'고전역학'에 해당되는 글 4건

  1. 2021.10.25 IR divergence of Coulomb potential
  2. 2019.01.29 Elementary introduction to Dirac brackets 2
  3. 2010.07.14 Hamiltonian formulation(1) 4
  4. 2009.12.14 운동량 연산자에 대해서(1) 7

This series is divergent; therefore, we may be able to do something with it. -- Oliver Heaviside

 

$\frac{1}{r}$꼴을 갖는 Coulomb potential은 IR 발산이 있는 것으로 유명하다. 좀 더 구체적으로 말하자면, 학부 역학 수준에서 계산할 수 있는 궤도방정식을 풀어 얻는 Rutherford scattering의 미분단면적(differential cross-section)을 계산할 경우 다음과 같은 $\sin^{-4} (\theta/2)$의 꼴을 갖는다는 것이 알려져 있다.

$$ \frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4 (\theta/2)} $$

이 식을 적분하여 얻는 총산란단면적(total cross-section)은 발산한다.

$$ \sigma_{\text{tot}} = \int \frac{d \sigma}{d \Omega} d \Omega \propto \int \frac{d(\cos \theta)}{\sin^4 (\theta/2)} \to \infty$$

양자역학에서 Coulomb potential이 주어졌을 때의 산란문제를 풀 때도 이 성질과 관련된 현상이 나타난다. Griffiths 양자역학에서는 Coulomb potential을 Yukawa potential의 질량이 없는 극한으로 생각하기 때문에 등장하지 않지만 Landau 3권이나 교수님 세대의 메인 레퍼런스(...)란 느낌이 있는 Shiff책을 뒤적이다 보면 asymptotic region에서 파동함수가 평면파인 $e^{ikz}$로 수렴하는 것이 아니라 로그가 붙은 추가적인 위상항(phase factor)이 등장하는 것을 볼 수 있다.

$$ \psi \sim e^{ikz + (i/k) \log [k(r-z)]} $$

교재에서는 이런 Coulomb potential의 IR 발산에 대해 'Coulomb potential이 장거리 상호작용(long-range interaction)이기 때문에 발생한다'는 설명을 써놓지만, 구체적으로 무한원점에서 0으로 수렴하는 다른 potential들과 어떻게 다른지에 대해 설명하는 경우는 드물다[각주:1]. 왜 이런 현상이 일어나는지 고전역학적으로 이해하는 것이 이 포스트의 목표.

 

---

 

Coulomb potential이 주어졌을 때 그 potential을 따라 움직이는 시험 입자(test particle)의 궤도방정식을 푸는 문제는 몇 안 되는 정확하게 풀 수 있는 고전역학 문제이다. 심지어 궤도방정식 위키백과 페이지가 있을 정도. 시간에 대한 거리의 미분방정식을 각도에 대한 거리의 미분방정식으로 바꾼 뒤 $u = 1/r$이란 변수변환으로 조화진동자 방정식으로 바꾸는 과정이나 이렇게 얻은 궤도방정식으로부터 충돌 파라메터(impact parameter)에 대한 산란각(scattering angle)의 방정식을 얻는 과정은 많은 교재에서 충분히 다루고 있으니 여기서는 생략하기로 하자[각주:2].

 

여기서는 eikonal 근사의 변종으로 Coulomb potential에서의 산란을 풀어보자. Eikonal은 기하광학에서 빛의 경로를 계산하기 위해 쓰는데, WKB 근사라고 생각해도 좋다. 여담으로 eikonal은 해밀턴이 기하광학을 풀기 위한 수학적 기법을 다듬으면서 같은 기법이 고전역학에도 적용될 수 있음을 알아차리면서 현재의 해밀턴역학과 심플렉틱기하를 만들어내는 계기가 되었고, 슈뢰딩거의 파동방정식은 기하광학의 eikonal 방정식에서 영감을 얻었다고 한다.

 

고전역학이든 양자역학이든 산란 문제에서 eikonal 근사란 '직선 근사'라고 생각하면 된다[각주:3]. 구체적으로 이야기한다면, 입자의 경로를 1) 아무런 산란이 없는 직선 경로에 2) 산란을 일으키는 포텐셜의 효과를 집어넣어 얼마나 직선 경로에서 벗어나는지 섭동계산으로 구하는 방법이 되겠다.

