'블랙홀'에 해당되는 글 1건

  1. 2021.04.04 블랙홀은 진짜 시공간에 뚫린 "구멍"일까? 3

얼마 전 계산을 하나 추가하고 내용을 완전히 갈아엎다시피 한 논문을 재투고했는데 에디터가 전혀 반응을 보이지 않고 있다. 에디터 반응을 기다리는 동안 생각도 정리할 겸 간략하게 적어보는 정리 포스트. 포스트 작성 도중 레프리에게로 넘어간 것을 확인했다. 좋은 리포트가 돌아오기만을 기다려야...

 

---

 

"블랙홀은 머리카락이 없다(no-hair)"는 말이 있다. 단순하게 설명하면 '블랙홀은 질량, 스핀, 전하에 의해 완전히 결정된다'는 의미이고, 좀 더 수학적인 세부사항을 덧붙이면 '사건의 지평선이 특이점(singularity)이 아닌 일반상대론의 진공해는 알려진 (Schwarzschild/Kerr/Reissner-Nordström/Kerr-Newman) 블랙홀 해만 존재한다'가 된다. 블랙홀을 시공간상의 "구멍"처럼 말하곤 하는데, '텅 빈 허공이 무슨 특징을 가질 수 있겠느냐'는 관점에서 보면 블랙홀에게 머리카락이 없다는 말은 꽤나 그럴듯하게 들린다. 물론 그래서 양자중력을 고민하는 사람들이 머리를 쥐어뜯고 있지만.

 

물론 흔히 말하는 "블랙홀은 머리카락이 없다"의 블랙홀은 온 우주에 딱 그 블랙홀 하나만 존재하는 이상화된 조건에서의 블랙홀에 대한 정리이기 때문에 실제로 우리가 보는[각주:1] 블랙홀에게도 적용된다고 이야기하려면 약간의 논리적 도약이 필요하다. 주변에 아무것도 없는 홀로 남겨진 블랙홀과 주변에 온갖 물체들이 날아다니는 실제 우주에 존재하는 블랙홀이 비슷한 성질을 갖고 있으리라 믿는 것은 합리적이지만, 그 둘이 비슷한 수준이 아니라 완전히 동일하다고 주장하는 것은 아무래도 다른 이야기가 되지 않겠는가?

 

그렇다면 좀 더 현실적인 상황에 놓인 블랙홀에 대해 '머리카락이 없다'는 것은 무슨 의미일까? 이상화(idealised)된 해로서의 블랙홀과 현실적인 블랙홀의 차이는 후자의 경우 블랙홀이 주변에 날아다니는 물체의 중력에 의해 영향을 받는다는 것이다. 따라서 '머리카락이 없다'는 성질의 현실적인 상황으로의 일반화로서 '주변 물체로부터 받는 영향이 없다'는 성질로 해석하는 가능성이 있다. 그리고 실제로 일반상대론의 블랙홀들은[각주:2] 이 성질을 만족한다.

 

---

 

바닷가에 충분히 오래 있었던 사람이라면 누구나 몸으로 경험하게 된다. 거대한 달의 중력을.

 

달과 함께 바닷가에 바닷물이 들이닥치고 빠져나가는 현상을 조석(潮汐) 혹은 밀물과 썰물이라고 한다. 조석은 달이 지구에 미치는 중력이 일정하지 않기 때문에 생기는 현상이다. 만유인력은 뉴턴의 역제곱법칙을 따르므로, 달에 가까울수록 달의 중력을 강하게 느끼고 달에서 멀수록 달의 중력을 약하게 느끼게 된다. 이렇게 위치에 따라 조금씩 변하는 달의 중력에서 평균값을 빼면 달을 향하는 방향으로는 상대적으로 당기는 힘이 작용하고 달과 수직한 방향으로는 상대적으로 압축하는 힘이 작용하는 것처럼 보이게 되는데, 이를 조석력(潮汐力, tidal force)이라고 한다. 여담으로 일반상대론을 이해하는데 조석력은 매우 중요한데, 유한한 크기를 갖는 자유낙하하는 물체는 등가원리에 의해 중력 그 자체는 경험할 수 없어도 '중력의 차이' 즉 조석력은 경험하기 때문이다. 일반상대론 강의에서 geodesic deviation을 적어도 한 번 정도는 언급하고 지나가는 이유이기도 하며, 가끔씩 보이는 '자유낙하하는 물체가 측지선(geodesic)을 따라 움직이지 않으니 등가원리가 위배된다'는 주장에 대해 내가 '아니 그건 아니지...'라 반응하는 이유이기도 하다. 등가원리는 크기가 없는 이상화된 자유낙하하는 물체에 대해서만 적용되지 시공간의 곡률을 느끼는 유한한 크기의 점입자로 근사된 물체에 적용되는 것이 아니니까.

