0. 런던으로 이사온지 한달 반 정도 지났습니다. 일생 처음 락다운이란 것도 겪어보고(라고 해도 대학은 이번 락다운 폐쇄에서 제외되어서 출근은 계속 하고 있습니다) 말이죠. 조금씩 생활 사이클이 런던 생활에 적응해가는 것 같군요.

 

0.1. 물론 완전히 적응했다고 하기는 애매한 것이, 먹거리 메뉴를 충분히 늘리지 못하고 있습니다. 사실상 숏 파스타-인도카레 두 메뉴의 사이클만 돌리고 있는데 메뉴를 두어개 정도 더 추가해 주어야 질리지 않고 잘 살아남을 것 같단 말이죠. 하기 쉬우면서 오래 먹을 수 있는 메뉴가 무엇일지는 조금 더 고민해 봐야겠습니다. 처음 대학생활을 시작하던 시절처럼 몸을 막 굴려도 어떻게든 굴러가던 시절(...)은 지났으니까요.

 

0.2. 결국 바이든이 미 대선에서 승리했군요. 많은 사람들이 발 뻗고 잘 수 있겠습니다(...). 저야 잠 못 잔 이유가 논문 벼락치기였습니다만 미 대선 때문에 잠을 설쳤던 것이 없다고는 못하겠군요. 여튼, 토요일이었던 어제는 진짜 하루 종일 잠만 잔 듯한 느낌이군요.

 

1. 4쪽짜리 짧은 논문이기는 하지만 10일만에 완성한 논문이 곧 arXiv에 올라갈 예정입니다(제출은 금요일). 이렇게 짧은 시간 안에 논문을 쥐어짜느라 제대로 잠을 못 자서 어제는 그 반동으로 동면에 들어간 곰처럼(...) 잠만 잤습니다. 처음엔 '어 이렇게 단순한 것을 왜 사람들이 발견 못했지?' 싶었던, 흥미롭기는 하지만 뭐 그냥 거기서 끝날 것 같았던 관계식이었는데, 조금 더 들여다보고 있으니 이 관계식을 이용해서 사람들이 블랙홀에 대해 갖고 있던 일반적인 생각을 검증해볼 가능성이 보이더군요. 물론 제가 그걸 확인할 능력은 안 되는 것 같아서 (+분량을 쓸데없이 늘리고 싶지는 않아서) '이런이런 관점에서 검토해보면 흥미로울 것이다'란 코멘트 정도만 남겨두었지만, 세상은 넓고 계산에 숙달된 귀신들은 많으니 누군가 논문을 인용해주겠죠. 워낙 이 분야에 걸쳐있는 사람들이 많으니 인용을 최소 다섯 개 정도는 받지 않을까 기대하고 있습니다.

 

1.1. 논문을 쓴 것은 쓴 것이고, 이제 다음 논문 주제를 고민해야 할 타이밍이군요. 뭘 해야 하지...

 

2. 포켓몬고를 꾸준히 하고 있는데, 이번에 이벤트 이로치를 잡겠다고 처음으로(?) 현질(...)을 했습니다. 올해 열렸던 글로벌 고페스트 티켓까지 포함하면 두번째이려나요. 여튼, 누더기 조금 걸친 팬텀 티도 거의 안 나는 이로치를 잡겠다고 대략 30파운드어치 레이드패스를 (추가로) 사는 삽질을 하고 나서야 겨우 얻었군요.

이 친구의 이름은 '고통'이 되었습니다. 내가 다시는 이런 삽질 하나 봐라...

덕분에 열심히(졸업시즌 이후 좀 뜸해지기는 했었습니다만) 하던 포켓몬고에 현자타임(...)이 와서 당분간은 설렁설렁 플레이하게 될 것 같습니다. 같이 이로치를 잡아보자고 레이드를 미친듯이 달리셨던 분들 중 못 잡으신 분들도 있는 것을 보면 승리한 패배자(...)가 된 느낌이군요.

 

3. 소드실드 2차 DLC인 왕관의 설원을 재미있게 플레이하고는 있는데, 귀찮다고 도감을 다 안 채웠더니 이로치 출현확률이 엄청나게 높아진 다이맥스 어드벤처를 100% 즐기지 못하고 있어서 고민입니다. 지금이라도 도감을 다 채워야 하나. 그냥 맥스 레이드배틀의 경우 이로치 레이드방이 꽤 많아서 적당히 찾아 들어가면 금방 이로치를 잡았더니 굳이 빛나는 부적을 얻을 필요를 못 느꼈단 말이죠. 뭐, 게임을 샀으면 끝까지 즐겨보는 것도 나쁘지 않겠지만요.

