양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
운동량 연산자에 대해서(1)  (7) 2009.12.14
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17

댓글을 달아 주세요

  1. Favicon of http://www.yutiro.com BlogIcon 순원  댓글주소  수정/삭제  댓글쓰기

    안녕하세요.
    사실 Griffith 책에서는 빠른 이해를 위해서 위와 같이 유도를 해 놓았지만,
    실제로 p 연산자는 x 연산자와의 commutator relationship 으로만 정의되는
    것 아닌가요?

    말하자면 논리 구조가 다음과 같은것이죠.
    1. 양자역학은 헤밀토니안 역학에서, 연산자 도입, 파동함수 도입... etc
    이러쿵 저러쿵되어 정의된다.

    2. 이 중에서 x 연산자를 다음과 같이 정의하고(이를 이용해서 파동함수를 표현)
    이에 헤밀토니안 역학에서 conjugate momentum인 p 연산자를 정의한다.
    이 때 헤밀토이안 역학의 conjugate momentum은 양자역학에서 commutation
    relationship이 됩니다.

    3. 2번에 입각해서 수식을 쓰면 그것이 위에 유도한 공식이 됩니다.


    이 논리에 따르면 헤밀토니안 연산자에 운동량 개념이 내제되어 있는 것은 아니고,
    헤밀토니안 연산자는 x basis로 표현되어지며, 여기서 p 연산자가 x basis로
    끄집어 내어진것이겠죠. 참으로 재밌게도 (어쩜 당연하게도) H가 p^2/2m을 함유하고
    있는것으로 나왔고 이는, p가 x의 conjugate momentum이기 때문에 나타는 현상이죠.
    이를 Ehrenfest's theorem이라고 하나요?

    2010.04.26 10:42
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.26 14:10 신고  댓글주소  수정/삭제

      나중에는 translation을 생성하는 operator로 정의하긴 하는데, 처음 Schrodinger가 S.E을 유도했을 때에는 운동량 연산자가 그처럼 생겼을 것이라는 가정에서 출발했더라구요. 그리고 운동량 연산자가 그렇게 생겼으리라는 가정은 아마도 파동의 성질에서 나온 것 같아요. Hamiltonian 역학에서 어떤 극한을 취하면(잊어버렸는데 -.-;;) 파동방정식처럼 변하게 되는데, DeBrogile 운동량-파장 가설에서도 운동량 연산자가 이렇게 나타나게 되고, Hamlitonian 역학에서는 당연히 그렇게 정의되고, 뭐 그런거죠.
      결국 하고 싶었던 말은 Griffith 책에서처럼 운동량 연산자가 되는 것을 보이는 것은 동어반복이라는 것이었구요. 이런 유도가 갖는 의미라면 일단 모순은 없다 정도 되겠네요.

  2. 남욱  댓글주소  수정/삭제  댓글쓰기

    순원 선배님이 말씀해 주셨지만, p operator랑 x operator 자체가 어쩌면 commute relation으로 정의된다고 할 수 있겠죠. 하지만 보다 일반적으로 나가면, 사실은 creation operator, a+ 와 annelation operator a를 정의하고 이것의 commute relation을 정의하는게 먼저라고 할 수 있습니다. fermion에 대해서는 [a,a+]=1이고 boson에 대해서는 {a,a+}=1이라고 하죠. 보존에 대한 경우를 Grosmann Algebra에 해당하는 경우고 Fermion에 대한 경우는 딱히 이름이 있는지는 모르겠는데 어쨌든 Clifford Algebra 의 special case라고 할 수 있겠네요. a와 a+는 x와 p의 합으로 표현되니까 파동함수의 대수적 성질을 이 연산자를 이용해 정의했다고 할 수 있죠,
    그러니까... H= p^/2m이라는 결과는 x의 표현이라기보다는... 그자체로 맞는 식이고 p가 어떻게 x space에서 표현되는지가 알고싶은 issue라고 할 수 있을거 같네요.
    이같은 논의는 사쿠라이에 보면 간략히 나오는데, 간단히 말하자면...학부에서 waveFtn이라고 부르는 psi는 사실은 <x|psi>잖아요? 모멘텀 오퍼레이터는 algebraic object라 사실은 explicit form이 필요 없는데, int dx |x><x| =1 이 identity를 사용해서 p |psi> = int |x><x|p|psi>이고 <x|p == -i round <x| 를 사용했다고 볼 수 있죠. 사실 마지막 줄에서 사용한, |x>와 p의 위치를 바꿀때 사용한 식은 momentum 의 x에 대한 representation은 translation operator의 generator라는 정의에서 나오는 것이라고 볼수 있습니다. waveFtn을 a만큼 옮기는 operator는 아시다시피 exp(-iap/hbar) 에서 나왔고, 이것을 x 표현에서 infinitisiml한 a에 대해 생각하면 x space에 대한 p 표현이 유도됩니다. 위와 같이 에렌페스트 정리를 이용해서 고전역학과의 대응관계를 생각하는것도 틀린 추론이라고 불 순 없지만 대수적으로는 이게 옳은 approach라고 생각됩니다..

    2010.04.27 21:32
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:15 신고  댓글주소  수정/삭제

      그러니까 지금 하고싶은 말이 creation과 annhilation을 먼저 정의하고 얘네의 조합으로 momentum을 얻는다는 말인거지? 원래는 자연수만 있었는데 여기에서 실수를 얻고 더 근본적(?)인 것이라고 생각하자는 것과 비슷한건가...

  3. 남욱  댓글주소  수정/삭제  댓글쓰기

    뭐 사실은 독립적인 것이기는 한데.. p operator는 translation operator의 generator로 정의되니까... (정확히는 hbar factor가 있겠지만) 이게 바로 어떤 공간 이동에 대해서 불변인 양을 나타내는 것이기도 하고.. 그런데 사실은 뭐 p=-i del 자체가 벡터이기도 하고...말하다보니 복잡하게 돼버렸네 어쨌든 중요한 건 사실 p의 x 에 대한 representation이 딱히 중요하지는 않다는거지. 입자가 여려개 있거나 상대론적으로 가면 운동량 연산자 자체를 explecit하게 정의하는 게 힘들기도 하고. 실제로 중요한건 system의 lagrangian이니까.

    2010.04.28 00:26
    • Favicon of https://dexterstory.tistory.com BlogIcon 덱스터 2010.04.28 00:42 신고  댓글주소  수정/삭제

      사실은 독립적인 거라면 음냐 무언가 꼬인 것 같은데 -_-

      뭐 하긴 Hamiltonian은 그냥 그 계를 잘 묘사해주기만 하면 되는 거니까 operator가 실제로는 무엇이냐 논의하는게 무의미할지도.

      원래 이 글은 '어떤 경로로 그렇게 생긴 operator를 도입하게 되었는가'를 추적하려던 것이라 댓글들은 무언가 벗어난 것 같지만

  4.  댓글주소  수정/삭제  댓글쓰기

    Google 에서 Momentum operator 를 치면 wikipidia 에서 잛고 간략하게 운동량 연산자가
    -(ih/2p)i*d/dx 로 정리되어있는지 schrodinger equation 과 debroglie relation 을 간단히 연립하여 유도한 설명이 있습니다.

    ps : 저도 궁금해서 찾아보던중에 알게 되어 말씀드립니다.

    2014.07.03 16:58

1 ··· 12 13 14 15 16 17 18 19 20 ··· 23 

글 보관함

카운터

Total : 650,585 / Today : 32 / Yesterday : 85
get rsstistory!