'전자기학'에 해당되는 글 4건

  1. 2011.10.03 자기 단극자의 vector potential
  2. 2010.09.20 Electromagnetism in Schrodinger Eqn. 1
  3. 2009.11.07 Lagrangian in Electromagnetism 4
  4. 2008.12.08 직관과 포인팅 벡터 15
덧글에 찔려서 시작하는 백만년만의 물리 포스팅. 물리 포스팅은 수식 쓰는 시간이 길어서 조금 힘들다. 이번에는 Sakurai의 Modern Quantum Mechanics 140페이지에 등장하는 벡터 포텐셜을 구해보자.

$$\mathbf{A}=\frac{1-\cos\theta}{r\sin\theta}\hat\phi$$

시작은 curvilinear orthogonal coordinate system에서(특히 구면좌표계)의 curl에 대한 표현이다.

$$\nabla\times\mathbf{A}=\frac1{uvw}\begin{vmatrix} u\hat{x_1}&v\hat{x_2} &w\hat{x_3} \\ \partial_1&\partial_2 & \partial_3\\ uA_1&vA_2 &wA_3 \end{vmatrix}\\d\mathbf{s}=udx_1\hat{x_1}+vdx_2\hat{x_2}+wdx_3\hat{x_3}$$

구면좌표계에서는 $u=1, v=r, w=r\sin\theta$인데, 우리가 원하는 curl의 형태는 $\frac1{r^2}\hat{r}$이기 때문에 해를 구하기 위해 다음과 같이 어느 정도 단순화된 해를 가정할 수 있다.[각주:1]

$$\mathbf{A}=A_\phi \hat\phi\\r\sin\theta{A_\phi}=f(\theta)\\\partial_\theta[{r\sin\theta{A_\phi}}]=\sin\theta$$

물론 이 방정식을 풀면(적분상수 C는 남겨둔다)

$$ f(\theta)=C-\cos\theta\\\therefore{A_\phi}=\frac{C-\cos\theta}{r\sin\theta}$$


을 얻는다. C=1로 두면 위에서처럼 음의 z축에서만 폭발하는 vector potential을 만들 수 있고, 내가 구했던 경우는 C=0이었는데 이건 z축에서는 사용이 불가능했다.

$$ \mathbf{A}=-\frac1{r}\cot\theta\hat\phi $$

자기 단극자는 흥미로운 현상이다. 원래 없다는 공리에서 세워진 이론 체계에서 있다는 결론을 도출할 수 있다니 어찌 재미없다고 할 수 있겠는가. 요즘 부대에서 하는 물리 생각의 80% 이상은 이 녀석 생각이다. 잠정적인 결론은 "자기 단극자가 있다면 질량이 없을 것이다"이지만.(그래서 광속으로 이동하는 전하의 전기장에 대해 생각하고 있다.)
  1. 역으로 theta방향 성분만 있는 벡터 포텐셜을 생각할수도 있다. 하지만 이 경우 생기는 문제는 특이점의 집합이 평면이 되어버린다는 것이다. [본문으로]
Posted by 덱스터
Feynman Lectures 3권의 (21.1) 식은 다음과 같다.

\left< b | a \right>_{\text{in } \bold A}=\left< b |a\right>_{\bold A=0}\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

무슨 뜻인고 하면, 자기포텐셜 A가 존재할 때 전이확률을[각주:1] 구하려면 A가 0일 때의 전이확률에 자기포텐셜을 선적분한 만큼 추가적인 위상을 곱해주어야 한다는 것이다. 이 뜬금없는 식은 어디에서 등장한 것일까? 어떤 이유에서든 양자물리는 고전역학에 뿌리를 두고 있으므로 고전역학의 어디에서 왔는지 살펴보자. 먼저 Lagrangian in Electromagnetism에서 마지막 결과물로 얻은 고전적인 장-전하 반응 Lagrangian을 끌어오자.

L=\sum_j\frac1{2}m\dot{x_j}^2-q(\varphi-\dot{x_j}A_j)=\frac1{2}m\vec{v}\cdot\vec{v}-q(\varphi-\vec{v}\cdot\vec{A})

여기에 Legendre 변환만 취해주면 Hamiltonian을 얻는다. 치환하고자 하는 물리량은 속도 벡터. 일단 Lagrangian을 좌표의 시간변화율로 편미분해주자.

p_i=\frac{\partial L}{\partial\dot {x_i}}=m\dot{x_i}+qA_i

conjugate momentum을 구했으니 Legendre 변환을 취한다.

