'양자역학'에 해당되는 글 24건

  1. 2009.04.30 복소수 대칭과 시간대칭 23
  2. 2009.04.25 Operator determination
  3. 2009.04.18 Dirac Delta orthonormality 2
  4. 2009.03.04 파동함수... 6
물리학에서 대칭성은 대부분 어떤 보존으로 나타납니다. 여기서 말하는 대칭이란 '구분할 수 없음'을 뜻하지요. 운동량은 위치에 대한 대칭성에서, 에너지 보존은 시간에 대한 대칭성에서 얻어지지요.

이제 질문. 허수 i와 -i는 대칭적입니다. 서로 구분이 불가능하지요. 이 수학적 대칭은 물리의 어떤 현상으로 이어질까요? 잘 살펴보면, 이런 수학적 대칭은 시간을 뒤집는 대칭에 해당한다는 것을 알 수 있습니다.



이게 원 슈레딩거 방정식입니다. 양변의 i를 모조리 -i로 바꾸어주면



여기서 *로 표시된 것은 전부 켤레복소수(complex conjugate)에 해당합니다. 해밀토니안은 i를 포함하지 않는다고 가정하면(즉, 포텐셜이 실수로만 나타난다고 가정하면)[각주:1] 다음의 꼴을 얻습니다.



-t를 새로운 시간, 타우로 정의하면



시간을 뒤집은 파동함수(의 켤레복소수)가 원래의 파동함수와 같은 방정식을 만족하는군요. 결국, 시간에 대해 파동함수는 대칭적이라고 생각할 수 있겠지요. 이 대칭성은 time parity라고 불리는 값의 보존으로 이어집니다. 패리티에 대해서는 나중에 설명하기로 하지요 ^^;;;

재미있는 것은 시간 뒤집기가 성공하지 못할 수 있다는 것입니다. 허수포텐셜을 도입하면 그렇게 되지요. 이제 허수가 들어가는 포텐셜은 약력을 대표한다고 추론할 수 있겠지요. 약력이 대부분의 대칭성 붕괴의 원인이니 말입니다.

덧. 쓰다보니 하루가 지나가는군요 -_-


  1. 허수포텐셜을 도입하는 경우 파동함수는 보통 시간이 지나며 필연적으로 파괴되어 버리거나(0으로 수렴하거나) 무한히 발산해 버립니다. 때문에 방사능 붕괴와 같은 경우에는 허수포텐셜을 도입합니다. 하지만 그런 부분은 지금 우리가 관심을 갖는 영역이 아니기 때문에, 무시하도록 하겠습니다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
직관과 포인팅 벡터  (15) 2008.12.08
Posted by 덱스터

2009. 4. 25. 09:52 Physics

Operator determination

x-space에서 위치와 운동량의 측정값을 나타내는 Operator는 다음과 같다.

\hat{x}\equiv{x}\\\hat{p}\equiv{-i\hbar\frac\partial{\partial{x}}}

이를 더 간단한 k에 대해 나타내어 보자. 잘 알려진 바와 같이, 운동량 p는 k의 간단한 상수배이다.

p={\hbar{k}}\\\therefore\hat{k}={-i\frac\partial{\partial{x}}}

이제 각 알려진 연산자들에 대해 eigenstate를 구해보자. 먼저 x 연산자에 대해 x'이라는 eigenvalue를 얻어내는 eigenstate를 x에 대해 나타내면 다음과 같다.

\hat{x}|\varphi_{x'}\rangle=x'|\varphi_{x'}\rangle\\\therefore\,\langle{x}|\varphi_{x'}\rangle=\delta(x-x')

이는 k에도 마찬가지로 적용될 수 있다.

\hat{k}|\varphi_{k'}\rangle=k'|\varphi_{k'}\rangle\\\therefore\,\langle{k}|\varphi_{k'}\rangle=\delta(k-k')

각자의 eigenstate를 간단하게 쓰자.

|x\rangle\equiv|\varphi_x\rangle\\|k\rangle\equiv|\varphi_k\rangle

한편

\langle{x}|\hat{k}|k\rangle=-i\frac{d}{dx}\langle{x}|k\rangle=k\langle{x}|k\rangle\\\therefore\,\langle{x}|k\rangle=Ae^{ikx}

(주의 : 편미분 대신 일반적인 미분 d를 사용한 것은 eigenstate k를 x에 대한 함수로 취급하기 위함이다.)
여기서 A는 아직 정해지지 않은 상수이다. 한편

\int\langle{k'}|x\rangle{dx}\langle{x}|k\rangle=\langle{k'}|k\rangle=\delta(k'-k)

이므로

\langle{k'}|x\rangle=\frac1{2\pi{A}}e^{-ik'x}

을 얻는다. 앞의 상수가 일치하도록 조절하면(둘은 complex conjugate 관계라는 것을 고려한다)

\frac1{2\pi{A}}=A\\\therefore\,A=\frac1{sqrt{2\pi}}

을 얻는다. k 연산자는 k-space에서 단순한 상수로 나타나는데 그러면 x 연산자는 어떤 꼴로 나타날까? 구해보자.