 

이제 Coulomb potential에서의 고전적인 산란 문제에 eikonal 근사를 적용해보자. Landau 1권에서는 뉴턴역학을 기반으로 eikonal 근사를 사용하지만 여기서는 해밀턴역학을 기반으로 eikonal 근사를 써보기로 한다[각주:4]. 먼저 해밀토니안을 다음과 같이 적는다.

$$ H = \frac{p^2}{2} - \frac{k}{r} $$

해밀턴 운동방정식은 금방 적을 수 있다.

$$ \dot{\vec{r}} = \{ H , \vec{r} \} = \vec{p} \,,\, \dot{\vec{p}} = \{ H , \vec{p} \} = - \frac{k \vec{r}}{r^3} $$

이 역학계의 산란문제를 eikonal 근사로 푸는 것은 다음과 같은 ansatz를 이용해 섭동전개 파라메터 $k$에 대해 푸는 것으로 생각할 수 있다.

$$ \vec{p} = \vec{p}_0 + k \vec{p}_1 (t) + k^2 \vec{p}_2 (t) + \cdots \,,\, \vec{r} = \left( \vec{b} + \vec{p}_0 t \right) + k \vec{r}_1 (t) + k^2 \vec{r}_2 (t) + \cdots $$

여기서 $\vec{p}_0$는 asymptotic region에서의 운동량이고, $\vec{b}$는 충돌 파라메터의 역할을 한다. 이렇게 해석하려면 $\vec{b} \cdot \vec{p}_0 = 0$이란 조건을 추가로 얹어주는 것이 좋다. 섭동이 없는 원래 경로에서 시간 $t$의 원점을 재정의하는 것으로 이 조건을 맞출 수도 있고.

 

이제 위의 방정식을 풀어보자. 방정식을 풀려면 경계조건을 줘야 하는데, 가장 먼저 생각할 수 있는 경계조건은 다음 경계조건이다.

$$\vec{r}_{i>0} (-\infty) = \vec{p}_{i>0} (-\infty) = 0$$

언듯 보기에는 문제가 없는 경계조건으로 보인다. $t = -\infty$는 산란이 일어나기 한참 전의 과거이므로 섭동이 없는 원래 경로와 일치해야 한다는 직관과도 맞고. 하지만 이 경계조건은 절대로 맞춰줄 수 없다. Coulomb potential의 꼬리가 너무 길기 때문. 우선 이 문제를 무시하고 그냥 방정식을 풀어보자.

 

$\vec{p}_1$에 대한 운동방정식은 다음과 같이 주어진다.

$$ k \dot{\vec{p}}_1 (t) = - \frac{k (\vec{b} + \vec{p}_0 t)}{(b^2 + p_0^2 t^2)^{3/2}} $$

이 식에 처음 얹은 경계조건을 넣고 풀면 다음과 같은 답을 얻는다.

$$ \vec{p}_1 (t) = - \int_{-\infty}^t \frac{\vec{b} + \vec{p}_0 \tau}{(b^2 + p_0^2 \tau^2)^{3/2}} d\tau = -\frac{1}{ab^2} \left[ \left( 1 + \frac{at}{\sqrt{1 + a^2 t^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 t^2}} \right] $$

쌍곡함수로 변수변환을 하면 적분을 쉽게 할 수 있다. 문제를 풀 때 새로 정의한 변수들은 다음과 같다.

$$ \hat{b} := \frac{\vec{b}}{b} \,,\, \vec{a} := \frac{\vec{p}_0}{b} \,,\, \hat{a} := \frac{\vec{a}}{a} = \frac{\vec{p}_0}{p_0} $$

$k^1$ 차수에서 운동량 변화는 단순히 $\vec{p}_1 (+\infty)$를 읽어내면 된다.

$$\Delta \vec{p}_1 := \vec{p}_1 (+\infty) = - \frac{2 \hat{b}}{ab^2} = - \frac{2 \vec{b}}{p_0 b^2}$$

마찬가지로 $k^2$ 차수에서 운동량 변화는 $\vec{p}_2 (+\infty)$를 읽어내면 되는데, $\vec{p}_2$는 $\vec{r}_1$에 대한 해가 있어야 풀 수 있다[각주:5].

$$k^2 \dot{\vec{p}}_2 = - k^2 \left[ \frac{\vec{r}_1}{r_0^3} - \frac{3 \vec{r}_0 (\vec{r}_0 \cdot \vec{r}_1)}{r_0^5} \right]$$

따라서 $\vec{r}_1(t)$를 풀어야 한다. 우선 식을 적어보자.