H= \sum_i p_i\dot{x_i}-L=\sum_i\frac12m\dot{x_i}^2+q\varphi

얼레. 이상한 포텐셜도 끼어들었는데 제대로 된 에너지가 결과로 나왔다. 하지만 명심해야 할 사실은, Hamiltonian은 좌표의 시간변화율이 끼어들 자리가 없다는 것이다. d(x_i)/dt를 p_i로 바꾸어주어야 한다는 사실을 잊지말자.

\dot{x_i}=\frac{p_i-qA_i}m \\\therefore H=\sum_i\frac1{2m}(p_i-qA_i)^2+q\varphi

이제 Schrodinger equation으로 자기력을 다룰 때 어째서 괴상한 방식으로 자기포텐셜이 도입되었는지 그 유래가 조금은 보일 것이다. 이제 Schrodinger 방정식을 풀어보자. 일반적으로 이 방정식을 풀 때 상태함수는 위치좌표를 기저로 쓰므로 운동량을 적당히 바꾸어 넣는다.

H=\frac1{2m}(-i\hbar\vec\nabla-q\bold A)\cdot(-i\hbar\vec\nabla-q\bold A)+q\varphi

우변의 첫 항이 사실 좀 많이 거슬린다. 계산이 너무 귀찮게 생겼다. 그런데 운동량과 자기포텐셜이 뒤섞여 있는 저 항은 잘 하면 계산하기 쉽게 바꿀 수 있을 것도 같다. 먼저 위의 Hamiltonian을 다시 써보자.

H=-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi

다음 방정식은 쉽게 보일 수 있다. 이 녀석을 응용할 수 있지 않을까? (F는 f의 역도함수)

\left(\frac{d}{dx}-f(x)\right)g(x)~e^{F(x)}=g'(x)~e^{F(x)}

일단 입자가 a에서 b까지 1차원 경로로 이동하는 경우는 다음과 같이 쓰면 쉽게 정리할 수 있다.

\Psi(x,t)=\Psi_0(x,t)\cdot\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]

적분이 아직 난감하다고 해도, 미분은 엄청 간편해졌다.

i\hbar\frac{\partial\Psi}{\partial t}=H\Psi=\left[-\frac{\hbar^2}{2m}(\vec\nabla-\frac{iq}{\hbar}\bold A)\cdot(\vec\nabla-\frac{iq}{\hbar}\bold A)+q\varphi\right]\Psi \\=\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0 \\=i\hbar\frac{\partial}{\partial t}\left(\exp\left[\frac{iq}{\hbar}\int_a^b\bold A\cdot d\bold s\right]\cdot\Psi_0\right)

특히, A가 시간과 무관한 경우라면 계산이 엄청나게 간단해진다.

i\hbar\frac{\partial\Psi_0}{\partial t}=\left[-\frac{\hbar^2}{2m}\nabla^2+q\varphi\right]\Psi_0

이제 처음에 등장한 식이 어떻게 얻어졌는지 조금은 보일 것이다.
  1. 실제 확률은 절대값의 제곱을 취하지만, 여기서는 간단히 두 상태의 내적으로 취급하자. [본문으로]
Posted by 덱스터
2009/05/06 - Lagrangian formulation(1)

먼저 Lagrangian은 정확한 역학법칙은 아닙니다. 단지 다음 공식이 정확한 운동방정식으로 환원되기만 하면 되는 거지요.

\frac{\partial{L}}{\partial{x_i}}-\frac{d}{dt}\frac{\partial{L}}{\partial{\dot{x_i}}}=0

그리고 일반적인 경우, L은 T-V, 즉 운동에너지에서 위치에너지를 제한 값이 됩니다. 하지만 전자기학에서는 어떨까요? 애석하게도 자기력의 포텐셜은 벡터이기 때문에, 단순한 위치에너지가 계산이 되질 않습니다. 먼저 전자기학에서 힘은 어떻게 나타나는지 보기로 합니다.

\vec{F}=m\dot{\vec{v}}=q(\vec{E} \vec{v}\times\vec{B})

전기장과 자기장은 보기 심히 안 좋습니다. 포텐셜을 도입해서 전기장과 자기장을 바꾸어 줍니다.

\vec{E}=-\nabla\varphi-\frac{d}{dt}\vec{A} \\\vec{B}=\nabla\times\vec{A}

(자세한 내용은 여기에...http://en.wikipedia.org/wiki/Mathematical_descriptions_of_the_electromagnetic_field#Potential_field_approach)

설렁 설렁 도입해 줍니다.