'Daily lives' 카테고리의 다른 글

그냥저냥 근황  (0) 2019.10.20
여러가지 잡담들  (0) 2019.06.17
Strings 2017 후기  (0) 2017.07.06
2017 Asian Winter School  (0) 2017.01.19
YITP School  (0) 2016.03.06
Posted by 덱스터

제목은 아는 사람들은 다 아는(?) 책인 PCT, Spin and Statistics, and All That을 참고했다. 물론 나는 읽다 만(...) 책이지만. 이 포스트의 출발점은 다음 트윗 타래. 한번 정도는 정리해두는 것이 좋겠다는 생각이 들었다.

'세상에서 가장 아름다운 공식'이란 별명이 있는 오일러 공식의 장점(?)은, 네이피어수 (혹은 자연상수) $e$ 위에 올라가는 수학적 물체(mathematical object의 번역으로 이게 맞는지 모르겠다) $a$가 무엇이든 $a^2 = -1$이란 조건을 만족하기만 하면 된다는 것이다.

\[ a^2 = -1 \Rightarrow e^{a \theta} = \cos(\theta) + a \sin(\theta)\]

여기서 $a$는 일반적인 숫자(복소수체에서는 확실히 성립하는데 일반적인 체에서도 되는지는 모르겠다)나 행렬(사원수quaternion는 $2 \times 2$ 행렬과 대응관계를 맺기 때문에 사원수에서도 위의 식이 적용된다), 혹은 클리포드 대수Clifford algebra의 원소(기하대수geometric algebra 계산에서 이 성질을 이용한다) 등 무엇이든 될 수 있다. 그냥 1이 잘 정의되어 있고 제곱해서 -1이 되는 물체가 있다고 하면 언제든 쓸 수 있다는 의미. 다른 특기할 점은 위 공식이 다루기 까다로운 경우가 많은 삼각함수trigonometric function를 지수함수exponential function로 바꾸는 역할을 한다는 것이다. 따라서 주기성을 갖는 물리량이 있는 물리계에서는 위 공식을 반대로 적용해 삼각함수로 써지는 물리량을 지수함수의 '실수부'로 놓는 작업을 자주 한다.

\[ \cos(\theta) = \text{Re}[e^{i \theta}] \]

여기까지는 학부 2학년 수준에서 얼마든지 다루는 내용.

 

전기공학에서는 교류회로를 다룰 때 단위허수 $j$를 $j^2 = -1$으로 도입해 전류와 같은 물리량을 다음과 같이 쓰곤 한다.

\[ I(t) = \text{Re}[I_0 e^{j (\omega t + \delta)}] \]

일반적으로 쓰는 단위허수 $i$가 있는데 왜 하필 $j$일까? 트윗 타래에서 언급했듯 $j = -i$라고 여기는 경우가 있기 때문이다. $(-1)^2 = +1$이므로, 애초부터 단위허수에는 부호를 선택하는 자유도가 남아있었던 셈. $j=-i$라고 여기는 이유는 푸리에 전개가 다음과 같은 꼴을 취하기 때문이다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{-i \omega t} \]

처음 식과 비교해보면 지수함수에 올라간 항은 $-i \omega t$로, $j \omega t$와 부호 차이를 갖고있다. $j = -i$란 인식은 이 차이에서 비롯된 것. 그렇다면 왜 푸리에 전개는 위와 같은 꼴을 택하는 것일까? 예컨대 다음과 같은 표현도 수학의 관점에서 볼 때 푸리에 전개로서는 딱히 결격사유가 없다.

\[ F(t) = \sum_{\omega} \tilde{F} (\omega) e^{+i \omega t} \]

문제는 인과율causality로부터 얻는 주파수 공간frequency space의 함수 $\tilde{F}(\omega)$가 갖길 원하는 해석적 성질analytic property에 있다. 일반적으로 푸리에 전개를 통해 해석하는 (실)함수 $F(t)$는 입력에 따라 어떤 출력을 예상할 수 있는지를 나타내는 반응함수response function이고, 인과율과 계의 시간불변성time invariance을 가정할 경우 시간차 $t$가 양수일 경우에만 0이 아닌 값을 갖는다.

\[ t<0 \Rightarrow F(t) = 0 \]

그리고 이렇게 '한쪽 방향으로만 값을 갖는 함수'는 라플라스 변환Laplace transform을 쓸 수 있다. 이 방향은 나중에 브롬위치 적분Bromwich integral을 이야기할 기회가 생기거든 돌아오기로 하자. 여튼, 주파수 공간의 함수 $\tilde{F}(\omega)$는 다음과 같이 주어진다.

