. 물론 그렇다고 중력포텐셜을 마음대로 쓸 수 있다는 것은 아니다. 서로 생긴 꼴이 다른 중력포텐셜이 실제로는 같은 동역학을 준다면, 두 중력포텐셜의 표현식 사이를 이어주는 canonical transformation이 존재해야 한다. 그러니까 $H_1 (p,q)$가 $H_2 (P,Q)$와 동등하다면 적당한 변수변환 $P(p,q), Q(p,q)$가 존재해서 $H_2 (P,Q) = H_1(p(P,Q),q(P,Q))$이면서 canonical conjugate relation인 $\{ P, Q \}_{\text{P.B}} = \{ p, q\}_{\text{P.B}} $이 (이제부터 Poisson bracket의 subscript인 P.B는 생략하도록 하자) 유지되어야 한다는 것. 흥미로운 점은 서로 다른 해밀토니안을 비교하는데 다음과 같은 식을 만족하는 generator $g$가 존재하는지의 여부로 두 해밀토니안이 물리적으로 동등한지 확인하기도 한다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

예를 들면 이 논문의 4.1장에서 하는 논의라던가. 뒷 항은 $n-1$-PN order에서 보이지 않는 항들이다. 이 식을 어떻게 이해할 수 있을까?

 

의외로 답은 간단하다. $p, q$에서 $P,Q$까지 이어지는 continuous canonical transform을 상상해보자. 대충 $\tilde{p}(p,q;\alpha), \tilde{q}(p,q;\alpha)$란 연속함수가 존재하고 $\forall \alpha, \{ \tilde{p}, \tilde{q} \} = \{ p,q \}$면서 $\tilde{p}(p,q;0) = p, \tilde{p}(p,q;1) = P(p,q)$를 만족한다고 형식화할 수 있다. 이 경우 해밀토니안은 $H=H_1(p,q)=H_2(P,Q)$로 고정되어 있는 상태이다. 해밀토니안이 만드는 flow는 그대로 있고 그 flow를 기술하는 canonical variable들의 coordinate frame이 이동하는 것으로 볼 수 있다.

 

이제 관점을 바꿔보자. canonical variable들의 coordinate frame을 고정하고 해밀토니안이 만드는 flow를 흐르게 시키는 관점이다. 정확히는 $\tilde{p},\tilde{q}$를 좌표축으로 고정한 뒤 $H(\tilde{p},\tilde{q};\alpha)=H_1(p(\tilde{p},\tilde{q}),q(\tilde{p},\tilde{q}))$가 변수 $\alpha$에 대해 어떻게 흐르는지 보는 것이다. 이 경우 $\frac{d}{d\alpha}$는 symplectic vector field이므로 여기에 대응되는 (local) generator $G$가 존재한다. 식으로 쓰자면

$$ \exists G, \frac{\partial}{\partial \alpha} H(\tilde{p},\tilde{q};\alpha) = \{ H(\tilde{p},\tilde{q};\alpha) , G \} $$

이 되는 셈. 다르게 표현하면 다음의 벡터장(vector field) 방정식을 만족하는 벡터장 $\{ G, \bullet \}$가 존재한다고 할 수 있다.

$$ \exists G, \frac{\partial}{\partial \alpha} \{ H , \bullet \} = \mathcal{L}_{\{ G, \bullet \}} \{ H, \bullet \} $$

위 식에서 $\mathcal{L}$은 리 미분(Lie derivative)을 의미한다.

 

위에 적은 미분꼴의 방정식을 차분(difference)꼴로 바꾸면 우리가 이해하고 싶었던 식이 된다.

$$ H_2(p,q) - H_1(p,q) = \{ H_1 , g \} + \mathcal{O} (G^n, p^{2n})$$

미분방정식을 차분방정식으로 바꾸는 과정의 논리적 구멍을 메꾸고 싶다면 다음과 같은 미분형식(differential form) 꼴로 바꾼 방정식을 고려할 수 있다.

$$ \delta H(\alpha) = \{ H(\alpha), g \} \,,\, g = G \delta \alpha $$

문제에 perturbation parameter $\epsilon$이 존재한다고 가정할 경우, 위의 방정식은 다음과 같은 차분방정식으로 변경시킬 수 있다.

$$ \Delta H = \{ H, g \} \,,\, \frac{\Delta H}{H} \sim \frac{g}{H} \sim \epsilon $$

Post-Newtonian expansion의 경우 이 perturbation parameter는 $\epsilon = \frac{G\mu}{r c^2} \simeq \frac{p^2}{\mu^2 c^2}$이 된다. 이름대로 $\frac{1}{c}$을 perturbation parameter로서 이해할 수 있다는 의미.

 


23Feb2020 수정사항: 미분형식 꼴로 바꾼 방정식을 이용한 논증 추가.

댓글을 달아 주세요

1 

글 보관함

카운터

Total : 685,830 / Today : 19 / Yesterday : 59
get rsstistory!