\frac{d}{dt}m{\vec{v}}=q(-\nabla\varphi-\frac{\partial}{\partial{t}}\vec{A} \vec{v}\times\nabla\times\vec{A})

우변의 마지막 항이 상당히 거슬리는군요. 깔끔하게 정리해 줍시다.

\vec{v}\times(\nabla\times\vec{A})=\nabla(\vec{v}\cdot\vec{A})-(\vec{v}\cdot\nabla)\vec{A}\\\frac{d}{dt}m{\vec{v}}=q(-\nabla\varphi-\frac{\partial}{\partial{t}}\vec{A} \nabla(\vec{v}\cdot\vec{A})-(\vec{v}\cdot\nabla)\vec{A})

오, 무언가 정리될 것 같아 보이네요.

\frac{\partial}{\partial{t}}\vec{A} (\vec{v}\cdot\nabla)\vec{A})=\frac{d}{dt}\vec{A}\\\frac{d}{dt}m{\vec{v}}=q(-\nabla\varphi \nabla(\vec{v}\cdot\vec{A})-\frac{d}{dt}\vec{A})\\0=\nabla(-q\varphi q\vec{v}\cdot\vec{A})-\frac{d}{dt}(m\vec{v} q\vec{A})

성분별로 써 봅시다.

\frac{\partial}{\partial{x_i}}(-q\varphi q\dot{x_j}A_j)-\frac{d}{dt}(m\dot{x_i} qA_i)=0\\\frac{\partial}{\partial{x_i}}(-q\varphi q\dot{x_j}A_j)-\frac{d}{dt}\frac{\partial}{\partial\dot{x_i}}(\frac1{2}m\dot{x_j}^2 q\dot{x_j}A_j)=0

j는 dummy index입니다. j로 정리되어 있는 모든 성분에는 합이 생략되어 있지요. i는 우리가 측정하고 있는 방향의 성분입니다. 어찌되었든, 만약 q가 운동 속도에 영향을 받지 않는다면(많은 위치에너지가 그리하듯이) L을 다음과 같이 잡아주면 됩니다.

L=\sum_j\frac1{2}m\dot{x_j}^2-q(\varphi-\dot{x_j}A_j)=\frac1{2}m\vec{v}\cdot\vec{v}-q(\varphi-\vec{v}\cdot\vec{A})

이렇게 L을 정의하면 원하는 운동방정식을 얻습니다. 전자기학에서 Lagrangian 구하기 끝.

양자역학으로 넘어가서 많이 중요해지는 Hamiltonian은 나중에 구해보기로 하지요 뭐.

'Physics' 카테고리의 다른 글

측정의 평균  (2) 2009.12.24
우월한 고전역학  (0) 2009.12.09
가진 물리학/공학 교재들  (7) 2009.09.30
Operator determination  (0) 2009.04.25
Dirac Delta orthonormality  (2) 2009.04.18
Posted by 덱스터
生 이론물리 포스트입니다 ^-^;;
아무래도 엔비앙 님만 이해하실듯...ㄷㄷ;;;

포인팅 벡터(Poynting Vector)라는 것이 있어요. 전자기학에서 에너지의 흐름을 나타내는 벡터인데, 많은 경우 이 녀석이 말하는 내용이 직관적으로는 말이 안 됩니다. 가장 대표적인 예로는 열이 발생하고 있는 저항선에서 전기 에너지가 어디서 들어오는가 하는 문제이지요. 직관적으로 생각하면 전기 에너지는 전지에서 전선을 타고 들어와서 열에너지로 빠져나가야 합니다. 전선을 타고 에너지가 흐른다는 생각을 하는 것이지요. 그런데 포인팅 벡터는 전선의 외부에서 전선 속으로 에너지가 흘러 들어온다고 말합니다. 그러니까, 전선을 타고 들어오는 에너지는 하나도 없다는 것이 포인팅 벡터가 말하는 주된 내용입니다. 이건 저번 주 수요일 강의 내용이었지요.(교과서로는 파인만 강의록을 사용하고 있는데, 이 책 참 읽기가...-_-;;)

그날 일이 있어서 맥주 한캔을 빨고(-_-;;) 잠자리에 들다가 갑자기 이런 생각이 들었습니다. '논리적으로 생각하면 에너지는 당연히 전선을 타고 올 수 없구나!'. 원래 떠올린 것은 '전자의 부호를 -가 아닌 +로 센다면' 이었는데, 찾아보니 C-대칭(Charge Conjugation Symmetry-입자를 반입자로 바꾸어도 물리 법칙이 일정하다는 그런 내용입니다. 중력과 전자기력에는 적용되지만 약력에는 적용되지 않는다고 하더군요.)과 전혀 차이가 없는 듯 합니다. 하여튼, 시작해 보겠습니다 ^^;;

먼저, 몇 가지 가정을 할 필요가 있습니다. 첫 가정은 '전하의 부호를 반대로 세어도 전자기학 법칙은 바뀌지 않는다' 이고, 두 번째 가정은 '에너지는 국소적으로 보존된다' 입니다. 첫 가정으로부터 얻어지는 뒤따르는 가정은 '에너지의 흐름은 전하의 부호를 반대로 세어도 바뀌지 않는다'가 되겠지요. 흠... 이건 독립된 가정인가요? 뭐 하여튼 가정은 이쯤에서 끝내고, 적용해 보겠습니다.

