'엔트로피'에 해당되는 글 3건

  1. 2010.11.22 열역학 제 2 법칙과 엔트로피 증가의 법칙 3
  2. 2010.08.03 엔트로피 - 고전적인 정의 7
  3. 2008.12.21 제레미 리프킨, 엔트로피 4
2010/08/03 - 엔트로피 - 고전적인 정의
이제 어째서 제 2 법칙이 엔트로피가 생성된다는 법칙으로 이어지는지 살펴보자. 우선 전 글에서 우리가 확인한 두 가지 사항은 다음과 같다.
 
1. 카르노 기관을 뛰어넘는 효율을 갖는 기관은 없다.

2. 이상적인 과정만 존재하는 경우에는 
$$\oint\left(\frac{\delta Q}T\right)_{\text{ideal}}=0$$
이 성립하고, 그 값을 엔트로피의 변화량이라 정의할 수 있다.

이제 우리가 증명해야 할 것은 위의 두 가지 중간결론만 가지고 다음 결론을 이끌어내어야 한다는 것이다.
$$dS\ge\frac{\delta Q}{T}$$
이 말은 이렇게도 해석할 수 있다.
$$0=\oint dS\ge\oint\frac{\delta Q}{T} \\0\ge\oint\frac{\delta Q}{T}$$
이 결론을 확인하기 위해 임의의 실제과정 사이클을 생각하고, 그 사이클에서 흡열과정과 출열과정을 나누어보자. 편의상 흡열과정은 완전히 이상적이지만 출열과정이 실제과정이라고 하자. 그렇다면 열기관의 효율은 이상과정의 효율을 넘을 수 없으므로
$$\eta_\text{real}=1-\frac{Q_{l_\text{real}}}{Q_h}\le\eta_\text{ideal}=1-\frac{Q_{l_\text{ideal}}}{Q_h} \\\therefore Q_{l_\text{real}}\ge Q_{l_\text{ideal}}$$
라는 결론을 얻는다. 즉, 출열과정에서는 
$$\int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}$$
이 성립한다는 것이다.[각주:1] 물론 아래에 T라는 함수가 붙기 때문에 저 적분이 항상 옳은가는 엄밀하게 증명되지 않았다. 하지만 적분경로를 나누어 각각 T가 일정하다고 볼 수 있는 미세한 구간으로 분할하면
$$\int\delta Q_\text{real/exo}\le\int\delta Q_\text{ideal/exo}\leftrightarrow \frac1T\int\delta Q_\text{real/exo}\le\frac1T\int\delta Q_\text{ideal/exo}\\\leftrightarrow \int\left(\frac{\delta Q}{T}\right)_\text{real/exo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/exo}$$
이므로, 이 부등식은 어떤 적분경로를 택하더라도 성립한다고 할 수 있다. 비슷한 논의를 이용해 흡열과정에서도 같은 부등호가 성립함을 보일 수 있다.
$$eq=\eta_\text{real}=1-\frac{Q_l}{Q_{h_\text{real}}}\le\eta_\text{ideal}=1-\frac{Q_l}{Q_{h_\text{real}}} \\\therefore Q_{h_\text{real}}\le Q_{h_\text{ideal}} \\\therefore\int\left(\frac{\delta Q}{T}\right)_\text{real/endo}\le\int\left(\frac{\delta Q}{T}\right)_\text{ideal/endo}$$
그러므로 일반적으로
$$\int\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\int\left(\frac{\delta Q}{T}\right)_\text{real}$$
혹은 어떤 적분경로를 택하더라도 위의 부등식이 성립해야 하기 때문에
$$\left(\frac{\delta Q}{T}\right)_\text{ideal}\ge\left(\frac{\delta Q}{T}\right)_\text{real}$$
이 성립한다. 맨 처음에 증명하고자 했던 식의 우변은 이상적인 과정과 실제 과정을 전부 포함하므로 이렇게 증명은 완료되었다.
$$dS\ge\frac{\delta Q}{T}$$
 