$$\vec{r}_1 (t) = \int_{-\infty}^{t} \vec{p}_1 (\tau) d\tau = - \frac{1}{ab^2} \int_{-\infty}^{t} \left[ \left( 1 + \frac{a\tau}{\sqrt{1 + a^2 \tau^2}} \right) \hat{b} - \frac{\hat{a}}{\sqrt{1 + a^2 \tau^2}} \right] d\tau$$

눈치가 빠른 분들은 알아차리셨겠지만, 이 정적분은 잘 정의되질 않는다. 두번째 항이 $\sim \tau^{-1}$의 꼴을 하고 있기 때문에 무한대에서 로그 발산이 있기 때문이다. 첫번째 항은 정적분으로 처리하고 두번째 항은 정적분을 포기하고 부정적분으로 처리할 경우 다음 식을 얻는다.

$$\vec{r}_1 (t) = - \frac{ e^{\sinh^{-1} (at)}}{a^2 b^2} \hat{b} + \left. \frac{\sinh^{-1}(at)}{a^2 b^2} \hat{a} \right|_{-\infty}^{t}$$

$x \in \mathbb{R}$일 때 $\sinh^{-1} x = \log (x + \sqrt{1+x^2})$이므로, 두번째 항의 발산은 예상대로 로그 발산임을 확인할 수 있다. 이 로그 발산은 다음과 같이 이해할 수 있다. Coulomb potential에서의 에너지 보존을 생각하면 무한대에서의 입자의 속력을 $v$라고 할 때 asymptotic region에서의 입자의 속력 $v$는 다음과 같다.

$$ \frac{v^2}{2} = \frac{v_0^2}{2} + \frac{k}{r} \Rightarrow v \sim v_0 + \frac{c}{r}$$

따라서 아무런 힘을 못 느끼고 $v_0$의 속력으로 이동하는 섭동이 없는 경로와 Coulomb potential의 영향을 받아 섭동이 있는 경로 사이의 변위(displacement)를 계산하면 다음과 같아진다.

$$ \Delta r \sim \int (v - v_0) dt \sim \int \frac{c}{r} dt \sim \int \frac{1}{dr/dt} \frac{c}{r} dr \sim \frac{c}{v_0} \log r $$

$r^{-1}$보다 빠르게 떨어지는 다른 potential의 경우 입자가 멀어져 가면서 potential로부터 받는 영향이 충분히 빠르게 줄어들어 섭동이 없는 경로와 potential의 영향을 받은 경로 사이의 변위가 일정하게 유지된다. 하지만 Coulomb potential의 경우 potential의 영향이 0으로 줄어드는 속도가 느려 아무리 멀어지더라도 변위의 차이가 계속 누적되는 것이다. 발산하는 총산란단면적이나 양자역학 산란 문제를 풀 때 평면파에 로그만큼의 위상항이 추가로 붙는 현상은 이 흔적이라고 이해할 수 있다.

 

---

 

여튼, $k^2$ 차수의 운동량 변화를 계산하는 문제로 돌아오자. 발산이 있으면 잡으면 되는 법이다.

 

가장 단순한 해법은 $t = - \infty$를 기준점으로 잡지 않고 $t = 0$를 기준점으로 잡는 것이다. 실제로 worldline quantum field theory(WQFT)를 도입해서 post-Minkowskian 계산을 하는 팀에서 이런 접근을 취하고 있는데, 이 접근법은 일관성이 있다는 장점이 있지만 asymptotic variable을 새로 계산해야 하는 번거로움이 있다.

 

다른 해법은 로그 발산을 미리 섭동계산의 경계조건에 반영하는 것이다. 구체적으로는 다음과 같이 로그 발산을 $\vec{r}_1^{(0)}$로 뽑아내고 $\vec{r}_1^{(1)}$에 대한 방정식을 푸는 것.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) \,,\, \vec{r}_1^{(0)} (t) = \frac{\sinh^{-1} (at)}{a^2 b^2} \hat{a} $$

로그 발산을 갖는 경계조건을 $\vec{r}_1^{(0)}$로 뽑아내었기 때문에 남는 경계조건은 $\vec{r}_1^{(1)} (-\infty) = 0$이 되며, $\vec{r}_1 (t)$는 다음과 같이 풀린다.

$$ \vec{r}_1 (t) = \vec{r}_1^{(0)} (t) + \vec{r}_1^{(1)} (t) = - \frac{ at + \sqrt{1 + a^2 t^2}}{a^2 b^2} \hat{b} + \frac{\log \left( at + \sqrt{1 + a^2 t^2} \right)}{a^2 b^2} \hat{a} $$

