'적분'에 해당되는 글 3건

  1. 2017.08.09 간단한 적분 트릭
  2. 2014.10.26 로그 항등식? (3)
  3. 2009.12.05 적분놀이

'원 위의 임의의 두 점을 골랐을때의 거리의 기하평균'을 구할 일이 있어서 다음과 같은 적분을 할 일이 생겼다.


\[ \int_0^1 \log ( \sin \pi x ) dx \]


매스매티카에 돌려보면 이 적분의 값은 $ - \log 2 $라고 한다. 어째서인지 직접 계산해서 보일 수 있을 것만 같은 값이라서 적분을 이리 고치고 저리 고치는 삽질을 좀 하다가 직접 증명이 가능하다는 것을 확인하는데 성공했다. 생각보다는 간단한 트릭이었음.


우선 적분을 다음과 같은 꼴로 바꾼다.


\[ \int_0^1 \log ( \sin \pi x ) dx = 2 \int_0^{1/2} \log ( \sin \pi x ) dx = \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


이 적분은 이런 꼴로도 변환할 수 있다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \int_0^1 \log ( 2 \sin \frac{\pi x}{2} \cos \frac{\pi x}{2} ) dx \]


로그를 분해한 후 코사인에 대한 적분에서 변수변환 $x \to 1-x$을 적용하면 다음과 같이 정리된다.


\[ \int_0^1 \log ( \sin \pi x ) dx = \log 2 + 2 \int_0^1 \log ( \sin \frac{\pi x}{2} ) dx \]


두 표현을 잘 정리하면 원하는 답을 얻는다.


\[ \therefore \int_0^1 \log ( \sin \pi x ) dx = - \log 2 \]

저작자 표시 비영리 변경 금지
신고

'Mathematics' 카테고리의 다른 글

간단한 적분 트릭  (0) 2017.08.09
Summing Combinations  (0) 2015.11.06
Series Expansion  (0) 2015.10.01
이항전개와 수치근사  (1) 2015.05.01
Mobius Transformation and Rotation in E^3  (0) 2015.03.21
Gaussian Integral with Imaginary Coefficients  (2) 2015.02.25
TAG 적분

댓글을 달아 주세요

로그 항등식?

Mathematics 2014.10.26 02:50

페이스북 타임라인에 던져졌던 문제. 다음을 미분을 쓰지 않고 증명하시오.


\ln f(x) = - \int _0 ^{\infty} \frac{1}{t}e^{-tf(x)}dt




그 전에 잠시 다음 적분을 보자.


\[ \forall a>0, \int_0^\infty \frac{1}{t}e^{-at}dt = \int_0^\infty \frac{1}{t}e^{-t}dt \]


위 식은 간단한 변수치환으로 보일 수 있다. 이제 다음 식을 생각해보자.


\[\forall a>0\forall \epsilon>0, \int_0^\infty\frac{1}{t}e^{-(a+\epsilon)t}dt -\int_0^\infty\frac{1}{t}e^{-at}dt = 0\]


왜냐고요? 위에서 임의의 변수 $a$를 넣어주어도 값이 같다는걸 보였으니까. 눈치가 빠른 사람들은 내가 왜 $\epsilon$을 넣었는지 감을 잡았겠지만, 이제 미분의 정의를 이용하려고 한다. 적분은 합쳐도 상관없으니 일단 같은 적분으로 퉁치기로 하자.


\[\lim_{\epsilon\to0}\frac{1}{\epsilon}\int_0^\infty\frac{1}{t}(e^{-(a+\epsilon)t}-e^{-at})dt=\lim_{\epsilon\to0}\frac{1}{\epsilon}0 = 0\]


한편, 극한을 적분 안에 우선 넣어버리는 방법도 있다.


\[\int_0^\infty\frac{1}{t}\lim_{\epsilon\to0}\frac{1}{\epsilon}(e^{-(a+\epsilon)t}-e^{-at})dt=-\int_0^\infty e^{-at}dt=-\frac{1}{a}\]


넵. 무언가 잘못되었습니다. 이런 문제가 생기는 이유중 하나로 처음 본 식의 적분은 무조건 발산한다는 성질이 있다.(극한과 적분의 순서를 바꾸어도 되는가는 꽤 섬세한 증명이 필요한 과정이긴 하지만 그건 수학과의 일이니 일단 무시하기로 하자)[각주:1][각주:2] 애초에 시작부터 개소리라는 뜻이다. 하지만 우리는 불굴의 물리학도 계산기 공대생, 정의가 제대로 안 되었든 말든 그건 무시하고 일단 계산에 써먹는다!