 
 
 


훈련소에서 없는 기억을 되살려가며 해낸 증명인데[각주:2], 배울 때에는 조금 다르게 배웠었던 것으로 기억한다. 나중에 기회가 되면 다시 찾아봐야지 뭐.
  1. 적분에서는 출열과정의 열이 음수로 계산된다. 효율을 따질 때에는 방출된 열의 절대값만을 따졌으므로 부등호가 반전된다. [본문으로]
  2. 첫 주인 가입교 기간 동안에는 할 일이 없다. [본문으로]

'Physics > Concepts' 카테고리의 다른 글

Dirac Equation(1)  (4) 2013.12.15
볼츠만 분포  (0) 2013.09.20
엔트로피 - 고전적인 정의  (7) 2010.08.03
Hamiltonian formulation(1)  (4) 2010.07.14
Contravariant/Covariant/Metric tensor와 Kronecker delta  (2) 2010.02.28
Posted by 덱스터
2008/12/21 - 제레미 리프킨, 엔트로피

 

무질서도로 번역되는 엔트로피(Entropy)란 개념은 열역학 제 2법칙과 밀접한 관계를 갖습니다. 제 2법칙이 엔트로피 증가의 법칙으로 통용되는 것만 보아도 그것을 쉽게 알 수 있겠지요.

엔트로피에 대한 접근은 크게 두가지로 볼 수 있습니다.(정보 이론에서도 다룬다고 하는데 이건 무시.. 세스 로이드의 『프로그래밍 유니버스』란 책에서 간략하게 다루고 있는데 그걸 참고하셔도 좋을 듯 합니다.) 하나는 완전한 고전역학적인 접근이고 다른 하나는 완전한 통계역학적인 접근입니다. 고전역학적인 접근은 우리가 어느 물체에 대해 평균적인 값으로 측정하는 물리량(압력이나 부피, 밀도 등)을 기반으로 엔트로피를 정립해 나가는 것이고 통계역학적인 접근은 분자들의 상태의 수를 이용해서 엔트로피를 정립해 나가는 방식입니다. 보통은 통계역학적인 접근, 혹은 미시적인 접근을 주로 사용하지만 좀 독특한(일반적인 접근인 미시적인 접근과는 반대되는 접근이라는 점에서) 접근방식인 고전역학적인 접근을 써 보려고 합니다.[각주:1]

 

먼저 카르노 기관(순환Cycle)을 짚고 넘어가야 합니다. 카르노 기관은 엔트로피라는 개념이 정립되기 전부터 등장해서 엔트로피를 고전적으로 정의하는데 커다란 버팀목이 되었던 가상적인 엔진입니다. 이 엔진의 특징은 '모든 과정이 역으로 진행 가능하다'입니다.

카르노 기관(Carnot engine/cycle)

모든 과정이 역행 가능한 기관. 네 단계로 구성된다.

1. 등온팽창. 엔진과 같은 온도를 가진 열 공급원에서 에너지를 흡수한다. 같은 온도를 갖기 때문에 이 과정은 역으로 동일하게 진행될 수 있다.
2. 단열팽창. 엔진은 외부와 열 교환을 할 수 없다. 이때 팽창은 준정적Quasi-static으로 일어난다. 준정적이란 말은 평형상태와 유사하게라는 뜻으로, 이 경우에는 기체(또는 유체working fluid)의 팽창이 내부의 압력과 외부의 압력이 동일한 상태에서 일어나는 것이다. 이렇게 준정적인 과정으로 기체가 팽창할 경우 과정은 역으로 진행될 수 있다.
3. 등온압축. 엔진과 같은 온도를 가진 열 흡수원에 에너지를 방출한다. 등온팽창과 마찬가지의 이유로 역으로 동일하게 진행될 수 있다.
4. 단열압축. 단열팽창과 마찬가지로 열 교환을 할 수 없으며, 마찬가지의 조건과 이유로 과정은 역으로 진행할 수 있다.

