'2020/11'에 해당되는 글 3건

  1. 2020.11.30 A soft cut-off regulator
  2. 2020.11.16 다이온(dyon) 관련 잡담 약간 1
  3. 2020.11.09 한달 반의 런던과 근황 1

This series is divergent, therefore we may be able to do something with it. 

- Oliver Heaviside (quoted by Kline)

양자장론 계산을 하다 보면 발산하는 급수를 다루기 마련이다. 예컨대 다음과 같은 경우.

$$ \sum_{n=0}^{\infty} n = 0 + 1 + 2 + \cdots = ?$$

많은 끈이론 책에서는 Zeta function regularisation을 이용해서 이 값을 $-\frac{1}{12}$로 고정한다. 예외(?)라면 그냥 이 합을 $a$란 변수로 두고 target space Lorentz algebra를 이용해서 $a = - \frac{1}{12}$로 고정하는 GSW 정도랄까. 물론 Terence Tao의 블로그 글에서 볼 수 있듯 발산하는 급수를 말이 되게 하는 방법에는 cut-off function $c(n;\Lambda)$을 도입해서 cut-off independent한 부분을 읽어내는 방법 또한 존재하며, 그 방법으로 구하는 급수의 값은 위의 경우 $-\frac{1}{12}$가 되기는 한다.

$$\sum_{n=0}^{\infty} n c(n;\Lambda) = - \frac{1}{12} + O(\Lambda^2) $$

cut-off function은 $\Lambda$보다 작은 $n$은 1로 더하고, $\Lambda$보다 큰 $n$은 적당히 누르는 함수로 적당히 택하면 된다.

$$ c(n;\Lambda) = \left\{ \begin{aligned} &1 && n \ll \Lambda \\ &0 && n \gg \Lambda \end{aligned} \right.$$

이 방법으로 string worldsheet의 zero point energy를 계산하는 책이 Polchinski였던 것으로 기억하고 있다.


그렇다면 여기서 문제. "어떤 cut-off function이 유용할까?". 흔히 선택하는 regulator에는 Gaussian이나 exponential이 있는데, 내가 개인적으로 선호하는 cut-off function은 다음과 같이 생겼다.

$$c_{\Lambda,m}(n) = 1 - e^{-(\Lambda/n)^{2m}}$$

이 regulator는 발산하는 급수의 argument가 적당히 작은 크기로 발산해야만 cut-off의 역할을 수행할 수 있다는 단점이 있기는 하지만, 그 단점을 무시하는 어마어마한(?) 장점이 추가로 있다. $n$을 연속변수 $x$로 바꾸었을 때 $x=0$이나 $x=\infty$에서의 미분값이 항상 0이라는 것.

$$\forall k \ge 1 \,, c_{\Lambda,m}^{(k)}(0) = c_{\Lambda,m}^{(k)}(\infty) = 0 $$

위 성질을 보면 알겠지만 실변수해석학에서 해석적이지 않은 함수의 실례로 이용되는 함수를 응용한 것이다. 위의 cut-off function을 도입하면 Euler-Maclaurin 공식을 이용해 계산하는 발산급수를 다음과 같이 정리할 수 있다.

$$\sum_{n=0}^{\infty} f(n) c_{\Lambda,p} (n) = \int_0^\infty f(x) c_{\Lambda,p} (x) dx + \frac{f(0)}{2} - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!}$$

구체적인 사례로 $\sum n^m$을 계산하면 다음과 같은 결과를 얻는다.

$$\sum_{n=0}^{\infty} n^m c_{\Lambda,p}(n) = R_m + \frac{\Lambda^{m+1}}{m+1} \Gamma \left( 1 - \frac{m+1}{2p} \right) \\ R_m = - \sum_{k=1}^\infty \frac{B_{2k} f^{(2k-1)}(0)}{(2k)!} = \left\{ \begin{aligned} &- \frac{B_{m+1}}{m+1} && m \text{ odd} \\ &0 && m \text{ even} \end{aligned} \right.$$