\langle{k}|\hat{x}|x\rangle=x\langle{k}|x\rangle\\\hat{x}Ae^{-ikx}=xAe^{-ikx}\\\therefore\,\hat{x}=i\frac\partial{\partial{k}}

(주의 : 변수는 k이기 때문에 이런 꼴로 나타나는 것이다.)
좀 더 명확하게 말하자면

\langle{k}|\hat{x}=i\frac\partial{\partial{k}}\langle{k}|

이라고 할 수 있을 것이다. 이를 다시 p에 대해서 나타내면

\langle{p}|\hat{x}=i\hbar\frac\partial{\partial{p}}\langle{p}|

라고 할 수 있다. 다음 두 식을 보면, 재미있는 대칭성이 존재한다는 것을 볼 수 있을 것이다.

\langle{x}|\hat{p}=-i\hbar\frac\partial{\partial{x}}\langle{x}|\\\langle{p}|\hat{x}=i\hbar\frac\partial{\partial{p}}\langle{p}|


'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Dirac Delta orthonormality  (2) 2009.04.18
Posted by 덱스터

2009. 4. 18. 13:11 Physics

Dirac Delta orthonormality

모멘텀 변환 파동함수는 다음과 같이 나타난다(hbar 표현식을 못 찾아서 저렇게 썼음 -_-;;).



이 식은 k에 대해서도 쓸 수 있다. 이때 khbar는 p가 된다.



적분구간을 무한대로 해 놓고 두 모멘텀 파동함수(변수는 k)를 적분하면 Dirac Delta fuction이 얻어진다.



여기서 2pi는 다음과 같은 이유에서 얻어진다. 먼저 적분구간을 [0, 2pi]로 해 보자. 그러면 다음과 같은 관계식이 얻어진다.



여기서의 델타는 Kronecker Delta이다. 이제 이 구분된 적분구간을 무한히 확장한다. 그러면 처음에 얻은 식이 얻어진다.(Dirac Delta가 Kronecker Delta의 무한합으로 보는 관점) 이런 연유에서 규격화된 k에 대한 파동함수는 다음과 같이 쓴다.



보통의 경우, 일반적인 식은 다음과 같이 쓸 수 있다.





여기서



로 정의한다.

덧. 궁금해하던 건데 마침 친구가 알려주더군요. 책 없이 휘갈기는거라 몇몇 상수는 빠졌을 수도 있습니다.(예를 들어 부호가 바뀌었다던지...)

그나저나 그녀석은 요즘 군론 공부한다던데 -_-;;;; (돌은 학부생이죠 예...-_-;;;;)


덧2. 알고보니 변수가 바뀌었군요 OTL 전부 수정했습니다. 마지막 부분은 외우기 쉽게 하려고 도입한 꼼수입니다 ^^ 책에는 없을거예요(Griffith에 없으니 다른 책에도 아마 없으리라 생각)

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
Lagrangian in Electromagnetism  (4) 2009.11.07
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Posted by 덱스터
[주의] 일반인을 내쫓는 글 입니다.

1.
하나의 입자를 서술하는 한 파동함수가 A에서 델타함수로 붕괴한 다음에 B에서 델타함수로 붕괴한다.
이때 관찰자를 잘 잡으면 A에서 붕괴하는 사건과 B에서 붕괴하는 사건이 동일 시간에 일어나게 되는데, 그러면 이때에는 하나의 입자가 두개의 입자가 된 것으로 나타나게 되지 않을까?
(어제 수업시간에 했던 질문)

2.
상대론을 양자역학에 접목시키려면 그렇게 변환하면 안된다는 답변이...
그것보다도 상대론적 양자역학에서는 하나의 관찰자만을 가정한다고 했던 것 같다. 하나의 관찰자를 잡은 다음에는 그대로 쭈욱 가야 한다고....

3.
생각해보니 저 사건이 일어나려면 붕괴하는 사건은 space-like 관계여야 한다(즉, ds^2=dx^2+dy^2+dz^2-dt^2으로 잡으면 ds^2>0). 그런데 그러면 입자가 빛의 속도 이상으로 움직였다는 말이 되는데, 이건 상대론의 가정에서 어긋나는구나.
(터널링이 일어난다면 가능할지도...)
그런데 그것보다도, 파동함수가 붕괴했을 때 그게 다른 관찰자에게는 붕괴한 것이 아닌 것으로 보일 수 있다는 것이 문제인듯 하다. A에게 동시인 것이 B에게 동시인 경우는 매우 드무니까...

4.
갑자기 지난 학기에 들었던 '파인만의 업적'이 생각났다.
이른바 재규격화(re-normalization)이라는 거였던 것 같은데, 조금은 알 것 같기도...
관찰자를 바꿀 때 마다 파동함수를 재규격화 해야 한다는 건가...

5.
결론> 슈뢰딩거 방정식이나 마스터하고 디랙으로 넘어가든가 하자 -_-
Posted by 덱스터
이전버튼 1 2 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함