위 해를 $\vec{p}_2$에 대한 운동방정식에 집어넣으면 $k^2$ 차수의 운동량 변화를 구할 수 있다. 적분구간이 $(-\infty, +\infty)$로 대칭적이라는 것을 이용하면 식을 좀 다 단순화할 수 있다.

$$ \Delta \vec{p}_2 = \int_{-\infty}^{+\infty} \left[ \frac{1}{a^2 b^5 (1 + a^2 \tau^2)} - 3 \frac{\sqrt{1 + a^2 \tau^2} - a\tau \log (a\tau + \sqrt{1 + a^2\tau^2})}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{b} d\tau \\ - \int_{-\infty}^{+\infty} \left[ \frac{3a^2\tau^2}{a^2 b^5 (1 + a^2 \tau^2)^{5/2}} \right] \hat{a} d\tau $$

얼핏 봐서는 적분이 꽤 복잡하게 보이는데, 의외로 적분하고 나면 값 자체는 단순하다.

$$ \Delta \vec{p}_2 = - \frac{2 \vec{a}}{a^4 b^5} = - \frac{2 \vec{p}_0}{p_0^4 b^2}$$

$k$를 전부 살린 산란 후 운동량은 다음과 같은데

$$\vec{p} (+ \infty) = \left( 1 - \frac{2 k^2}{p_0^4 b^2} \right) \vec{p}_0 - \frac{2k}{p_0 b^2} \vec{b} + \mathcal{O}(k^3)$$

제곱해보면 $k^2$ 차수에서 에너지 보존이 성립한다는 것도 확인할 수 있다.

$$ \left| {\vec{p} (+ \infty)} \right|^2 = p_0^2 + \mathcal{O}(k^3) $$

  1. Landau 3권에는 있다 (566쪽 주석). 이 포스트와는 다른 설명을 보고 싶다면 란다우를 보세요. [본문으로]
  2. 진짜로 상관없는 여담이지만, 고등학생을 대상으로 한 물리 경시대회가 있던 시절 궤도방정식을 푸는 문제가 나온 적이 있다. 문제에 전혀 손도 못 댄 것이 분해서 그날 돌아오자마자 Marion의 해당 파트를 잡고 수식 유도과정을 전부 외워버렸는데, 다음 해 경시대회에는 궤도방정식과 관련된 문제가 전혀 등장하지 않았다. [본문으로]
  3. 다만 Weinberg의 양자역학 교재에서는 WKB근사로 취급하고 있어서 약간 다르다. Landau 3권의 quasi-classical 근사로 말하고 있다고 봐도 좋을 듯. [본문으로]
  4. 따로 작성하던 노트가 해밀턴역학 기반이라 뉴턴역학으로 옮겨적기 귀찮아서(...) 그렇다. 뉴턴역학에 적용하는 것은 연습 문제로 남긴다. [본문으로]
  5. 고전역학 교재에서 eikonal 근사로 산란문제를 푸는 것을 배웠고 Coulomb potential에 적용하는 연습문제도 풀어봤는데 IR 발산을 본 기억이 없다면 1차 근사까지만 배웠기 때문일 가능성이 높다. [본문으로]
Posted by 덱스터

대학원 고전역학에서 다룰만한 내용으로 교수님과 이야기하다가 Dirac bracket 이야기가 나와서 간단(?)하게 트위터에서 주절거렸던 내용을 정리. 해당 타래는 이것.



모든 미분방정식은 충분한 숫자의 변수를 도입하는 것으로 1계미분방정식으로 만들 수 있다. 예컨대 $y''+y=0$이란 미분방정식이 있다면 $x=y'$이란 독립변수 $x$를 도입하여 $x'+y=0$으로 만들 수 있다. 해밀턴역학도 어떤 의미에서는 그런 접근의 연장선상에 놓여있다. 르장드르 변환과도 엮여있기 때문에 좀 복잡한 방식으로 이 과정을 이용하기는 하지만.


트윗 타래에서 설명했듯, 해밀턴역학에서 해밀토니안 함수는 위상공간 위에서의 흐름(flow)을 만들어내는 물체로 생각할 수 있다. 해밀토니안 함수와 그에 대응되는 흐름 혹은 벡터장을 연결해주는 역할을 하는 것이 포아송 괄호(Poisson bracket)이다. 연결 방법은 $H \to \{H,\bullet \}$. 물론 위상공간 위에서의 흐름을 만들어내는 해밀토니안이 실제 계의 동역학과 관계가 있어야 할 이유는 없다. 보다 추상적인 임의의 함수도 포아송 괄호를 통해 위상공간 위에서 흐름을 만들어낼 수 있으며, 일반적으로는 계의 보존량 $Q$를 이용해 이런 흐름을 만들어낼 때 $Q$를 대칭 생성자(symmetry generator)라고 부른다. 이쪽은 운동량 사상(moment map)과 연결되는 방향이지만 이 글의 주제에서는 벗어나니 다음 기회에[각주:1].