 

여튼 조석력으로 다시 돌아와서, 조석력을 받는 물체가 그 조석력에 대해 어떻게 반응하는지를 나타내는 물리량을 러브 수(Love number)라고 한다. 아우구스투스 에드워드 휴 러브(Augustus Edward Hough Love)의 지구에 대한 조석력의 영향에 대한 연구로부터 붙은 이름으로, 하필 이름이 이름이라 수많은 논문들의 말장난(...)의 원천이 되기도 한다.

 

손으로 만져가며(?) 실험하기 좋은 전자기학에 빗대보자면 러브 수는 전기 감수율(electric susceptibility)에 대응된다. 물체에 전기장을 걸 경우 전기장에 의해 물체 내부의 전하들 중 양전하는 전기장이 향하는 방향으로, 음전하는 전기장이 향하는 반대 방향으로 힘을 받게 된다. 따라서 전기장에 의해 물체 내부의 전하들이 움직이게 되며, 그 결과로서 물체 전체적으로 전하의 불균형이 발생하는 것을 유전 분극(dielectric polarisation)이라고 한다. 그리고 전기장이 충분히 작을 경우 이 현상에 의해 발생한 극성이 전기장의 세기와 정비례할 것으로 기대할 수 있는데, 이 비례상수를 전기 감수율이라고 한다.

 

그렇다면 러브 수는 조석력에 대한 어떤 반응을 가리키는 것일까? 우리가 가장 쉽게 관찰할 수 있는 조석력에 대한 반응은 아무래도 밀물과 썰물, 혹은 해수면 높낮이의 반응이다. 이를 다르게 말한다면 '물체의 표면이 조석력에 의해 변형된다'고 할 수 있는데, 이렇게 물체의 표면이 조석력에 어떻게 반응하는지를 나타내는 물리량을 1종 러브 수(Love number of first kind) 혹은 러브 수 $h$라고 표기한다. 블랙홀의 경우에는 1종 러브 수가 조석력에 의해 사건의 지평선의 위치가 움직이는 것을 나타낸다고 할 수 있으며, 이렇게 정의되는 1종 러브 수는 고전적으로 유한한 값을 갖는다는 것이 알려져 있다.

 

조석력에 의해 물체가 변형되는 예

 

다만 우리에게 좀 더 쓸모있는 러브 수는 2종 러브 수(Love number of second kind) 혹은 러브 수 $k$로, 2종 러브 수는 조석력을 받는 물체가 중력의 원천(source)으로서 어떻게 변형되는가를 나타낸다. 앞서 잠시 언급했던 전자기학으로 돌아가보자. 전기 감수율은 (전기적으로 중성인) 물체가 전기장 안에 놓였을 때 전기장에 의해 획득하게 되는 전기쌍극자(electric dipole)를 나타내는데, 이것을 '외부 전기장에 의해 물체가 얻는 유도된 쌍극자 모먼트(induced dipole moment)'로 볼 수 있다. 다시 중력으로 돌아오면, 2종 러브 수는 외부 중력원에 의해 받는 조석력으로 물체가 얻는 유도된 질량 극자 모먼트(induced multipole moment)를 나타낸다고 할 수 있다. 편의상 사중극자(quadrupole)에 대응되는 $k_2$를 예로 들자면, 한 방향으로는 확장하고 그 수직한 방향으로는 압축하는 조석력을 받는 물체가 중력원으로서 어떻게 찌그러지는지를 나타낸다고 할 수 있다.