Posted by 덱스터

최근에 썼던 논문은 중력 버전의 다이온에 대한 1-룹 계산이었다. 학사논문도 자기단극자와 관련된 주제였을만큼 자기단극자에 대한 관심이 많은 편이었으니 자기단극자의 중력 버전에 대해서도 관심이 있을 수 밖에 없었는데, 원래 논문의 목표는 현 논문의 결론과는 꽤 많이 달랐다. 계산이 죄다 어긋나서 목표가 달성 불가능할 것으로 보이자 목표를 뒤집어서 뒤집은 결론을 논문으로 만들어버린 것인데, 학사논문도 비슷한 과정을 통해서 논문이 되었으니 기묘한 평행선이라고 할 수 있을지도 모르겠다. '왜 아무도 명시적으로 이야기하지 않는 거지?'라고 여기는 것 중 하나가 논문의 부록A가 된 '전자와 자기단극자 둘을 동시에 기본입자로 취급하면서 UV cut-off가 둘의 질량보다 위에 존재하는 EFT는 있을 수 없다'는 논증인데, 트위터에서 간략하게 언급한 적이 있다.

물론 아무도 이런 이야기를 하지 않은 것은 아니고 부록에 인용으로 언급했던 weak gravity conjecture(WGC)의 자하 버전에서 비슷한 논증을 하는데[각주:1], 여기서는 입자로서 다루는 것에 대한 명시적은 이야기는 하지 않는다. 여튼 이런 특성을 고려한다고 도입한 추가 계산이 10일만에 쓴 짧은 논문의 바탕이 되었다는 점에서 꽤나 운이 좋았던 편. 저 짧은 논문을 쓸 때는 아드레날린 과다방출(..)로 불면증에 심하게 시달려서[각주:2] 약간 제정신이 아닌 상태에서 썼는데, 결과적으로 꽤나 도발적인 결론이 나와버렸다. 실제로 쓸만한 결과일지는 시간이 지나봐야 알겠지만.

 

---

 

여튼 자기단극자 이야기나 계속해보자. 전하와 자하는 그 물체가 광자와 상호작용함을 나타내는데, 둘을 구분하는 것은 무엇일까? 논문 서론에서 언급했듯 와인버그는 전하와 자하는 광자의 두 편광과 어떻게 상호작용하는가---나선도(helicity)의 부호와 상관없이 상호작용하는가 아니면 부호에 따라 반대 방향으로 상호작용하는가---로 구분됨을 보였다. 이 차이로 인해 전하와의 상호작용은 일반적인 벡터포텐셜 $A_{\mu}$로 적히고, 자하와의 상호작용은 dual potential이라고 자주 부르는 $B_{\mu}$로 적히게 된다. $A_{\mu}$가 $dA = F$란 미분형식 방정식으로 적히는 것과는 반대로 dual potential $B_{\mu}$는 $dB = \ast F$란 미분형식 방정식을 만족한다. 전자기학을 배우면서 전자기장은 벡터포텐셜 $A_{\mu}$로 그 동역학을 기술할 수 있다고 배우는 학부생 입장에서는 '잘 와닿지는 않지만 그런가보다~' 싶은 설명이지만, 이렇게 자하의 동역학을 기술하기 위해서는 일반적인 벡터포텐셜 $A_{\mu}$로는 불가능하다는 결론은 사실 학부 수준에서 배우는 양자역학만으로도 논증할 수 있다. 대부분의 양자역학 학부 과정에 아로노프-봄 효과를 포함하기 때문.

 

논증은 간단하다. 다음 조건들이 모순됨을 보이면 된다.

1) 전기-자기 이중성 (electric-magnetic duality) : 전하와 자하 사이에 이중성이 양자역학 수준에서도 존재한다.

2) 국소성 (locality) : 입자가 전자기장과의 상호작용으로 얻는 효과는 그 입자가 위치한 점에서의 장의 값으로 결정된다.

3) $A_{\mu}$의 완전성 : 전자기장의 모든 효과는 $A_{\mu}$장으로 완벽하게 기술할 수 있다.

4) $A_{\mu}$의 게이지 대칭성 : $A \to A + d \lambda$에 해당하는 게이지 대칭에 대해 물리가 변하지 않는다.