그리고 열역학 제 2법칙의 공리가 등장합니다. 두 가지 공리가 있습니다.[각주:2]

Clausius Statement
열은 자연적으로 저온부에서 고온부로 전달될 수 없다.[각주:3]

Kelvin-Plank Statement
단일열원에서 열을 얻어 모두 일로 바꾸는 것은 불가능하다.

살펴보겠지만, 두 공리는 서로 동등한 관계를 지닙니다. 둘 중 하나만 부정되어도 다른 하나마저 부정되어야 하지요. 먼저 첫 서술을 부정해 보겠습니다. 열이 자동적으로 저온에서 고온으로 이동하는 겁니다. 그러면 어떤 순환이 두 열원 사이에서 작동하면서 저온부에 버리는 열이 고온으로 이동하면 외부에서 보기에는 고온에서 얻은 열을 전부 일로 바꾼 것으로 보이게 됩니다. 둘 째 서술이 부정되는 것이지요.

둘 째 서술을 부정해 볼까요? 단일열원에서 열을 얻어 모두 일로 바꾸는 기관을 냉동기에 연결합니다. 그러면 저온부에서 고온부로 스스로 이동하는 현상이 일어나게 됩니다. 첫 서술이 부정되는 겁니다. 결국 서로 동치라고 볼 수 있겠지요.

뭐 어찌되었든, 이를 이용하면 카르노 기관이 최고의 효율을 가진 기관이라는 것을 보일 수 있습니다. 카르노 기관은 기본적으로 외부에 영향을 미치지 않는 기관입니다. 모든 과정을 그대로 역으로 진행할 수 있기 때문이지요. 하지만 이 기관보다 효율이 좋은 기관을 도입한다면? 이런 이상적인 기관에서 일을 얻어서 카르노 기관을 역으로 진행시키는 데 사용한다면 열이 역류하는 현상이 일어납니다. 이는 Clausius의 서술에 위배되기 때문에 결국 그런 기관은 존재할 수 없다는 것이지요.

그리고 동일한 열원 사이에서 작동하는 카르노 기관들은 전부 같은 효율을 지닙니다. 하나가 다른 하나보다 더 효율이 좋으면, 하나를 냉동기로 사용하고 하나를 냉동기를 작동시키는 엔진으로 사용하면 열이 역류하는 현상을 볼 수 있겠지요. 이 역시 Clausius의 서술과 반대되기 때문에 존재할 수 없습니다.

그러면 같은 열원이란 무엇일까요? 동일한 온도를 가진 열원을 같은 열원이라고 말합니다. 그리고 카르노 기관의 효율은 그 기관이 작동하는 두 열원의 온도의 함수로 주어집니다. 이는 고온부와 저온부 그리고 그 사이에 중간단계의 열원이 존재함을 가정하고 고온부와 저온부 사이에서 작동하는 기관 하나, 고온부와 중간단계 사이에서 작용하는 기관 하나, 중간단계와 저온부 사이에서 작동하는 기관 하나를 놓은 다음 고온부에서 바로 저온부로 연결된 기관과 중간단계를 걸처 작동하는 기관 둘의 합이 같은 효율을 가져야 한다는 것을 이용해서 보일 수 있습니다.[각주:4]  고온부의 온도를 $t_h$, 저온부의 온도를 $t_l$, 중간 단계의 온도를 $t_m$이라고 한다면 저온부와 고온부 사이 그러니까 $t_h$와 $t_l$ 사이에서 작동하는 카르노 기관의 효율은 이런 꼴로 나타날 것입니다.