 

---

 

최근 러브 수에 대한 사람들의 관심이 다시 증가한 이유 중 하나로 중력파 관측이 있다. 이론적으로 민감도가 충분히 높은 지상 간섭계 중력파 관측소에서 얻은 중력파 데이터로부터 중성자별의 2종 러브 수를 결정할 수 있기 때문이다. 실제로 LIGO/VIRGO 증력파 관측소에서 중성자별의 쌍성 병합(neutron star binary coalescence)에 대해 관측한 중력파 데이터를 보면 조석 변형률 파라메터(tidal deformability parameter)에 대한 분석이 있는 것을 확인할 수 있다. 조석 변형률은 결국 중성자별의 내부 구조에 의해 결정되기 때문에 중성자별을 이루는 핵물질(nuclear matter)의 상태방정식(equation of state)에 대한 정보가 일부 반영되고[각주:3], 따라서 양자색역학에 대한 보다 심도 있는 이해에 관심을 갖는다면 핵물질의 상태방정식을 결정하는 관측량 중 하나가 될 2종 러브 수에 대해서도 어느 정도 관심을 가질 수 밖에 없는 셈이다.

 

그렇다면 블랙홀의 경우에는 어떨까? 블랙홀의 경우에는 모든 2종 러브 수가 사라진다는 것이 알려져 있다. 블랙홀이 회전하고 있을 경우에 대해서는 약간의 논란이 있었지만 현재로서는 없는 것이 맞다는 쪽으로 결론이 내려지는 분위기이고. 그리고 포스트의 앞에서 잠시 언급한 '머리카락이 없다'는 성질의 현실적인 블랙홀에 대응되는 버전으로서 이 성질을 이해할 수도 있다. 다른 가능한 관점으로 사라지는 2종 러브 수를 일종의 미세 조정(fine-tuning)으로 이해할 수도 있는데, 이건 최근 러브 수가 사라지는 것과 관련있는 숨겨진 대칭성이 있다는 주장이 나온 상태라 받아들이기는 미묘하다. 어쨌든 러브 수가 사라진다는 것은 블랙홀이 실제로 "구멍"과도 같아서 외부에서 어떤 자극을 주어도 그 자극에 대한 정보가 구멍 속으로 사라진다는 것으로 보아도 좋지 않을까?

 

---

 

여기까지는 고전적인 블랙홀의 이야기였다. 그리고 양자장론이 우리에게 가르켜 준 것이 하나 있다고 한다면, 고전적인 성질은 많은 경우 양자역학을 고려하기 시작하면 더 이상 성립하지 않는다는 것이다. 그렇다면 블랙홀의 사라지는 러브 수도 양자역학을 고려하면 실제로는 0이 아닌 것은 아닐까?

 

그리고 최근에 재투고를 위해 수정한 논문이 정확히 이 문제를 건드리고 있다. 양자효과를 고려하면 블랙홀의 러브 수는 실제로는 0이 아니라 유한한 값을 얻는다는 것이 주된 결론. 앞서 블랙홀의 러브 수가 사라지는 것을 머리카락이 없는 성질로 보거나 숨겨진 대칭성에 의한 성질로 이해할 수 있다는 이야기를 했는데, 이 관점의 연장선상에서 블랙홀이 실제로는 양자역학적인 머리카락을 갖는다고 해석하거나 숨겨진 대칭성에 anomaly가 있다고 해석할 수 있을 것이다. 구체적인 계산방법에 대해서는 다음 기회에 언급하기로.

 

가끔 반농반진으로 "우리는 양성자보다 블랙홀을 더 잘 이해하고 있다"는 농담을 하곤 하는데, 어쩌면 그 이유가 블랙홀에 대해서는 양자역학에 의한 효과를 깊게 생각하지 않았기 때문일지도 모르겠다는 생각이 든다.

  1. 얼마 전까지만 해도 블랙홀을 "본다"고 하면 무슨 소리냐고 한 소리 들었겠지만, EHT 이후 우리는 실제로 블랙홀을 "보게" 되었다. 과학의 힘은 대단해! [본문으로]
  2. 4차원으로 한정지을 경우. 다른 차원의 블랙홀은 약간 다른 성질을 갖는 경우가 있다. [본문으로]
  3. 다만 아주 많은 정보를 담고 있지는 않다. 2종 러브 수가 핵물질의 상태방정식과는 관련 없는 관계식(I-Love-Q 관계식이라고 한다)을 만족하는 것으로 보이기 때문. inspirehep.net/literature/1220233 [본문으로]
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2025.1
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

최근에 올라온 글

최근에 달린 댓글

글 보관함