본론으로 돌아와서, 양변을 미분하면 처음의 식을 어떻게든 얻지만 다른 해법을 구하라고 한 이상 다른 방법을 찾아야 한다. 우선 위 등식은 이렇게 쓸 수 있다.


\ln f(x) = - \int _0 ^{\infty} \frac{1}{t}e^{-tf(x)}dt=-\int _0 ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt


되든 말든은 걱정하지 않고 식만 그럴듯하면 바꾸고 보는 공대생의 본능을 따라 적분 순서를 바꿔보자. 그러면


\ln f(x) = -\int _0 ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt = -\int _{f(x)} ^{\infty}\int _0 ^{\infty} e^{-tf}dt df \\ = \int _{f(x)} ^{\infty} \frac{1}{f} df


적분이 발산한다. 어쨌든 식의 꼴은 대충 맞췄으니, 우리는 어떻게든 비슷한 맞는 증명과정을 가고 있다고 생각할 수 있다. 어디에서 문제가 생긴 걸까? 문제는 정의되지 않는 적분을 억지로 정의했기 때문에 생긴다: 0에서 1/t는 정의되지 않는다.[각주:3] 보다 올바른 표현으로 바꾸려면 위 등식을 다음과 같이 써야 한다.


\ln f(x) = - \lim_{\epsilon\to 0+} \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt


이 식을 끌고가 보자. 적분 순서를 바꾸면 ('과연 바꿀수 있는가?'란 질문은 수학과에게 넘기기로 하자)


- \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt=-\int _\epsilon ^{\infty}\int _{f(x)} ^{\infty} e^{-tf}df dt = -\int _{f(x)} ^{\infty}\int _\epsilon ^{\infty} e^{-tf}dt df \\ = \int _{f(x)} ^{\infty} \frac{e^{-\epsilon f}}{f} df = \left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\epsilon\int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df


문제는 두번째 항의 적분이다. 두번째 항은 입실론이 0으로 갈 때 수렴할까 발산할까? 당연히 발산하지(...). 얼마나 빠르게 발산하는지 확인하기 위해 두번째 항은 라플라스법/안장점법(saddle point method)/최대기울기법(method of steepest descent) 등으로 불리는 다음 기법을 이용해 근사해보자. 우선 다음이 되는 식 g를 계산한다.


e^{g(f)}=(\ln f)e^{-\epsilon f}


이제 좌변을 극대값에서 테일러 전개를 이용해 근사한다.


\frac{d}{df}\left[(\ln f)e^{-\epsilon f}\right]_{f^\ast}=\left[\frac1{f^\ast}-\epsilon\ln f^\ast \right]e^{-\epsilon f^\ast}=0 \\\therefore f^\ast\ln f^\ast=\frac1\epsilon \\\\g(f) = \ln\left[(\ln f)e^{-\epsilon f}\right] \simeq g(f^\ast)+\frac12 g''(f^\ast)(f-f^\ast)^2 \\\therefore g(f) \simeq \ln\left[\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}} \right]-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2


매우 익숙한 적분이 보이는 것은 착각이 아니다.


\int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df \simeq \int_{f(x)}^{\infty}\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}}e^{-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2}df \\\simeq \int_{-\infty}^{\infty}\frac1{\epsilon f^\ast}e^{-\frac1{\ln f^\ast}}e^{-\frac12 \frac{\epsilon(1+\frac{1}{\ln f^\ast})}{f^\ast}(f-f^\ast)^2}df \\=\frac1{\epsilon f^\ast}\sqrt{\frac{2\pi f^\ast}{\epsilon(1+\frac{1}{\ln f^\ast})}}e^{-\frac1{\ln f^\ast}}


극한을 취하면


\therefore- \lim_{\epsilon\to 0+} \int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt \\=\lim_{\epsilon\to 0+}\left[\left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\epsilon\int_{f(x)}^{\infty}(\ln f)e^{-\epsilon f} df \right ] \\=\lim_{\epsilon\to 0+}\left[\left (\ln{f})e^{-\epsilon f} \right|_{f(x)}^\infty+\frac1{f^\ast}\sqrt{\frac{2\pi f^\ast}{\epsilon(1+\frac{1}{\ln f^\ast})}}e^{-\frac1{\ln f^\ast}} \right ] \\=\ln f+O((\ln f^\ast)^{1/2})