\[ F(t) = \sum_{\omega} \tilde{F}(\omega) e^{\mp i \omega t} \Rightarrow \tilde{F}(\omega) = \int F(t) e^{\pm i \omega t} dt \]

일반적으로 $\tilde{F} (\omega)$는 실수값만 갖지는 않고, 실수부와 허수부를 모두 갖는다. 따라서 다음과 같은 질문을 해볼 수 있다; 어차피 복소수 값을 갖는 복소함수라면, $\tilde{F} (\omega)$를 복소해석학complex analysis을 통해 다뤄 볼 수는 없을까? 안타깝게도 $\tilde{F}$는 전체 $\omega$ 복소평면에서 해석적인 성질을 가질 수는 없다. 단순하게 복소수 $\omega = \omega_1 + i \omega_2$를 실수부와 허수부로 나누어서 분석해보자.

\[ \tilde{F}(\omega_1 + i\omega_2) = \int F(t) e^{\mp \omega_2 t \pm i \omega_1 t} dt \]

위 표현은 $\mp \omega_2 < 0$일때 $F(t)$가 어지간히 이상한 함수가 아닌 이상 수렴한다. 반대로, $\mp \omega_2 >0$일때 많은 경우 발산해버리고 말 것이다. 따라서, 다음과 같은 결론을 내릴 수 있다.

  • \[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 위쪽 반평면upper half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.
  • \[ \tilde{F}(\omega) = \int F(t) e^{- i \omega t} dt \]로 정의할 경우, $F(t)$가 인과율을 따른다는 성질은 $\tilde{F}$는 아래쪽 반평면lower half plane에서 해석적인 성질을 갖는다는 성질로 이어진다.

일반적으로 $\tilde{F}(\omega)$는 위쪽 반평면에서 해석적인 성질을 갖는 것이 바람직하다고 여겨지기 때문에 푸리에 변환의 부호가 $F(t) = \sum_{\omega} \tilde{F} e^{-i\omega t}$로 결정되는 것이다. 힐베르트 변환Hilbert transform을 이용해 반응함수의 실수부와 허수부를 관계짓는 Kramer-Kronig 관계식 또한 이 부호의 선택에 의존한다. 'Kramer-Kronig 관계식을 증명하기 위해 그리는 적분 컨투어contour를 왜 위쪽 반평면에서 닫아야만 하는가?'란 질문에 대해 답을 주기 때문. 이유는 적분에 들어가는 integrand가 위쪽 반평면에서 완전히 해석적인 성질을 가지므로, 위쪽 반평면으로 컨투어를 닫아야 0이 되기 때문이다. 아래쪽 반평면에서는 무슨 일이 일어날지 모른다는 것은 또 다른 이야기.

\[ \tilde{F}(\omega) = \int F(t) e^{+ i \omega t} dt \,,\, \text{Im} [\omega_0] \le 0 \Rightarrow \frac{\tilde{F} (\omega)}{\omega - \omega_0} \, \text{analytic on upper half plane} \]

이렇게 사소해 보이는 부호 하나에도 그 부호를 선택해야만 하는 이유가 있기 마련이다.

Posted by 덱스터

최근 쓰는 논문에서 대충 다음과 같은 적분을 할 일이 있었다.

\[ \int_a^b \sqrt{f(x)} dx \]

구간은 $f(a) = f(b) = 0$의 해. 문제는 이 계산이 정확하게 되지 않아서 섭동계산으로 풀어야 한다는 것.

\[ \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx \]

편의상 $\epsilon$의 선형 차수까지 이 적분을 계산한다고 가정해보자. 이 경우 적분은 다음과 같이 전개할 수 있다.

\[ \int_{a(0)}^{b(0)} \sqrt{f(x;0)} dx + \epsilon \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \left[ \int_{a(0)+\epsilon a'(0)}^{a(0)} + \int_{b(0)}^{b(0)+\epsilon b'(0)} \right] \sqrt{f(x;0)} dx \]

첫 두 항은 별 문제가 없다. 문제가 되는 것은 마지막의 적분구간이 $\epsilon$에 대해 움직이는 부분. $\sqrt{f(x;0)}$의 부정적분을 계산할 수 있다고 생각없이 움직인 적분구간을 집어넣으면 틀린 답을 얻게 된다. 예컨대 구간 $(a(0)+\epsilon a'(0), a]$에서 $f(x;0)$의 값이 음수가 된다면 나올 리가 없는 허수부가 만들어진다.