임의의 함수는 포아송 괄호를 통해 위상공간 위에서의 벡터장과 대응될 수 있다.


위의 관점은 계의 모든 변수가 독립변수인 경우에는 문제 없이 적용이 가능하지만 계의 모든 변수가 독립변수가 아닌 경우, 즉 제약조건(constraint)이 존재하는 계의 경우에는 위의 관점을 적용하는데 무리가 있다. 이 경우 좌표를 새로 잘 정의해서 새 좌표에서는 모든 변수가 독립변수가 되도록 하는 것으로 위의 관점을 살려내는 방법이 있다. 물론 새 좌표를 찾는다는 것은 원칙상 가능하다는 뜻이고, 이 좌표를 찾는 일이 항상 쉬우리란 보장은 없다. 다른 방법은 디락의 디락 괄호(Dirac bracket)를 도입하는 것.


잠시 원래 이야기에서 벗어나 역사적인 맥락을 살펴보면, 디락이 디락 괄호의 도입을 생각하게 된 이유는 양자전기역학이었다고 한다. 디락은 포아송 괄호를 교환자(commutator)로 교체하는 것으로 고전계를 양자화할 수 있다는 것을 발견했는데, 같은 방법을 전자기학에 적용하려니 뭔가 잘 안 맞는다는 것을 알게 된 것이다. 디락은 가우스 법칙에 의해 전자기장이 가질 수 있는 값에 제약이 생기는 것이 원인이라는 것을 알게 되었고, 제약조건이 있는 계의 포아송 괄호에 해당하는 물체를 어떻게 찾아낼 것인가를 고민한 결과 디락 괄호를 찾아내게 된다.


다시 원래 이야기로 돌아와서, 제약조건이 있다는 뜻은 전체 위상공간 중 그 부분집합에 해당하는 $f_i(\vec{p},\vec{q})=0$을 만족하는 $(\vec{p},\vec{q})$만 실제 계의 상태를 나타낸다는 관점으로도 이해할 수 있다. 일반적으로 해밀토니안에 의해 만들어지는 흐름은 이 제약조건을 만족하는 위상공간 속 부분다양체(submanifold) 위에서 출발하더라도 그 밖을 벗어나게 되리라고 예상할 수 있다.


해밀토니안에 의해 만들어지는 흐름(연두)은 제약조건을 만족하는 부분다양체(연파랑) 위에서 출발하더라도 그 부분다양체 위에서 움직이는 방향(녹색)과 그 부분다양체에서 벗어나는 방향(적색)을 모두 포함한다.


이제 문제는 포아송 괄호를 통해 얻은 해밀토니안 함수에 대응되는 흐름에서 제약조건을 만족하지 못하게 하는 방향의 흐름을 제거하는 것이다. 위의 그림에서 적색 화살표에 해당하는 성분을 제거하는 것이 목표인 셈. 이 목표는 제약조건을 만족하는 경우 0이란 값을 갖는 제약조건에 해당하는 함수 $f_i$들을 적당히 더하는 것으로 이루어진다. $f_i$에 의해 만들어지는 흐름 $\{f_i,\bullet\}$은 일반적으로 0이 아니기 때문. 수식으로 나타내면 다음과 같다.

\[ H \to \{ H, \bullet \}_{\text{Dirac}} = \{ H + c_i f_i , \bullet \} \]


이제 문제는 1. 충분한 숫자의 $f_i$를 찾아서 어떤 방향으로 벗어나더라도 벗어나는 방향을 제거할 수 있을 것 2. 계수들 $c_i$를 결정할 것 두가지로 나뉘게 된다. 첫번째 문제에 대한 답은 제약조건을 primary/secondary constraint와 1st class/2nd class constraint로 분류하는 과정과 관련이 있는데[각주:2] 여기서는 일단 충분한 숫자의 $f_i$들을 구했다고 가정하기로 하자.


디락 괄호는 포아송 괄호에 보정을 가해서 제약조건을 만족시키도록 한 것으로 볼 수 있다.