마지막의 O는 발산하는 항이다. 위에서의 정의 때문에 $\ln f^\ast$의 1/2승으로 발산하면 $-\ln \epsilon$의 1/2승보다도 느리게 발산한다는 것을 확인할 수 있다( $f^\ast\leq\epsilon^{-1}$). 참고로 $-\ln\epsilon$은 $\epsilon$의 어떤 차수보다도 천천히 발산한다(지금은 $\epsilon$을 0으로 보내고 있다) .


\[\therefore \epsilon\to0,-\int _\epsilon ^{\infty} \frac{1}{t}e^{-tf(x)}dt = \ln f+o((-\ln \epsilon)^{1/2}) \]


아, 그리고 뒤쪽의 발산하는 항은 '비물리적이다!'라고 판단해서 날려먹는 일은 자주 있는 일이다. 이로서 증명 끝!(?)

  1. 한 교수님 왈: (무한합과 적분의 순서를 바꾸면 간단해지는 식이 있을 때) "수학과는 적분과 무한합의 순서를 바꾸어도 되는지 고민하느라 시간을 날린다. 공대생은 일단 바꾸고 계산해서 틀린다" [본문으로]
  2. 함수열의 극한의 적분과 함수열의 적분의 극한이 다른 사례로 $f_n(x)=2^{n+1}, 2^{-n-1} leq x leq 2^{-n}$ 이 있다(타 구간에서는 0). 이 함수열의 극한은 항등적으로 0인 함수. [본문으로]
  3. 실제로도 적분이 문제가 생기는 영역은 0 근처이다. [본문으로]
저작자 표시 비영리 변경 금지
신고

댓글을 달아 주세요

  1. Favicon of http://kipid.tistory.com BlogIcon kipid  댓글주소  수정/삭제  댓글쓰기

    음.. 스마트폰에서 보면 수식이 처리가 안되어서 보이는데 -ㅇ-;;;;

    2014.11.11 20:05 신고
    • Favicon of http://dexterstory.tistory.com BlogIcon 덱스터 2014.11.15 21:35 신고  댓글주소  수정/삭제

      아, 수식이 java를 쓸꺼라 모바일에서는 안될꺼예요...

    • Favicon of http://kipid.tistory.com BlogIcon kipid 2014.11.15 21:42 신고  댓글주소  수정/삭제

      http://kipid.tistory.com/entry/equations-in-html
      모바일 페이지를 따로 안만들고 max-width:100% 같은걸로 처리하시면 폰에서도 보이긴 하는데... 음. 그냥 폰에서 pc 버전으로 보는게 편한 방법이긴 하겠네요.

적분놀이

Mathematics 2009.12.05 01:04
Griffith 양자책은 수학적인 설명은 살짝 불친절한것 같다. 하긴, 양자역학 책인데(...)

오늘 살펴볼 적분.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \pi

Time dependent perturbation에 등장하는 적분이다.
먼저, 부분적분.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx - \left[\frac{\sin^2 x}x \right]_{-\infty}^\infty

뒷항은 안드로메다로 날려버리고 나면(0이니까)

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx

그런데 잘 보면

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty} \frac{2\cos x \sin x}x dx =\int_{-\infty}^{\infty}\frac{\sin 2x}x dx = \int_{-\infty}^{\infty}\frac{\sin y}y dy

(y=2x) 이다. 이제 문제는 Dirichlet integral이다.

eq=\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx = \int_{-\infty}^{\infty}\frac{\sin y}y dy = 2\int_{0}^{\infty}\frac{\sin x}x dx = \pi

Diriclet integral의 증명은 생략. 부분적분을 잘 꼬으면 Residue를 쓸 수 있을 것 같기도 한데....
저작자 표시 비영리 변경 금지
신고

'Mathematics' 카테고리의 다른 글

무한대의 비교: 자연수와 실수  (0) 2010.01.13
Laplace 변환을 이용한 미분방정식 풀이  (2) 2009.12.17
각종 변환들  (0) 2009.12.15
Fourier 변환의 고유함수  (0) 2009.12.15
적분놀이  (0) 2009.12.05
Tensor(1)  (2) 2009.10.16
TAG 수학, 적분

댓글을 달아 주세요

1 

글 보관함

카운터

Total : 588,445 / Today : 40 / Yesterday : 161
get rsstistory!

티스토리 툴바