'힐베르트 변환'에 해당되는 글 1건

  1. 2020.08.23 Analyticity, causality, Kramers-Kronig relations, and all that 2

제목은 아는 사람들은 다 아는(?) 책인 PCT, Spin and Statistics, and All That을 참고했다. 물론 나는 읽다 만(...) 책이지만. 이 포스트의 출발점은 다음 트윗 타래. 한번 정도는 정리해두는 것이 좋겠다는 생각이 들었다.

'세상에서 가장 아름다운 공식'이란 별명이 있는 오일러 공식의 장점(?)은, 네이피어수 (혹은 자연상수) $e$ 위에 올라가는 수학적 물체(mathematical object의 번역으로 이게 맞는지 모르겠다) $a$가 무엇이든 $a^2 = -1$이란 조건을 만족하기만 하면 된다는 것이다.

\[ a^2 = -1 \Rightarrow e^{a \theta} = \cos(\theta) + a \sin(\theta)\]

여기서 $a$는 일반적인 숫자(복소수체에서는 확실히 성립하는데 일반적인 체에서도 되는지는 모르겠다)나 행렬(사원수quaternion는 $2 \times 2$ 행렬과 대응관계를 맺기 때문에 사원수에서도 위의 식이 적용된다), 혹은 클리포드 대수Clifford algebra의 원소(기하대수geometric algebra 계산에서 이 성질을 이용한다) 등 무엇이든 될 수 있다. 그냥 1이 잘 정의되어 있고 제곱해서 -1이 되는 물체가 있다고 하면 언제든 쓸 수 있다는 의미. 다른 특기할 점은 위 공식이 다루기 까다로운 경우가 많은 삼각함수trigonometric function를 지수함수exponential function로 바꾸는 역할을 한다는 것이다. 따라서 주기성을 갖는 물리량이 있는 물리계에서는 위 공식을 반대로 적용해 삼각함수로 써지는 물리량을 지수함수의 '실수부'로 놓는 작업을 자주 한다.

\[ \cos(\theta) = \text{Re}[e^{i \theta}] \]

여기까지는 학부 2학년 수준에서 얼마든지 다루는 내용.

 

전기공학에서는 교류회로를 다룰 때 단위허수 $j$를 $j^2 = -1$으로 도입해 전류와 같은 물리량을 다음과 같이 쓰곤 한다.

\[ I(t) = \text{Re}[I_0 e^{j (\omega t + \delta)}] \]

일반적으로 쓰는 단위허수 $i$가 있는데 왜 하필 $j$일까? 트윗 타래에서 언급했듯 $j = -i$라고 여기는 경우가 있기 때문이다. $(-1)^2 = +1$이므로, 애초부터 단위허수에는 부호를 선택하는 자유도가 남아있었던 셈. $j=-i$라고 여기는 이유는 푸리에 전개가 다음과 같은 꼴을 취하기 때문이다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{-i \omega t} \]

처음 식과 비교해보면 지수함수에 올라간 항은 $-i \omega t$로, $j \omega t$와 부호 차이를 갖고있다. $j = -i$란 인식은 이 차이에서 비롯된 것. 그렇다면 왜 푸리에 전개는 위와 같은 꼴을 택하는 것일까? 예컨대 다음과 같은 표현도 수학의 관점에서 볼 때 푸리에 전개로서는 딱히 결격사유가 없다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{+i \omega t} \]

문제는 인과율causality로부터 얻는 주파수 공간frequency space의 함수 $\tilde{F}(\omega)$가 갖길 원하는 해석적 성질analytic property에 있다. 일반적으로 푸리에 전개를 통해 해석하는 (실)함수 $F(t)$는 입력에 따라 어떤 출력을 예상할 수 있는지를 나타내는 반응함수response function이고, 인과율과 계의 시간불변성time invariance을 가정할 경우 시간차 $t$가 양수일 경우에만 0이 아닌 값을 갖는다.

\[ t<0 \Rightarrow F(t) = 0 \]

그리고 이렇게 '한쪽 방향으로만 값을 갖는 함수'는 라플라스 변환Laplace transform을 쓸 수 있다. 이 방향은 나중에 브롬위치 적분Bromwich integral을 이야기할 기회가 생기거든 돌아오기로 하자. 여튼, 주파수 공간의 함수 $\tilde{F}(\omega)$는 다음과 같이 주어진다.

\[ F(t) = \sum_{\omega} \tilde{F}(\omega) e^{\mp i \omega t} \Rightarrow \tilde{F}(\omega) = \int F(t) e^{\pm i \omega t} dt \]

일반적으로 $\tilde{F} (\omega)$는 실수값만 갖지는 않고, 실수부와 허수부를 모두 갖는다. 따라서 다음과 같은 질문을 해볼 수 있다; 어차피 복소수 값을 갖는 복소함수라면, $\tilde{F} (\omega)$를 복소해석학complex analysis을 통해 다뤄 볼 수는 없을까? 안타깝게도 $\tilde{F}$는 전체 $\omega$ 복소평면에서 해석적인 성질을 가질 수는 없다. 단순하게 복소수 $\omega = \omega_1 + i \omega_2$를 실수부와 허수부로 나누어서 분석해보자.

\[ \tilde{F}(\omega_1 + i\omega_2) = \int F(t) e^{\mp \omega_2 t \pm i \omega_1 t} dt \]

위 표현은 $\mp \omega_2 < 0$일때 $F(t)$가 어지간히 이상한 함수가 아닌 이상 수렴한다. 반대로, $\mp \omega_2 >0$일때 많은 경우 발산해버리고 말 것이다. 따라서, 다음과 같은 결론을 내릴 수 있다.

  • \[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 위쪽 반평면upper half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.
  • \[ \tilde{F}(\omega) = \int F(t) e^{- i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 아래쪽 반평면lower half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.

일반적으로 $\tilde{F}(\omega)$는 위쪽 반평면에서 해석적인 성질을 갖는 것이 바람직하다고 여겨지기 때문에 푸리에 변환의 부호가 $F(t) = \sum_{\omega} \tilde{F} e^{-i\omega t}$로 결정되는 것이다. 힐베르트 변환Hilbert transform을 이용해 반응함수의 실수부와 허수부를 관계짓는 Kramer-Kronig 관계식 또한 이 부호의 선택에 의존한다. 'Kramer-Kronig 관계식을 증명하기 위해 그리는 적분 컨투어contour를 왜 위쪽 반평면에서 닫아야만 하는가?'란 질문에 대해 답을 주기 때문. 이유는 적분에 들어가는 integrand가 위쪽 반평면에서 완전히 해석적인 성질을 가지므로, 위쪽 반평면으로 컨투어를 닫아야 0이 되기 때문이다. 아래쪽 반평면에서는 무슨 일이 일어날지 모른다는 것은 또 다른 이야기.

\[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \,,\, \text{Im} [\omega_0] \le 0 \Rightarrow \frac{\tilde{F} (\omega)}{\omega - \omega_0} \, \text{analytic on upper half plane} \]

이렇게 사소해 보이는 부호 하나에도 그 부호를 선택해야만 하는 이유가 있기 마련이다.

Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.11
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함