 

구체적으로는 dual Aharonov-Bohm effect를 상상하면 된다. 솔레노이드로 생성되는 원통형 영역에 제한된 자기장 대신 똑같이 원통형 영역에 제한된 전기장을 걸어두고[각주:3] 그 주변을 도는 자하를 상상하는 것. 이제 그 주변을 도는 자하가 Aharnonov-Bohm effect의 전하처럼 $A_{\mu}$장으로부터 위상의 변화를 얻을 수 있는지 계산해보면 된다. 답은 아니오. 왜냐하면 이런 모양의 전기장은 전기장이 0이 아닌 원통형 영역 안에서 값을 갖는 스칼라 포텐셜 $\phi$에 값을 잘 주는 것으로 완벽하게 구현할 수 있기 때문. 원통형 영역 밖에서는 $A_{\mu}$장의 값이 항등적으로 0이 되도록 해를 구할 수 있으므로, 자하는 $A_{\mu}$와 상호작용해야만 한다면 dual Aharonov-Bohm effect는 존재할 수 없다. 구체적인 해는 여러분의 지적 유희를 위한 연습문제(...)로 남겨두기로 하자[각주:4].

 

---

 

논문의 원래 목표는 (중력 버전의 자하에 해당하는) NUT charge를 가진 물체가 있을 때, 이 물체의 동역학을 어떻게 기술할 것이냐였다. 물체가 실제로 존재한다면 힘을 걸어서 가속시키거나 감속시킬 수 있어야 하지 않겠냐는게 기본 문제의식. 이 문제의식의 흔적이 부록C인 effective one-body formalism이다. 결과적으로는 계산이 도저히 아귀가 맞지 않아서 반년 이상 헤매다가 방향을 뒤집어서 '일반상대론의 NUT charge를 자하의 중력 버전으로 해석하는 것은 다양한 가능성을 고려해봐도 1-룹 계산에서 붕괴한다'로 결론을 내버리긴 했지만 말이다. 결국 이 결론을 내면서 전기-자기 이중성에 대한 관심 때문에 마찬가지로 관심을 갖게 되었던 Taub-NUT space에 대한 관심이 많이 죽어버리고 말았다.

 

그나저나 자하는 실존할 것인가? 많은 사람들이 '자하는 근시일에 발견된다'가 안전한 베팅이라고 믿고 있고 나도 이 대열에 합류한 상태이긴 한데, 디락이 말년에 자기단극자의 존재 가능성에 대한 입장을 선회했다는 것을 알게 되고는 마음이 약간은 흔들리는 중. 약간의 검색을 돌려보니 도서관에서 본 것은 이 proceeding인 모양이다.

  1. 혹시나 해서 Arkani-Hamed가 썼던 논문을 열어봤는데 역시나 있었다. 역시 기대를 져버리지 않는 Arkani-Hamed. [본문으로]
  2. 평균적으로 하루 서너시간 정도밖에 못 잔 듯 하다. 논문 작성 막바지에는 거의 항상 있는 일인듯. [본문으로]
  3. 실험적으로는 극성을 가진 유전체를 길게 잘 늘어놓는 것으로 구현할 수 있을 것이다. [본문으로]
  4. 여담으로 이 사실을 발견하고는 '전기-자기 이중성은 양자역학 수준에서는 깨져야만 하는구나!'하고 신나서 MS word로 논문 비슷한 무언가를 타닥타닥 작성했던 흑역사(?)가 있다. 버려야 하는 가정은 1)번이 아니라 3)번이란 것을 깨달은 것은 대학원 들어온 뒤 끈이론 공부하면서. 원고가 원고로만 남은 것이 다행이군... [본문으로]
Posted by 덱스터

0. 런던으로 이사온지 한달 반 정도 지났습니다. 일생 처음 락다운이란 것도 겪어보고(라고 해도 대학은 이번 락다운 폐쇄에서 제외되어서 출근은 계속 하고 있습니다) 말이죠. 조금씩 생활 사이클이 런던 생활에 적응해가는 것 같군요.