 

그렇다면 정확한(?) 풀이방법은 무엇일까? 우선은 처음 쓴 적분을 $G(\epsilon)$으로 정의하자. 우리가 원하는 것은 $G'(0) = \left. \frac{\partial G}{\partial \epsilon} \right|_{\epsilon=0}$이다.

\[ G(\epsilon) := \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = G(0) + \epsilon G'(0) + \cdots \]

$G'(0)$는 정의만 사용하면 다소 싱겁게 구할 수 있다.

\[ G'(0) = \int_{a(0)}^{b(0)} \frac{\partial \sqrt{f(x;0)}}{\partial\epsilon} dx + \frac{\partial b}{\partial \epsilon} \sqrt{f(b;0)} - \frac{\partial a}{\partial \epsilon} \sqrt{f(a;0)} \]

뒤 두 항은 $f(a) = f(b) = 0$란 조건으로부터 0이므로, 실제 계산은 맨 앞 항만 해주면 된다. 물론 이렇게 단순한 문제였으면 포스트를 쓰지도 않았을테지만.

 

문제는 $\epsilon^2$ 차수의 계산이다. $G''(0)$는 어떻게 구할 수 있을까? 쉽게 계산되는 부분은 일단 전부 던져두고, 문제가 되는 부분만 찾아보자.

\[ G''(0) = \cdots + \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} + \cdots - \frac{\partial a}{\partial \epsilon} \frac{\partial \sqrt{f(a;0)}}{\partial \epsilon} + \cdots \]

위에서 $\cdots$로 표시한 부분은 딱히 발산하지 않는 부분이기 때문에 문제없이 계산할 수 있지만, 위에 적은 항들은 그렇지 않다.

\[ \frac{\partial b}{\partial \epsilon} \frac{\partial \sqrt{f(b;0)}}{\partial \epsilon} = \frac{\partial b}{\partial \epsilon} \left( \frac{1}{2 \sqrt{f(b;0)}} \frac{\partial f(b;0)}{\partial \epsilon} \right) \stackrel{?}{=} \frac{N}{0} \]

별 생각없이 계산하다가는 $\frac10$꼴의 항들이 두개나 튀어나오게 된다. 만약 보다 고차항을 보고 싶다면 $\frac10 \times \frac10$과 같은 더 계산이 불가능한 항들이 만들어질 것이다. 그렇다면 해결방법은 무엇일까?

 

문제의 원인은 적분구간이 이동한다는 사실에 있다. 그러므로 적분변수를 바꿔서 적분구간이 이동하지 않도록 조정해주면 문제가 해결된다. 다음과 같은 성질을 갖는 $\epsilon$에 의존하는 변수변환을 생각하자.

\[ x \to \tilde{x}(x; \epsilon) \,,\, \tilde{x}(a(\epsilon);\epsilon) = a(0) \,,\, \tilde{x}(b(\epsilon);\epsilon) = b(0) \,,\, \lim_{\epsilon \to 0} \tilde{x}(x;\epsilon) = x \]

이 변수변환이 적당한 one-to-one mapping이라면 문제는 매우 싱겁게 해결된다. $G(\epsilon)$에 대한 $\frac{\partial}{\partial \epsilon}$ 미분이 전부 integrand에만 걸리기 때문.

\[ G(\epsilon) = \int_{a(\epsilon)}^{b(\epsilon)} \sqrt{f(x;\epsilon)} dx = \int_{a(0)}^{b(0)} \sqrt{f(x(\tilde{x};\epsilon);\epsilon)} \left( \frac{\partial x}{\partial \tilde{x}} \right) d\tilde{x} \]

물론 이 invertible mapping을 찾기란 쉽지만은 않다. 처음에는 quadratic 관계식으로 해보려고 했는데 결국은 실패했고, 결과적으로는 다음과 같은 projective 관계식을 푸는 것으로 해결했다. (정확히는 $b = \infty$에 놓여있어서 단순한 선형 이동으로 해결했지만)

\[ \frac{x - a(\epsilon)}{x - b(\epsilon)} = \frac{\tilde{x} - a(0)}{\tilde{x} - b(0)} \]

학부 4년 과정 내내(?) 섭동계산을 배우지만 그것만으로는 충분하지 않을 만큼 섭동계산의 세계는 넓고도 험하다.

'Mathematics' 카테고리의 다른 글

선형미분방정식과 선형대수학 (I) : Green's function  (0) 2021.07.10
A soft cut-off regulator  (0) 2020.11.30
행렬식의 섭동계산  (0) 2020.07.30
Integral for Dirac delta  (0) 2020.03.26
간단한 적분 트릭  (0) 2017.08.09
Posted by 덱스터

블로그 이미지
A theorist takes on the world
덱스터
Yesterday
Today
Total

달력

 « |  » 2024.4
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

최근에 올라온 글

최근에 달린 댓글

글 보관함