'원 위의 임의의 두 점을 골랐을때의 거리의 기하평균'을 구할 일이 있어서 다음과 같은 적분을 할 일이 생겼다.


\[ \int_0^1 \log ( \sin \pi x ) dx \]


매스매티카에 돌려보면 이 적분의 값은 $ - \log 2 $라고 한다. 어째서인지 직접 계산해서 보일 수 있을 것만 같은 값이라서 적분을 이리 고치고 저리 고치는 삽질을 좀 하다가 직접 증명이 가능하다는 것을 확인하는데 성공했다. 생각보다는 간단한 트릭이었음.


우선 적분을 다음과 같은 꼴로 바꾼다.


\[ \int_0^1 \log ( \sin \pi x ) dx = 2 \int_0^{1/2} \log ( \sin \pi x ) dx = \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


이 적분은 이런 꼴로도 변환할 수 있다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \int_0^1 \log ( 2 \sin \frac{\pi x}{2} \cos \frac{\pi x}{2} ) dx \]


로그를 분해한 후 코사인에 대한 적분에서 변수변환 $x \to 1-x$을 적용하면 다음과 같이 정리된다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \log 2 + 2 \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


두 표현을 잘 정리하면 원하는 답을 얻는다.


\[ \therefore \int_0^1 \log ( \sin \pi x ) dx = - \log 2 \]

'Mathematics' 카테고리의 다른 글

행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01
이항전개와 수치근사  (1) 2015.05.01
TAG

댓글을 달아 주세요

1 2 3 4 5 6 7 8 ··· 35 

글 보관함

카운터

Total : 687,571 / Today : 55 / Yesterday : 82
get rsstistory!