$$\eta_{hl}=F(t_h,t_l)=1-\frac{Q_l}{Q_h}$$

$Q$는 카르노 기관에서 들어오거나 나가는 열의 양을 말하고, 첨자는 그 온도를 말합니다. 앞으로는 편의상 열을 주고받는 비율에 초점을 맞추겠습니다. 이 열을 주고받는 비율은 다음과 같이 식의 형태로 쓸 수 있지요.
$$\frac{Q_l}{Q_h}=f(t_h,t_l)$$

중간 단계에 걸쳐있는 나머지 두 카르노 기관에 대해서도 같은 식을 써 볼 수 있습니다.
$$\frac{Q_h}{Q_m}=f(t_h,t_m) \\\frac{Q_m}{Q_h}=f(t_m,t_l)$$

그리고 효율이 같다는 것에서 다음 식을 유도할 수 있습니다.

$$\eta_{hl}=1-\frac{Q_l}{Q_h}=\eta_{h|m|l}=1-\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\frac{Q_l}{Q_h}=\frac{Q_h}{Q_m}\frac{Q_m}{Q_l} \\\therefore f(t_h,t_l)=f(t_h,t_m)f(t_m,t_l)$$

마지막 식을 다음과 같이 정리할 수 있는데

$$\frac{f(t_h,t_l)}{f(t_m,t_l)}=f(t_h,t_m)$$

이렇게 되면 좌변에서만 $t_l$이 등장하므로, $f$는 변수분리가 가능한 함수가 됨을 알 수 있습니다. $t_l$만 변화했을 때 값이 변해서는 안 되기 때문에 분모인 함수가 $t_l$에 의해 받는 영향만큼 분자의 함수가 영향받아야 되기 때문이죠. 그러면 일단 함수를 나눈 다음 생각해 봅시다. 함수 $f$를 대충 분리해서
$$f(t_1,t_2)=\phi(t_1)\theta(t_2)$$

라고 둔다면

$$f(t_h,t_m)=\frac{\phi(t_h)}{\phi(t_m)}$$

을 얻게 되지요. 그런데 우리는 온도의 측정에 제한을 둔 적이 없기 때문에 함수 $\phi$를 온도를 정의하는데 사용할 수도 있습니다. 이를 열역학적 온도라고 부릅니다.

$$T=\phi(t)$$

이제 열역학적 온도를 이용해 카르노 기관의 열효율을 정의할 수 있게 됩니다.

$$\eta_{hl}=1-\frac{T_l}{T_h}=1-\frac{Q_l}{Q_h}$$

물론 이를 이용해 기준온도를 두고[각주:5]   다른 열역학적 온도를 측정하는 것도 가능하지요. 위의 식에서 흡수/방출하는 열이 온도와 정확히 비례하기 때문입니다.

$$T_2=\frac{Q_2}{Q_1}~T_1$$

이제 엔트로피를 도입할 수 있게 됩니다. 먼저 다음 값을 한번의 카르노 순환(cycle)에 대해서 계산해 봅시다.

$$\oint \frac{\delta Q}T$$

이때 $Q$는 계 안으로 흘러들어오는 열로 정의합니다. 단열과정에서는 열이 전혀 흐르지 않기 때문에 등온과정만 생각하면 되는데, 등온과정에서 $T$는 일정하므로 적분은 다음과 같습니다.

$$\oint \frac{\delta Q}T=\frac{Q_h}{T_h}+\frac{-Q_l}{T_l}$$

(두번째 항에 음의 부호가 붙어있는 이유는 저온부로 열이 방출되기 때문입니다.) 그런데 위에서 카르노 기관의 등온과정에서 흡수하거나 방출하는 열은 온도에 비례한다고 정의내렸었죠.[각주:6] 따라서 저 값은 영이 됩니다.
$$Q\propto T \\\therefore\oint \frac{\delta Q}T=\frac{Q_h}{T_h}-\frac{Q_l}{T_l}=0$$

