'입자물리'에 해당되는 글 1건

  1. 2021.01.13 힘과 가상입자의 교환 2

표준적인 물리 커리큘럼을 따라 배우면 상호작용에 대한 관점이 대체로 다음 진화(?)과정을 거치게 된다.


힘 → 장과 포텐셜 → 가상입자의 교환


힘을 장과 포텐셜로 다시 이해하게 되는 과정은 대부분의 경우 문제 없이 넘어가는 반면, 장과 포텐셜에 의한 상호작용을 가상입자의 교환으로 다시 이해(?)하게 되는 과정은 많은 경우 '그렇다고 하니 그런가보지 뭐...'라고 넘기게 된다. 이렇게 근본적인 부분에 대해서는 의문을 갖고 제대로 된 설명을 요구하는 것이 마땅함에도 불구하고 말이다[각주:1].


상호작용을 가상입자의 교환으로 이해하는 이유는 무엇일까. 우선은 굴러다닐 수 있는 의자에 앉은 두 사람끼리 캐치볼을 하면 주고 받는 공의 운동량에 의해 서로 멀어지는 과정으로 설명하는 사기(...)는 잠시 잊어버리기로 하자. 이 관점을 제대로 이해하기 위해서는 다음과 같은 배경지식이 필요하다.


1. 양자역학의 섭동이론(perturbation theory)

2. 질량이 없는 입자의 에너지를 이해할 정도의 특수상대론

3. 상호작용을 매개하는 장의 양자화와 Fock space


학부 수준에서는 3번이 좀 무서울 수 있는데 어차피 필요한 배경지식은 다 제공할 예정이니 학부 수준의 양자역학만 제대로 알고 있으면 된다. 대표적인 먼거리힘(long-range force)인 중력이나 전자기학은 스핀 때문에 쓸데없이 복잡하니 질량이 없는 유가와(Yukawa) 상호작용을 생각하기로 하자. 목표는 다음을 보이는 것이다.


유가와 입자에 해당하는 장의 원천(source)이 되는, 거리 $r$만큼 떨어진 두 질점 사이에 유가와 입자의 '교환'에 해당하는 효과에 의해 $\Delta E = -g^2/4 \pi r$만큼의 에너지가 추가로 발생한다.


다르게 말하자면 $1/r$꼴의 포텐셜이 '단일 양자의 교환'으로 볼 수 있는 과정을 통해 만들어지는 것을 확인하자는 것이다. 질점은 정지해 있다고 가정할 예정이니 상대론까지 갈 필요 없이 비상대론적인 계산으로 충분하다 (다만 편의상 $c=1$로 둘 예정).



편의상 두 질점을 $A$와 $B$라고 하고, $A$는 원점 $\vec{0}$에, $B$는 원점이 아닌 $\vec{r} \neq \vec{0}$에 두기로 하자. 그리고 유가와 입자에 해당하는 장(유가와 장[각주:2])을 $\phi(t, \vec{x})$라고 하자 (시간 $t$에 대한 의존성은 중요하지 않으니 앞으로 표시하지 않겠다). 이런 계의 동역학(dynamics)을 기술하기 위해 제일 먼저 할 수 있는 일은 라그랑지안(Lagrangian)을 적는 것이다.

$$ L = L_{A+B} + \int d^3 \vec{x} \frac{[\dot{\phi}(\vec{x})]^2 - [\vec{\nabla} \phi(\vec{x})]^2}{2} - g \int d^3 \vec{x} ~ \phi(\vec{x}) J(\vec{x}) $$

$L_{A+B}$는 질점 $A$와 $B$의 라그랑지안이고 어차피 움직이지 않는다고 가정할 예정이니 구체적인 생김새는 알 필요가 없다. 실제 계산에서는 그냥 에너지 $E$를 줄 예정. 중간의 적분은 유가와 장의 자유 라그랑지안(free Lagrangian)이다. 섭동이론에서는 나머지 부분을 무시한 채 이 부분을 양자화하는 것으로 유가와 입자를 얻는다. 구체적으로는 $\phi (\vec{x})$를 다음과 같이 전개하게 된다(이 유도과정을 알고 싶다면 Tong의 양자장론 노트를 읽으면 좋다.).