먼저 에너지는 전선만 타고 흐를 수 있다고 가정합니다. 그러면 전선에는 전류가 흐르는 방향이 있을 것이고, 전체 에너지의 흐름은 전류의 방향과 (1)평행하거나, (2)역평행(antiparallel)하거나, (3)무관해야 합니다. 여기서 무관하다는 말은 에너지가 모든 점에서 수렴한다거나 모든 점에서 발산한다는 것인데, 이렇게 되면 두번째 가정인 '에너지는 국소적으로 보존된다'에 어긋나게 됩니다. 사실, 에너지 보존 법칙을 쓰지 않더라도 어떻게 해야 모든 점에서 에너지가 수렴하거나 발산하도록 할 수 있는 방법이 있기나 한지 저는 전혀 모르겠네요.(지금은 에너지가 전선만 타고 흐를 수 있다고 가정했기 때문에 그렇습니다.)

그러면 당연히 전체 에너지의 흐름은 전류의 방향과 평행하거나 역평행하다는 결론이 내려집니다. 이제, 전하의 부호를 바꾸어 세 보겠습니다. 그러면 전류의 방향이 역전되고, 에너지의 흐름도 반대가 되겠지요. 그런데 문제는, 이렇게 바꾸어 세기만 했을 뿐인데 에너지의 흐름이 뒤바뀌느냐는 겁니다. '에너지의 흐름은 전하의 부호를 반대로 세어도 바뀌지 않는다'는 가정에 의해서 에너지의 흐름은 전류의 방향과 무관하다는 결론이 얻어집니다. 왜냐하면, 에너지의 흐름이 반대가 되어도 원래 에너지의 흐름과 같으려면 에너지의 흐름은 그 점에 대하여 대칭이 되어야 하기 때문이지요. a=-a의 답이 a=0인 이유와 같다고 생각하시면 됩니다. 그런데 앞서 한 논의에서 에너지의 흐름이 전선 위에만 있으면서 모든 점에서 수렴하거나 발산하는 경우는 있을 수 없다고 결론내렸습니다. 따라서, 위의 가정 중 하나가 틀렸다는 말이 되지요. 그러면 가장 만만한(?) 가정은 에너지는 전선만 타고 흐를 수 있다는 가정입니다. 결국 에너지는 전선이 아니라 공중에서 흘러들어온다는 것이 논리적으로 볼 때에는 타당하다는 것이지요.

음... 이건 전 이렇게 해석했습니다. 전기장을 만드는 것은 실제로는 만드는 것이 아니라 공간에 퍼져 있는 미세한 전기장을 그 지점으로 끌어오는 것이라구요. 그러니까, 거의 0에 가까운 전기장들을 전선 주변으로 가져오는 것이 전선에 전류를 흘리는 방법인데, 이렇게 전기장들을 전선으로 가져오려면 전기장들은 허공에서 전선으로 흘러들어가는 형태가 되어 버립니다. 이렇게 전기장들이 허공에서 흘러들어가니까 포인팅 벡터가 허공에서 전선 속을 향하고 있다고 생각하는 것이지요. 이 논의는 무한평면축전기에도 적용이 가능해 보입니다. 파인만 강의록에도 같은(?) 방법으로 설명해 두었더군요. 물론, 파인만 강의록에 있던 설명은 무한평면축전기에 대한 내용이었긴 하지만 말입니다.

덧. 물리시험은 다음주 월요일이고 내일 통계시험이 있는데 이러고 있는 저는 막장?

'Physics > Speculations' 카테고리의 다른 글

Time operator?  (2) 2009.10.20
왜 하필이면 Hamiltonian 연산자인가?  (0) 2009.10.17
복소수 대칭과 시간대칭  (23) 2009.04.30
어는점내림/끓는점오름을 다른 상수에서 구하기  (4) 2009.04.24
파동함수...  (6) 2009.03.04
Posted by 덱스터
이전버튼 1 이전버튼

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함