계수들 $c_i$는 어떤 해밀토니안 함수를 통해 생성된 흐름이더라도 제약조건 $f_i$의 값을 0으로 유지시켜야 한다는 것으로부터 구할 수 있다. 따라서 다음 방정식의 해를 구해야 한다는 뜻이다.

\[ \forall i \,, \{ H, f_i \}_{\text{Dirac}} = 0 \]


이 문제는 다음 가설풀이(ansatz)를 적용해서 풀 수 있다. 이런 가설풀이를 도입하는 이유는 포아송 괄호의 성질들 중 필요한 성질들을 보존하기 위함인데, 그 이야기까지 하기에는 글이 너무 길어지므로 대충 넘어가기로 하자.

\[ c_i(H) = - \{ H, f_j \}M^{ji} \]


위의 가설풀이를 적용하면 이제 풀어야 할 방정식은 아래와 같이 바뀐다.

\[ \{ H, f_i \}_{\text{Dirac}} = \{ H, f_i \} - \{ H, f_k \} M^{kj} \{ f_j, f_i \} = 0\]


고맙게도 위 방정식은 단순한 역행렬 계산으로 풀 수 있다.

\[ M^{ij} \text{ is the solution to } M^{ij} \{ f_j, f_k \} = \delta^i_k \]


이 정도가 디락 괄호의 핵심적인 아이디어에 속한다.

  1. 오스카 와일드의 표현을 따르자면 '다음 기회가 있다면'.(...) [본문으로]
  2. 나도 잘 구분 못한다. 어차피 아이디어를 이해할 때 명칭은 아주 중요한 것은 아니니 대충 넘어가자. [본문으로]
Posted by 덱스터
2009/05/06 - Lagrangian formulation(1)

Electromagnetism in Schrodinger Eqn.이라는 글을 쓰다가 생각해보니 쓸데없는 식이 들어와 글을나누었다. 그러면 일단, 시작해보자.

Lagrangian을 사용하는 역학을 조금만 비틀어주면 Hamiltonian을 사용하는 정석적(?)인 Hamilton역학을 얻는다. 먼저 Lagrangian의 정의는 운동에너지와 위치에너지의 차이이다. 이 내용을 수식으로 쓴다면

$$L(q_i,\dot{q_i},t)=T-V=\frac12mv^2-V$$

이다. 그리고 Lagrangian을 이용한 운동방정식(Euler-Lagrange equation이라고 부른다)은 각 일반화된 좌표(generalized coordinates) q_i마다 다음과 같다.

$$\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0$$

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 일반화된 속도 벡터.(좌표의 시간변화율을 말한다.) 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

$$p_i=\frac{\partial L}{\partial\dot {q_i}}$$

이 값을 conjugate momentum이라고 부른다. 이제 Legendre 변환을 취한다.

$$H(q_i,p_i,t)= \sum_i p_i\dot{q_i}-L(q_i,\dot{q_i},t)$$

독립변수가 변하는 것에 주목할 것.(일반적으로 우변의 항은 일반좌표의 시간변화율 d(q_i)/dt가 남아있기 때문에 Hamiltonian으로 쓰려면 모두 p_i로 바꾸어야 한다.) 좌표를 일반적인 직교좌표계로 두고 계산해보자.

$$p_i=\frac{\partial L}{\partial\dot{x_i}}=m\dot{x_i}\\H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+V\\H=\sum_i\frac{{p_i}^2}{2m}+V$$

얼레. 에너지다.(독립변수인 p_i로 쓴 점에 유의) 이래서 보통 Hamiltonian을 에너지라고 해석하기도 한다(양자역학을 배울 때 Hamiltonian을 에너지라고 가르치기도 하는데 그 이유가 여기있다). 그렇다면 운동방정식은 어떻게 될까? 우선 Lagrangian을 쓸 때 운동방정식은 이것이었다.

$$\frac{\partial{L}}{\partial{q_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{q_i}}}=0$$

Hamiltonian은 일반좌표의 성분이 전부 Lagrangian에서 나오기 때문에(Hamiltonian은 Lagrangian의 일반좌표 q_i와 일반좌표의 시간변화율 d(q_i)/dt 두 독립변수 중 시간변화율을 conjugate momentum으로 바꾼 것이다. 따라서 앞쪽의 p_i는 일반좌표 q_i와 독립적인 변수가 되고, 따라서 편미분하면 0이 된다.)[각주:1] 위의 식을 이렇게 바꿀 수 있다.

$$\frac{\partial L}{\partial q_i}=-\frac{\partial H}{\partial q_i}=\frac d{dt}\frac{\partial L}{\partial \dot{q_i}}=\dot {p_i}\\\frac{\partial H}{\partial q_i}=-\dot{p_i}$$