더군다나 어떤 열역학적인 기구라고 하더라도 이상적으로만 작동하고 원래대로 돌아오는 주기운동을 하는 경우라면 수많은 작은 카르노 기관을 모아 만들 수 있습니다. 그러므로 이상적인 경우만 존재한다면 다음 결론을 얻습니다.
$$\oint\left(\frac{\delta Q}T\right)_{\text{ideal}}=0$$

다른 뜻으로는, 위 미분값이 완전미분이라는 것이지요. 완전미분량이기 때문에 위 미분을 어떤 스칼라 함수의 미분으로 볼 수 있다는 것입니다. 스칼라 함수라면 상태에 의존하는 값이라는 의미고, 그러므로 상태에만 의존하는 이 스칼라 함수를 하나의 물리량으로 볼 수 있다는 뜻입니다. 이 물리량이 바로 엔트로피입니다. 대신 엔트로피의 차이만 정의되지 엔트로피의 절대값은 정의되지 않습니다. 위치에너지와 비슷하지요.[각주:7]

$$\left(\frac{\delta Q}T\right)_{\text{ideal}}= dS \\\therefore\oint dS=0$$

통계역학 이전의 열물리에서 엔트로피라는 물리량이 어떻게 얻어졌는지를 보이는 것은 끝났고, 열역학 제 2법칙의 또 다른 버젼인 '엔트로피는 계속 생성된다'는 다음에 다루어 보도록 하죠. 스포일러: 이건 어떤 순환이라고 하더라도 이상적인 경우보다 효율이 떨어진다는 사실을 이용해 증명합니다.


많이 오래 전에 쓰다 만 글이라 문체가 조금 다릅니다. 별로 상관없지만...-.-;;

  1. 열역학 제 1법칙에 대한 확실한 이해가 필요할 수 있습니다. 제 1법칙은 에너지 보존의 법칙과 동치입니다. [본문으로]
  2. 공리는 '증명 불가능한 가정'입니다. 수학에서도 공리를 필요로 하는 것처럼, 물리학에서도 공리를 필요로 합니다. 뉴턴역학에서는 뉴턴의 세 법칙으로 공리가 나타났지요. 양자물리에서는 슈레딩거 방정식이 공리로 이용됩니다. [본문으로]
  3. 확률적으로 가능성이 낮은 것이지 불가능한 것은 아닙니다. 열역학 제 2 법칙은 사실 진리라기보다는 확률적으로 어쩔 수 없이 성립하는 결과라는 것이 대체적인 입장이구요. [본문으로]
  4. 시험문제에 나오더군요 OTL. 노승탁, 『최신 공업열역학』4판, 문운당, p.103~105 [본문으로]
  5. 기준온도는 물의 삼중점으로 273.16K입니다. [본문으로]
  6. 보인 것이 아니라 정의한 것입니다. 열역학적 온도를 정의하면서 따라온 부가적인 정리에 가까우니까요. [본문으로]
  7. 일반상대론이 등장하면서 '절대값'이 중요해졌다는 것도 통계역학적으로 열역학을 다루기 시작하면서 엔트로피의 절대값이 중요해졌다는 것과 닮았습니다. [본문으로]
Posted by 덱스터
엔트로피엔트로피 - 8점
제레미 리프킨 지음, 이창희 옮김/세종연구원
야심한 밤, 잠도 안오고 해서 어제 MT에서 돌아오면서 얼핏 이야기가 나왔던 한 책에 대해서 말해 보려고 합니다. 제레미 리프킨의 『엔트로피』 되겠습니다. 상당히 오래된 책인데다가 마지막으로 읽은 지 1년 가까이 되었군요.