$$ \phi (\vec{x}) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t + i \vec{k} \cdot \vec{x} } + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t - i \vec{k} \cdot \vec{x} } \right] $$

현재 고려하고 있는 유가와 입자는 질량이 없는 입자이기 때문에 $E(\vec{k}) = |\vec{k}|$란 조건을 만족한다. 일반적으로는 $E(\vec{k}) = \sqrt{\vec{k}^2 + m^2}$. 여기서 $a_{\vec{k}}$와 $a^\dagger_{\vec{k}}$는 흔히 mode operator라고 부르는데, 단순조화진동자(simple harmonic oscillator)의 대수를 만족한다.

$$ [a_{\vec{k}_1} , a^{\dagger}_{\vec{k}_2}] = (2 \pi)^3 \delta^3 (\vec{k}_1 - \vec{k}_2) $$

단순조화진동자의 스펙트럼은 자연수로 나타낼 수 있는데, 장론에서는 이 자연수가 '그 운동량을 갖는 입자가 몇 개 있는가'를 나타내는 숫자가 된다[각주:3]. 예컨대 생성 연산자 $a^\dagger_{\vec{k}}$를 상태 $| \psi \rangle$에 작용하게 되면 얻는 상태 $ a^\dagger_{\vec{k}} | \psi \rangle$은 $| \psi \rangle$에 비해 운동량 $\vec{k}$를 갖는 유가와 입자가 하나 더 있는 상태가 된다.


마지막 적분인 $-g \int \phi J$는 질점 $A$와 $B$가 유가와 장의 원천임을 나타낸다. 상호작용의 세기 $g$는 섭동전개를 하기 위해 도입한 형식적인 파라메터. 어차피 질점 $A$와 $B$는 움직일 일이 없으니 $J(\vec{x}) = \delta^3(\vec{x}) + \delta^3 (\vec{x}-\vec{r})$로 취급하면 되는데, 나중에 논의를 편하게 하기 위해 $J_A (\vec{x}) = \delta^3 (\vec{x})$와 $J_B (\vec{x}) = \delta^3 (\vec{x} - \vec{r})$로 나누기로 하자. 각각 $J_{A/B}$는 질점 $A/B$가 유가와 장의 원천이 됨을 나타낸다. 이제 유가와 장에 대한 전개식을 집어넣어 interaction Hamiltonian을 계산할 경우 다음 식을 얻는다.

$$ H_{int} = g \int \phi J = g \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2 E(\vec{k})}} \left[ a_{\vec{k}} e^{- i E(\vec{k}) t } \left( 1 + e^{ i \vec{k} \cdot \vec{r} } \right) + a^{\dagger}_{\vec{k}} e^{ i E(\vec{k}) t } \left( 1 + e^{ - i \vec{k} \cdot \vec{r} } \right) \right]$$ 

위의 식을 찬찬히 뜯어보면 $H_{int}$는 주어진 상태 $| \psi \rangle$에 작용할 경우 유가와 입자를 하나 더하거나 ($a^\dagger | \psi \rangle$) 하나 빼는 ($a | \psi \rangle$) 연산자라는 사실을 알 수 있다. 따라서 $| \psi \rangle$가 명확한 유가와 입자의 갯수를 갖는 상태일 경우 $\langle \psi | H_{int} | \psi \rangle = 0$임을 알 수 있다.


여기까지 왔으면 모든 준비가 끝났다. 양자역학 섭동계산을 통해 유가와 입자가 없이 질점 $A$와 $B$만 존재하는 상태 $| \psi^{(0)} \rangle$의 $g^2$ order 에너지 보정을 찾으면 된다. 섭동전개의 유도과정을 설명하는건 귀찮(...)으니 여기에서 위키백과의 유도과정을 보자. $H_{int} = gV$로 적고 결과만 옮겨적을 경우 다음과 같이 쓸 수 있다.

$$ E (g) = E^{(0)} + g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{1}{E^{(0)} - (E^{(0)} + E(\vec{k}))} \left| \frac{1 + e^{i \vec{k} \cdot \vec{r}}}{\sqrt{2 E(\vec{k})}} \right|^2 + O(g^3) $$