하나의 운동방정식을 구했다. 이제 두 번째 운동방정식을 구할 차례다.(Lagrangian의 운동방정식이 N차원 변수 x의 값과 그 시간변화율에 대한 2계도함수라면 Hamiltonian의 운동방정식은 N차원 변수 x와 N차원 변수 p에 대한 1계도함수이다. 따라서 하나씩 더 필요.) 우선 Lagrangian과 Hamiltonian의 완전미분을 생각해보자.

$$dH= \sum_i (\dot{q_i}~dp_i + p_i~d\dot{q_i})-dL \\dL=\sum_i\left(\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}+\frac{\partial L}{\partial{q_i}}~dq_i\right)+\frac{\partial L}{\partial t}dt$$

식을 정리하면 다음처럼 된다.(p_i의 정의를 이용)

$$dH= \sum_i \left(\dot{q_i}~dp_i + p_i~d\dot{q_i}-\frac{\partial L}{\partial\dot {q_i}}~d\dot{q_i}-\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt \\dH= \sum_i \left(\dot{q_i}~dp_i -\frac{\partial L}{\partial{q_i}}~dq_i\right)-\frac{\partial L}{\partial t}dt$$

그런데 Hamiltonian은 conjugate momentum과 일반화된 좌표, 시간에 대한 종속변수이므로

$$dH= \sum_i\left(\frac{\partial H}{\partial{p_i}}~dp_i+\frac{\partial H}{\partial{q_i}}~dq_i\right)+\frac{\partial H}{\partial t}dt$$

가 되어여만 한다.(완전미분의 정의를 생각해보자.) 언제 어디서나 어떤 경우에도 바로 위의 식과 그 위의 식이 일치해야 하므로, 우리가 내릴 수 있는 결론은

$$\frac{\partial H}{\partial{p_i}}=\dot{q_i}~,~\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}$$

이다. 그리고 Hamiltonian을 시간에 대해 완전 미분한 결과는

$$\frac{dH}{dt}=\sum_i\left(\frac{\partial H}{\partial{p_i}}~\dot{p_i}+\frac{\partial H}{\partial{q_i}}~\dot{q_i}\right)+\frac{\partial H}{\partial t} \\=\sum_i\left(-\frac{\partial H}{\partial{p_i}}\frac{\partial H}{\partial{q_i}}+\frac{\partial H}{\partial{q_i}}\frac{\partial H}{\partial{p_i}}\right)+\frac{\partial H}{\partial t} \\=\frac{\partial H}{\partial t}$$

이라 Hamiltonian이 시간에 대한 explicit dependence가 없을 경우 일정한 값을 갖는다.

Lagrangian을 쓸 때와 Hamiltonian을 쓸 때의 차이점은 Lagrangian이 N개의 차원을 갖는 일반화된 좌표공간에서의 움직임을 2계도함수로 풀 때(Euler-Lagrange 방정식이 2계도함수이다) Hamiltonian은 2N차원의 일반화된 좌표-운동량공간(위상공간-phase space-으로 부른다)에서의 움직임을 1계도함수로 푼다는 것이다. 작아 보이는 차이지만 좌표와 좌표의 시간변화율은 완전히 독립이 아니기 때문에 perturbation[각주:2] 다룰 경우 Hamiltonian이 유리하다고 한다.(좌표와 운동량은 독립된 변수로 취급한다.)

다음번에는 Classical Dynamics of Particles and Systems 5판 7.11에 Hamilton's principle을 꼬아서 운동방정식을 유도하는 특이한 방법이 있어서 그걸 다뤄볼 생각이다. 아직 Lagrangian formulation(2)도 쓰지 않은 판에 이걸 쓸 지는 의문이기는 하지만. 이 방법이 Feynman의 경로적분(path integral)과 밀접한 관련이 있어보이는데 그것까지 할 지는 모르겠다.


ps. 고전역학에서 양자역학으로 넘어가는 데에는 위에 나온 미분방정식들보다는 푸아송 괄호(Poisson bracket)가 더 큰 역할을 했다. Shankar책에서 고전적인 계가 어떻게 양자역학적으로 바뀌는지에 대한 부분이 나오는데(아마 quantization이라고 하면서 푸아송 괄호를 commutator로 바꾸고 값에 ih-bar를 붙였던 것 같다) 참조하면 좋을 것이다.
  1. 그런데 그냥 변수가 다르니 편미분하면 0이라고 생각하는게 쉬울지도... [본문으로]
  2. Perturbation theory란 정확한 값을 구할 수 없기 때문에 근사값을 점차 좁혀가는 방법을 말한다. 원주율을 유리수의 합으로 계산하는 것과 비슷하다. [본문으로]
Posted by 덱스터
양자물리를 Griffith 책으로 공부하다 보면 나타나는 의문이 참 많다. 그 중에서 내가 가장 큰 의문을 가졌던 것은 운동량 연산자에 대한 것이었다. 어째서 운동량 연산자는 x로 span된 힐베르트 공간에서 미분으로 나타나는 것일까?