 

0.1. 물론 완전히 적응했다고 하기는 애매한 것이, 먹거리 메뉴를 충분히 늘리지 못하고 있습니다. 사실상 숏 파스타-인도카레 두 메뉴의 사이클만 돌리고 있는데 메뉴를 두어개 정도 더 추가해 주어야 질리지 않고 잘 살아남을 것 같단 말이죠. 하기 쉬우면서 오래 먹을 수 있는 메뉴가 무엇일지는 조금 더 고민해 봐야겠습니다. 처음 대학생활을 시작하던 시절처럼 몸을 막 굴려도 어떻게든 굴러가던 시절(...)은 지났으니까요.

 

0.2. 결국 바이든이 미 대선에서 승리했군요. 많은 사람들이 발 뻗고 잘 수 있겠습니다(...). 저야 잠 못 잔 이유가 논문 벼락치기였습니다만 미 대선 때문에 잠을 설쳤던 것이 없다고는 못하겠군요. 여튼, 토요일이었던 어제는 진짜 하루 종일 잠만 잔 듯한 느낌이군요.

 

1. 4쪽짜리 짧은 논문이기는 하지만 10일만에 완성한 논문이 곧 arXiv에 올라갈 예정입니다(제출은 금요일). 이렇게 짧은 시간 안에 논문을 쥐어짜느라 제대로 잠을 못 자서 어제는 그 반동으로 동면에 들어간 곰처럼(...) 잠만 잤습니다. 처음엔 '어 이렇게 단순한 것을 왜 사람들이 발견 못했지?' 싶었던, 흥미롭기는 하지만 뭐 그냥 거기서 끝날 것 같았던 관계식이었는데, 조금 더 들여다보고 있으니 이 관계식을 이용해서 사람들이 블랙홀에 대해 갖고 있던 일반적인 생각을 검증해볼 가능성이 보이더군요. 물론 제가 그걸 확인할 능력은 안 되는 것 같아서 (+분량을 쓸데없이 늘리고 싶지는 않아서) '이런이런 관점에서 검토해보면 흥미로울 것이다'란 코멘트 정도만 남겨두었지만, 세상은 넓고 계산에 숙달된 귀신들은 많으니 누군가 논문을 인용해주겠죠. 워낙 이 분야에 걸쳐있는 사람들이 많으니 인용을 최소 다섯 개 정도는 받지 않을까 기대하고 있습니다.

 

1.1. 논문을 쓴 것은 쓴 것이고, 이제 다음 논문 주제를 고민해야 할 타이밍이군요. 뭘 해야 하지...

 

2. 포켓몬고를 꾸준히 하고 있는데, 이번에 이벤트 이로치를 잡겠다고 처음으로(?) 현질(...)을 했습니다. 올해 열렸던 글로벌 고페스트 티켓까지 포함하면 두번째이려나요. 여튼, 누더기 조금 걸친 팬텀 티도 거의 안 나는 이로치를 잡겠다고 대략 30파운드어치 레이드패스를 (추가로) 사는 삽질을 하고 나서야 겨우 얻었군요.

이 친구의 이름은 '고통'이 되었습니다. 내가 다시는 이런 삽질 하나 봐라...

덕분에 열심히(졸업시즌 이후 좀 뜸해지기는 했었습니다만) 하던 포켓몬고에 현자타임(...)이 와서 당분간은 설렁설렁 플레이하게 될 것 같습니다. 같이 이로치를 잡아보자고 레이드를 미친듯이 달리셨던 분들 중 못 잡으신 분들도 있는 것을 보면 승리한 패배자(...)가 된 느낌이군요.

 

3. 소드실드 2차 DLC인 왕관의 설원을 재미있게 플레이하고는 있는데, 귀찮다고 도감을 다 안 채웠더니 이로치 출현확률이 엄청나게 높아진 다이맥스 어드벤처를 100% 즐기지 못하고 있어서 고민입니다. 지금이라도 도감을 다 채워야 하나. 그냥 맥스 레이드배틀의 경우 이로치 레이드방이 꽤 많아서 적당히 찾아 들어가면 금방 이로치를 잡았더니 굳이 빛나는 부적을 얻을 필요를 못 느꼈단 말이죠. 뭐, 게임을 샀으면 끝까지 즐겨보는 것도 나쁘지 않겠지만요.

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2020.11
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함