여기서 $\langle \psi^{(0)} | V | \psi^{(0)} \rangle = 0$는 위에서 설명한 $H_{int}$의 성질로부터 나온다. 유가와 입자의 에너지가 $E(\vec{k}) = |\vec{k}|$라는 것을 이용하면 다음과 같이 정리할 수 있다.

$$ E (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2 + e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) $$

이제 위의 식에 해석을 줘 보자. 적분 분자의 2는 잘 살펴보면 $H_{int}^A = g \int \phi J_A$로 질점 $A$에 의해 유가와 입자가 생성되었다가 다시 $H_{int}^A$에 의해 질점 $A$가 유가와 입자를 흡수하여 처음 상태로 돌아가는 과정과 질점 $B$에 대해 같은 현상이 일어나는 과정으로부터 나왔음을 알 수 있다. 자기 자신과 상호작용하는 과정이기 때문에 이를 자체에너지(self-energy) 보정이라고 한다.

$$ E_{s} (g) = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{2}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{| \langle k | H_{int}^A | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} + \frac{| \langle k | H_{int}^B | \psi^{(0)} \rangle |^2}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

실제 계산을 수행하려고 하면 $\int d^3 k / k^2$꼴의 적분이기 때문에 이 값은 발산함을 알 수 있다. 양자장론의 모든 곳에서 튀어나오는 무한대중 하나가 바로 이런 자체에너지 보정이다. 우리가 실제로 관심을 갖는 것은 질점 $A$와 $B$ 사이에 유가와 장이 상호작용을 매개함으로서 생기는 에너지이므로, 자체에너지 보정은 좌변으로 넘겨서 잊어버릴 수 있다. 따라서 실제 에너지 변화는

$$ E (g) - E_s (g) - E^{(0)} = - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} + O(g^3) =  - \frac{g^2}{4 \pi r} + O(g^3) $$

으로, 다음과 같이 다시 적을 수 있다.

$$ - g^2 \int \frac{d^3 \vec{k}}{(2 \pi)^3} \frac{e^{i \vec{k} \cdot \vec{r}} + e^{-i \vec{k} \cdot \vec{r}}}{2 k^2} = \sum_{k \neq \psi^{(0)}} \frac{ \langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle + \langle \psi^{(0)} | H_{int}^A | k \rangle \langle k | H_{int}^B | \psi^{(0)} \rangle}{E^{(0)} - (E^{(0)} + E(\vec{k}))} $$

우변의 분자에 등장하는 $\sum_{k} |k \rangle \langle k|$이 identity operator를 분해한 것으로 볼 수 있음을 고려하면 분자에 등장하는 표현들, 예컨대

$$\langle \psi^{(0)} | H_{int}^B | k \rangle \langle k | H_{int}^A | \psi^{(0)} \rangle$$

를 $| \psi^{(0)} \rangle$ 상태에서 $A$ 질점이 (가상의) 유가와 입자를 하나 만들어낸 다음 $B$ 질점이 그 입자를 흡수하는 과정으로 볼 수 있다. 이런 해석을 바탕으로 장에 의한 상호작용을 그 장에 해당하는 가상입자의 교환으로 이해하게 된다.

  1. '나는 질문 할 생각을 못했는데!'라고 좌절할 필요는 없다. 당장 이 글을 쓰고있는 사람도 그렇듯 이런 근본적인 부분을 몇개 놓치더라도 물리로 어떻게든 밥은 벌어먹고 살 수 있으니까(...). [본문으로]
  2. 스칼라장(scalar field)이란 표현이 더 자주 쓰이지만 장의 이름은 그다지 중요한 것이 아니니 대충 넘어가기로 하자. [본문으로]
  3. 여담으로 미분방정식인 슈뢰딩거 방정식을 풀어서 파동함수를 구해놓고 왜 굳이 생성-소멸 연산자(creation-annihilation operator)를 이용해서 조화진동자를 대수적으로 다시 푸는지 의문을 가졌던 적이 있었는데, 양자장론을 배우면서 그 의문이 해소되게 되었다. [본문으로]
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함