\mathbf{p}={\hbar\over i}\nabla=-i\hbar\nabla
3차원 공간에서 운동량 연산자. Wikipedia: Momentum operator

그 이름이 암시하듯이, 운동량이란 물체의 운동 즉 시간과는 떼어놓고 생각할 수 없는 존재이다. 그런데 어째서 운동량을 나타내는 연산자는 시간에 무관한 것일까?

맨 처음 운동량 연산자를 유도해내는 과정을 보고서 내가 느낀 것은, '운동량에 대응하는 정보가 파동함수에 들어 있고, 그 정보는 어떤 연산을 통해서 외부에 나타난다. 따라서, 운동량의 고전적인 정의를 이용해서 운동량에 해당하는 연산자를 유도해내는 것은 아닐까?'였다.

1. 어떤 연산이 있어 운동량에 대응된다.
\langle{p}\rangle=\int\psi^{\star}{p}\psi{dx}

2. 고전적인 운동량에 해당하는 값은 다음과 같다.
p_{classical}=m\frac{d}{dt}\langle{x}\rangle=m\frac{d}{dt}\int\psi^\star{x}\psi{dx}

3. 이미 알려진 Schrodinger 방정식을 적절히 손보면, 다음 식을 얻는다.[각주:1]m\frac{d}{dt}\int\psi^\star{x}\psi{dx}=\int\psi^\star{\frac{\hbar}{i}\frac{d}{dx}}\psi{dx}

4. 여기서 운동량에 해당하는 연산을 찾을 수 있다.(연산자를 강조하기 위해 ^ 사용)
\hat{p}=\frac{\hbar}{i}\frac{d}{dx}

하지만 문제는, 우리가 알고 있는 Schrodinger 방정식 자체가 운동량 연산자를 가정하는 것에서 출발했다는 것이다. 보통 Schrodinger 방정식은 다음과 같은 형태로 쓴다.

i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = \hat H \Psi(\mathbf{r},t)
하나의 계에 대한 Schrodinger 방정식
i\hbar\frac{\partial}{\partial t} \Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)
입자 하나에 대한 Schrodinger 방정식. Wikipedia: Schrodinger equation

H는 Hamiltonian 연산자로, 고전역학에서 사용하는 Hamiltonian이라는 물리량에 해당한다. 일반적인 경우, Hamiltonian은 계 전체의 에너지와 같은 값을 갖는다. 따라서, Schrodinger 방정식은 계를 나타내는 상태함수가 에너지에 비례하여 시간적으로 변화한다는 것을 나타낸다고 볼 수 있다. 그리고 고전적으로 운동에너지는 운동량의 제곱을 질량의 두배로 나눈 값이다. Schrodinger 방정식의 첫 항(Laplacian이 들어가 있는 항)을 잘 보면 바로 앞서 구한 운동량의 제곱을 질량의 두배로 나눈 값, 즉 고전적인 운동에너지라는 것을 알 수 있다. 결국, 우리는 원점으로 돌아온 것이다.[각주:2] 그렇다면 어떻게 해야 운동량에 해당하는 연산자를 구할 수 있을까?



쓰기 귀찮아서 여기까지만...(여기까지 써놓고 끝날 가능성도 농후)
관심이 가시는 분은 여기를 참조:
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Derivation
Erwin Schrodinger의 원본을 보고 싶으신 분을 위하여:
http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf
  1. Griffith 책에 있으니 생략. [본문으로]
  2. Schrodinger 방정식이라는 대전제 안에 운동량에 대한 가정이 포함되어 있고, 우리는 이 보이지 않는 가정을 일련의 과정을 통하여 벗겨낸 것일 뿐이다. [본문으로]

'Physics > Speculations' 카테고리의 다른 글

양자역학의 유래  (4) 2010.01.19
복소수의 필연성  (0) 2010.01.19
요즘 하는 생각  (0) 2009.12.04
Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함