엔트로피(entropy)는 엔탈피(enthalpy - 맞는지는 모르겠군요)와 같은 어원을 공유하는 단어로, 어원은 '열'을 뜻하는 엔탈피엔(enthalpien - 아마도 맞을 겁니다)에서 나왔다고 합니다. 한문으로 번역하면 '무질서도', 즉 무질서한 정도를 나타냅니다. 여기서 물리학에서 무엇을 질서있고 무엇을 질서없다고 하는지 알아두어야 할 것 같네요. 물리학에서 질서있다는 말은 원하는 상태로 가는 방법이 적음을 이야기합니다. 무질서하다는 것은 이와 반대되는 것이니 가는 방법이 다양하다는 뜻이 되겠지요. 트럼프 카드를 예를 들어 설명하자면, 합이 3이 되는 두 장의 카드 조합이 A와 2를 합친 하나밖에 없는 반면 합이 11이 되는 두 장의 카드 조합은 A-10, 2-9, 3-8 ... 등 5개의 조합이 있으므로 상대적으로 적은 방법으로밖에 도착할 수 없는 조건인 '합이 3이 되는 카드의 조합'은 '합이 21이 되는 카드의 조합'보다 질서있다는 것입니다.

이 책에서는 하나의 법칙에서 시작합니다. 열역학 제 2법칙이라고 불리는 '엔트로피 증가 법칙'입니다. 무슨 일을 하더라도 엔트로피는 항상 증가하거나 일정하게 유지된다는 법칙이지요. 이 법칙이 시간의 흐름을 나타내는 법칙이라고 설명하기도 하는데(다른 물리법칙은 시간이 역으로 흘러도 변하지 않지만 이 법칙만은 예외이지요), 여기서는 그런 논의보다는 '항상 증가하는 것이 있다'는 점에 주목합니다. 그리고 그 '항상 증가하는 것'은 더 이상 쓸 수 없는 버려지는 것이라는 것에도 말이지요. 이렇게 버려지는 것이 존재한다면, 그것도 더 이상 쓸 수 없고 계속 늘어나기만 하는 것이라면, 어떤 조치를 취해야 할까요? 저자는 이에 대해 절약해야 한다고 말합니다. 어쩔 수 없이 만들어내는 것이라면, 최대한 적게 만들어 내야 한다는 것이지요.

이 책을 읽은 다음의 당분간동안 식사를 줄여보려고 노력했던 기억이 나네요. 나부터 쓸데 없이 소모하는 열량을 줄이자가 목적이었던가 그렇게 기억하는데, 요즘은 그냥 먹기 귀찮아서 가끔 굶는 것을 생각해 볼 때 이 책이 제 사고방식에 그렇게 많은 영향을 미치지는 않았던 것 같습니다. 사실 매우 딱딱한 책이긴 한데, 이런 종류의 책이 재미있으신 분들은 재미있게 읽으실 것 같네요. 한 200대 후반까지는 그럭저럭 읽을 만 합니다만, 이후가 좀 지루했습니다. 284페이지쯤부터 흥미를 약간 잃었던 기억이 나네요.

목차를 보니 역시 가장 기억에 남는 부분은 '엔트로피가 일정 수준 이상으로 누적된 사회는 붕괴한다'는 부분과 '컴퓨터의 예를 들어 엔트로피가 감소했다고 할 수 있을 지 모르지만, 지금 시대에 만들어진 컴퓨터들이 만들어내는 엔트로피를 총합하면 에니악이 만들어냈던 엔트로피를 상회한다'는 부분입니다. 황금의 시대에서 시작해서 철의 새대로 내려오면서 인간이 불행해졌다는 부분도 인상깊게 읽었는데, 생각해 보니 어른들은 항상 '우리 때는 그러지 않았는데 ㅉㅉㅉ'이러더군요.

이 책에 불만이라면 역시 물리학 전공자가 아니어서 그런가 엔트로피의 개념이 물리학에서 말하는 그 엔트로피가 아니라는 것입니다. 여기서는 '에너지를 소비하는 속도'에 오히려 가까운 감이 있더군요.
http://dexterstory.tistory.com2008-12-20T20:53:100.3810
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.3
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

최근에 올라온 글

최근에 달린 댓글

글 보관함